![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Technology: general issues > Nanotechnology
Molecular Logic Gates and Luminescent Sensors Based on Photoinduced Electron Transfer, by A. Prasanna de Silva and S. Uchiyama; Luminescent Chemical Sensing, Biosensing, and Screening Using Upconverting Nanoparticles, by D. E. Achatz, R. Ali, and O. S. Wolfbeis; Luminescence Amplification Strategies Integrated with Microparticle and Nanoparticle Platforms, by S. Zhu, T. Fischer, W. Wan, A. B. Descalzo, and K. Rurack; Luminescent Chemosensors Based on Silica Nanoparticles, by S. Bonacchi, D. Genovese, R. Juris, M. Montalti, L. Prodi, E. Rampazzo, M. Sgarzi, and N. Zaccheroni; Fluorescence Based Sensor Arrays, by R. Paolesse, D. Monti, F. Dini, and C. Di Natale; Enantioselective Sensing by Luminescence, by A. Accetta, R. Corradini, and R. Marchelli
On-surface synthesis is appearing as an extremely promising strategy to create organic nanoarchitectures with atomic precision. Molecular building blocks holding adequate functional groups are dosed onto surfaces that support or even drive their covalent linkage. The surface confinement and the frequent lack of solvents (most commonly being performed under vacuum conditions) create a completely new scenario fully complementary to conventional chemistry. In a pedagogical way and based on the most recent developments, this volume presents our current understanding in the field, addressing fundamental reaction mechanisms, synthetic strategies to influence the reactions according to our needs, as well as the ultimate growth and characterization of functional materials. Verging on chemistry, physics and materials science, the book is aimed at students and researchers interested in nanochemistry, surface science, supramolecular materials and molecular devices. Chapters "Mechanistic insights into surface-supported chemical reactions", "Reactivity on and of Graphene Layers: Scanning Probe Microscopy Reviels" and "Bottom-up fabrication of atomically precise graphene nanoribbons" of this book are available open access under a CC BY 4.0 license at link.springer.com
Thisbookiswrittenforthosescientistsandengineerswhowishtounderstand the synthesis, physical and chemical properties, and applications of inorganic and metallic nanotubular materials. The original version of this book, written inJapanese,coveredthoseoforganic,inorganic,andmetallicnanotubular- terials or almost all the other nanotubular materials than carbon nanotubes. This English version is concerned with only the chapters of inorganic and metallic nanotubular materials. In most industries worldwide, recent attention is unexceptionally focused on the research and development of highly functional new materials or te- nologies leading to energetically highly e?cient activities. Nanotubular - terials are one of the materials with such technological potentials because of their nano-sized unique structures available, for example, functionalization at their internal and external surfaces. In 1991, Dr. S. Iijima discovered a tu- lar material of carbon and named it carbon nanotubes. Since then, worldwide attention has been focused on the basic and functional properties of the novel materials and in more recent times the research phase has developed into an advanced stage based on strategic researches toward various applications. Carbon nanotubes have thus become synonymous with nanotubular materials and still more a symbol of nanotechnology because of their unique, valuable, and versatile properties.
Radio Design in Nanometer Technologies addresses current trends and future directions in radio design for wireless applications. As radio transceivers constitute the major bottleneck in a wireless chipset in terms of power consumption and die size, the radio must be designed in the context of the entire system, end to end. Therefore the book will address wireless systems as well as the DSP parts before it gets into coverage of radio design issues. To that end, the book contains three parts: Part 1: a general part discussing current and future wireless networks, chipset evolution over the past decade and ending with a discussion on radio requirements for software defined radio(SDR). Part 2: will focus on the digital baseband of a wireless chip set, flexible DSP cores for multi-standard wireless platforms and system-on-chip SoC implementation and design flow issues. Part 3: will be devoted to radio design issues starting at the transceiver level and going down to discuss critical issues facing design of future multi band multi standard radios for emerging wireless standards such as UMTS, WiMaX, MIMO and WLAN in a way that is consistent with the prevailing vision of SDR. As such, the book is the first volume that looks at the integrated radio design problem as a "piece of a big puzzle," namely the entire chipset or single chip that builds an entire wireless system. This is the only way to successfully design radios to meet the stringent demands of todaya (TM)s increasingly complex wireless systems.
The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field. The chapter "DNA-Programmed Chemical Synthesis of Polymers and Inorganic Nanomaterials" is available open access under a CC BY 4.0 License via link.springer.com.
This thesis describes improvements to and control of the electrical conductance in single-molecule junctions (SMJs), which have potential applications in molecular electronics, with a focus on the bonding between the metal and molecule. In order to improve the electrical conductance, the orbital of the molecule is directly bonded to the metal orbital, because anchoring groups, which were typically used in other studies to bind molecule with metal electrodes, became resistive spacers. Using this direct -binding, the author has successfully demonstrated highly conductive SMJs involving benzene, endohedral metallofullerene Ce@C82, and nitrogen. Subsequently, the author investigated control of the electrical conductance of SMJs using pyrazine. The nitrogen atom in the -conjugated system of pyrazine was expected to function as an anchoring point, and two bonding states were expected. One originates primarily from the orbital, while the other originates primarily from an n state of the nitrogen. Measurements of conductance and dI/dV spectra coupled with theoretical calculations revealed that the pyrazine SMJ has bistable conductance states, in which the pyrazine axis is either tilted or parallel with respect to the junction axis. The bistable states were switched by changing the gap size between the metal electrodes using an external force. Notably, it is difficult to change the electrical properties of bulk-state materials using mechanical force. The findings reveal that the electron transport properties of a SMJ can be controlled by designing a proper metal-molecule interface, which has considerable potential for molecular electronics. Moreover, this thesis will serve as a guideline for every step of SMJ research: design, fabrication, evaluation, and control.
This book presents a complete state of the art for different types of nanomaterial, their environmental fate, and their use in textile waste remediation. Nano-engineered materials including nanoparticles, nanofibers, nanotubes have been used extensively for a variety of applications. Environmental concerns have been noted mainly due to the discharge of textile waste. Nanotechnology is fast growing on research and bringing sustainable solution in minimizing the waste. This also minimizes the risk of exposure and health hazards. With the development of industry, environmental pollution and energy shortage have raised awareness of a potential global crisis. So, it is urgent to develop a simple and effective method to address these current issues. Nano-engineered materials can be better solution in finding solution of environmental sustainability more specific to the textile waste remediation. Nano-engineered materials have emerged as pioneering photocatalysts and account for most of the current research in this area. This can provide large surface areas, diverse morphologies, abundant surface states, and easy device modeling, all of which are properties beneficial to photodegradation. Furthermore, the stability and cost of nano-engineered materials are critical factors. Therefore, it is a challenge of great importance to identify and design nano-engineered materials that are efficient, stable, and abundant for the remediation of textile waste.
Nanotechnology has grown in its use and adoption across sectors. In particular, the medical field has identified the vast opportunities nanotechnology presents, especially for earlier disease detection and diagnosis versus traditional methods. Integrating Biologically-Inspired Nanotechnology into Medical Practice presents the latest research on nanobiotechnology and its application as a real-world healthcare solution. Emphasizing applications of micro-scale technologies in the areas of oncology, food science, and pharmacology, this reference publication is an essential resource for medical professionals, researchers, chemists, and graduate-level students in the medical and pharmaceutical sciences.
As two relatively new fields of study, proteomics and nanotechnology have developed in parallel with each other to allow an increased precision in the identification of post-translational protein modifications as well as to provide a more automated isolation and detection of rare proteins in both serum and tissues. The Nanoproteomics: Methods and Protocols volume organizes and collects technical advances from leaders in the field to make laboratory protocols more readily available and understandable to those who are attempting to incorporate nanotechnologic techniques into their proteomic research. Conveniently divided into five sections, this detailed volume covers preliminary sample preparation, nanoscale fluidic devices and methods, nanostructured surfaces and nanomaterials, and nanoproteomic techniques to detect and understand protein and proteomic alterations specific to human pathology. Written in the highly successful series entitled Methods in Molecular Biology (TM), these chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step laboratory protocols that are readily reproducible, and tips on troubleshooting and avoiding known pitfalls. Convenient and authoritative, Nanoproteomics: Methods and Protocols offers key procedures that are culled from the laboratories of leaders in the field of nanoproteomics with the aim of helping researchers in their standardization and proliferation of protocols that will lead to a more wide scale adoption and smoother progress in this vital field.
This book covers the basics of nanotechnology and provides a solid understanding of the subject. Starting from a brush-up of the basic quantum mechanics and materials science, the book helps to gradually build up understanding of the various effects of quantum confinement, optical-electronic properties of nanoparticles and major nanomaterials. The book covers the various physical, chemical and hybrid methods of nanomaterial synthesis and nanofabrication as well as advanced characterization techniques. It includes chapters on the various applications of nanoscience and nanotechnology. It is written in a simple form, making it useful for students of physical and material sciences.
This volume provides the latest developments in the field of surface science and technology based on diazonium coupling agents as well as their precursors (e.g. aromatic amines). It presents new concepts of surface chemistry of diazonium salts and discusses their novel and challenging applications. The latest advances on surface modification with diazonium salts are discussed and various promising alternative surface modifiers such as iodonium salts are examined. This book demonstrates the universality of diazonium salts in the surface treatment of classical and emergent materials and it will be a great tool for researcher and graduates working in this field.
The Romans built enduring bridges well before Newton came along, armed simply with a working knowledge of mechanics and materials. In contrast, today's bridge building is an elaborate enterprise involving CAD tools, composite materials and acoustic imaging. When technology is pushed to its limits, a working knowledge proves inadequate, and an in-depth understanding of core physical principles, both macroscopic and microscopic, top-down vs bottom-up, becomes essential.We find ourselves today at a similar crossroad in semiconductor device technology, where a working knowledge of solid state electronics is no longer enough. Faced with the prohibitive cost of computing and the slowdown of chip manufacturing, device scaling and the global supply chain, the semiconductor industry is forced to explore alternate platforms such as 2-D materials, spintronics, analog processing and quantum engineering.This book combines top-down classical device physics with bottom-up quantum transport in a single venue to provide the basis for such a scientific exploration. It is essential, easy reading for beginning undergraduate and practicing graduate students, physicists unfamiliar with device engineering and engineers untrained in quantum physics. With just a modest pre-requisite of freshman maths, the book works quickly through key concepts in quantum physics, Matlab exercises and original homeworks, to cover a wide range of topics from chemical bonding to Hofstader butterflies, domain walls to Chern insulators, solar cells to photodiodes, FinFETs to Majorana fermions. For the practicing device engineer, it provides new concepts such as the quantum of resistance, while for the practicing quantum physicist, it provides new contexts such as the tunnel transistor.
This book describes the forcefields/interatomic potentials that are used in the atomistic-scale and molecular dynamics simulations. It covers mechanisms, salient features, formulations, important aspects and case studies of various forcefields utilized for characterizing various materials (such as nuclear materials and nanomaterials) and applications. This book gives many help to students and researchers who are studying the forcefield potentials and introduces various applications of atomistic-scale simulations to professors who are researching molecular dynamics.
This book focuses on the fundamentals, technologies and properties of ion irradiation of dielectric materials (e.g. glasses, crystals) with regard to various photonic applications. It introduces readers to diverse ion-beam techniques for the fabrication and modification of micron- or nanoscale photonic structures, including optical waveguides, photonic crystals, and nanoparticle (nano-spheres and nano-rods) systems, and presents state-of-the-art advances in this multi-disciplinary research field, demonstrating the unique capabilities of ion-beam technologies in optical dielectric materials processing. The book discusses in detail the properties of ion-beam processed waveguides, as well as the modification of dielectrics for photonic applications, such as electro-optic modulation, nonlinear frequency conversion, waveguide amplification and lasing. It also explores synthesis and the correlated optical effects of nanoparticles by ion beams, and features examples of successful micro- and nano-photonic devices. Given its breadth of coverage, the book will particularly appeal to readers interested in ion-beam technology, materials science, and integrated optics.
Volume 3 of the Handbook of Colloid and Interface Science is a survey into the applications of colloids in a variety of fields, based on theories presented in Volumes 1 and 2. The Handbook provides a complete understanding of how colloids and interfaces can be applied in materials science, chemical engineering, and colloidal science. It is ideally suited as reference work for research scientists, universities, and industries.
This volume contains the proceedings of the IUTAM Symposium on Mechanical Behavior and Micro-mechanics of Nanostructured Materials, held in Beijing, China, June 27-30, 2005. The aim of this symposium was to bring scientists from materials sciences, mechanics, physics, etc. from all over the world together to present and discuss various aspects closely related to the topic of the conference. The proceedings consist of approximately 30 presentations from distinguished scholars. Nano-scale, micro-scale, theoretical, experimental and numerical aspects of the subjects are covered. A wide scope of research and progress are displayed. This work will be of interest to those working in solid mechanics, materials science, solid state physics, and biomaterials.
Topical and transdermal drug delivery systems (TDDs) have several advantages over traditional drug delivery methods, as they can be less invasive, more sanitary, more cost-effective, and may result in better patient compliance. TDDs play a significant role in therapeutics with a variety of preparations and approaches designed by expert formulation scientists. This volume integrates a wide variety of case studies, research, and theories to reveal their diversity and capture the novel approaches of transdermal and topical drug delivery employed by developers and content experts in the field. It provides an abundance of important information and state-of-the-art research on topical and transdermal drug delivery systems and addresses the basics of drug delivery systems, strategies to enhance permeation across membranes, and formulation and evaluation of diverse dosage forms. The volume presents an evaluation of the pros and cons of conventional drug delivery systems against TDDs and discusses the nuances of micro- and nano-systems in TDDs. The extraordinary packages of nano systems (vesicular systems, polymeric nanoparticles, nanoemulsion and dendrimers) are broadly discussed, and their applications are reviewed through a transdermal route. The book looks at TDDs and the main nanoparticles used in skin diseases and lesions of the aging, such as psoriasis, vitiligo, cancer, lesions of the aging and others. Chapters also discuss polymeric micelles in topical and transdermal delivery; microneedles; emulsion, nanoemulsion and microemulsion; TDDs in pulmonary drug delivery systems; nanoencapsulated nasal drug delivery systems; skin sensitivity and irritation testing for transposing transdermal drug delivery systems; and regulatory aspects of drug development for dermal products. Topical and Transdermal Drug Delivery Systems: Applications and Prospects will be a valuable resource for pharmaceutical scientists and researchers, industry professionals, and academicians and students of the pharmaceutical and biomedical sciences.
Covers all aspects of gold nanorods along with selected protocols Focuses on synthetic chemistry, optical property, and fictionalization approach of colloidal gold nanorods Describes standard synthetic methods and advantage of gold nanorods in biomedical applications Includes authentic and reproducible experimental procedures Discusses applications like redox catalyst, catalyst promoter, delivery carrier, solar cell material, and so forth
This book is a collection of papers that are devoted to various aspects of interactions between mineralogy and material sciences. It will include reviews, perspective papers and original research papers on mineral nanostructures, biomineralization, micro- and nanoporous mineral phases as functional materials, physical and optical properties of minerals, etc. Many important materials that dominate modern technological development were known to mineralogists for hundreds of years, though their properties were not fully recognized. Mineralogy, on the other hand, needs new impacts for the further development in the line of modern scientific achievements such as bio- and nanotechnologies as well as by the understanding of a deep role that information plays in the formation of natural structures and definition of natural processes. It is the idea of this series of books to provide an arena for interdisciplinary discussion on minerals as advanced materials.
To read a good book on nano science and technology, readers should have a reasonable grasp of quantum mechanics, which is exhaustively discussed in the first chapter. To be concerned with the technique of preparation of nano particles, two chapters are devoted on how to make different types of nano materials that are useful for various applications with their mechanical properties. The rest deals with the most important properties like magnetic, electronic and optical phenomena of nano materials citing the most useful and well-studied materials of importance today.The author illustrates the novel techniques such as sol-gel method, Mossbauer spectroscopy for supermagnetic behaviour of nano-sized magnetite and many other methods, in order to have an edge on the interpretation of the experimental data to be able to elucidate the observed interesting property. All these subjects are given due importance as it is attracting a lot of attention of the scientists and technologists on the one hand, and on the other hand, both undergraduate and postgraduate students of various universities and institutes.
Nanostructure is in the focus of science, and advanced scattering methods are significantly contributing to the solution of related questions. This volume includes 19 contributions to the field of polymers and scattering, collected on the occasion of Wilhelm Ruland 's 80th anniversary in October 2005. The contributions from leading scientists cover a wide range of topics concerning -Advanced polymer materials -Studies of nanostructure: From bone to nanotubes -Modern data evaluation methods for isotropic and anisotropic scattering data. The book is an excellent source of information with respect to recent developments and future applications related to this important field that extends from the engineering of advanced materials to the development of novel evaluation methods.
This thesis presents a novel coarse-grained model of DNA, in which bases are represented as rigid nucleotides. The model is shown to quantitatively reproduce many phenomena, including elastic properties of the double-stranded state, hairpin formation in single strands and hybridization of pairs of strands to form duplexes, the first time such a wide range of properties has been captured by a coarse-grained model. The scope and potential of the model is demonstrated by simulating DNA tweezers, an iconic nanodevice, and a two-footed DNA walker - the first time that coarse-grained modelling has been applied to dynamic DNA nanotechnology.
This thesis investigates the effect of the magnetic field on propagating surface plasmon polaritons (SPPs), or surface plasmons for short. Above all, it focuses on using the magnetic field as an external agent to modify the properties of the SPPs, and therefore achieving active devices. Surface plasmons are evanescent waves that arise at metal-dielectric interfaces. They can be strongly confined (beyond the light diffraction limit), and provide a strong enhancement of the electromagnetic field at the interface. These waves have led to the development of plasmonic circuitry, which is a key candidate as an alternative to electronic circuitry and traditional optical telecommunication devices, since it is faster than the former and less bulky than the latter. Adopting both a theoretical and an experimental point of view, the book analyzes the magnetic modulation in SPPs by means of an interferometer engraved in a multilayer combining Au and Co. In this interferometer, which acts like a modulator, the SPP magnetic modulation is studied in detail, as are the parameters that have a relevant impact on it, simple ways to enhance it, its spectral dependence, and the highly promising possibility of using this system for biosensing. The thesis ultimately arrives at the conclusion that this method can provide values of modulations similar to other active methods used in plasmonics.
The book includes the research papers presented in the final conference of the EU funded SARISTU (Smart Intelligent Aircraft Structures) project, held at Moscow, Russia between 19-21 of May 2015. The SARISTU project, which was launched in September 2011, developed and tested a variety of individual applications as well as their combinations. With a strong focus on actual physical integration and subsequent material and structural testing, SARISTU has been responsible for important progress on the route to industrialization of structure integrated functionalities such as Conformal Morphing, Structural Health Monitoring and Nanocomposites. The gap- and edge-free deformation of aerodynamic surfaces known as conformal morphing has gained previously unrealized capabilities such as inherent de-icing, erosion protection and lightning strike protection, while at the same time the technological risk has been greatly reduced. Individual structural health monitoring techniques can now be applied at the part-manufacturing level rather than via extending an aircraft's time in the final assembly line. And nanocomposites no longer lose their improved properties when trying to upscale from neat resin testing to full laminate testing at element level. As such, this book familiarizes the reader with the most significant develo pments, achievements and key technological steps which have been made possible through the four-year long cooperation of 64 leading entities from 16 different countries with the financial support of the European Commission.
Bio-based materials, including those containing wood, will become increasingly important as we move to a bio-based economy. Among their many attributes, it is vitally important that these materials are renewable, sustainable with proper management and environmentally benign. Wood remains one of our most important bio-based materials. While it is an amazing material, wood still has negative attributes and drawbacks that can affect performance, including dimensional instability when wetted, vulnerability to fire and high temperatures, and susceptibility to biodeterioration. A variety of treatments have been developed to overcome these weaknesses. Among the most exciting of these treatments are nanomaterials. These materials have some exceptionally attractive properties for improving timber performance and have been the subject of intensive research over the past decade. There is a tremendous need for a single comprehensive source of information on this rapidly emerging subject with tremendous potential to enhance the performance of a variety of bio-based materials. This book contains 10 chapters, each compiled by different author(s) who are considered the top researcher(s) in their respective fields. The chapters begin with some basic background on nanomaterials and their synthesis, then explore different areas for potential applications and conclude with a review of the emerging questions about nanomaterial safety. The book is designed to provide the latest information and know-how on application and utilization of different nanomaterials to improve the properties of wood and wood-based composite panels. The contents cover some main topics in the industry including improving physical and mechanical properties, increasing resistance to biodegradation (including fungi and insects), developing wood-plastic composites (WPC), applying nanomaterials in paper and board industry, and emergence of transparent wood and radiation shielding. It also covers the use of nanomaterials to improve the performance of paints and finishes used for forest products. The book provides a single location for those interested in the field to begin. |
![]() ![]() You may like...
Antibiotics - Current Innovations and…
Sergio Sanchez, Arnold L. Demain
Hardcover
R6,074
Discovery Miles 60 740
Current Concepts in Zika Research
Alfonso J. Rodriguez-Morales
Hardcover
R3,485
Discovery Miles 34 850
Androgen Action in Prostate Cancer
Donald Tindall, James Mohler
Hardcover
R4,741
Discovery Miles 47 410
|