![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Technology: general issues > Nanotechnology
Tutorial lectures given by world-renowned researchers have become one of the important traditions of the Nano and Giga Challenges (NGC) conference series. 1 Soon after preparations had begun for the rst forum, NGC2002, in Moscow, Russia, the organizers realized that publication of the lectures notes would be a va- able legacy of the meeting and a signi cant educational resource and knowledge base for students, young researchers, and senior experts. Our rst book was p- lished by Elsevier and received the same title as the meeting itself-Nano and Giga 2 Challenges in Microelectronics. Our second book, Nanotechnology for Electronic 3 4 Materials and Devices, based on the tutorial lectures at NGC2004 in Krakow, 5 Poland, the third book from NGC2007 in Phoenix, Arizona, and the current book 6 from joint NGC2009 and CSTC2009 meeting in Hamilton, Ontario, have been published in Springer's Nanostructure Science and Technology series. Hosted by McMaster University, the meeting NGC/CSTC 2009 was held as a joint event of two conference series, Nano and Giga Challenges (Nano & Giga Forum) and Canadian Semiconductor Technology Conferences (CSTC), bringing together the networks and expertise of both professional forums. Informational (electronics and photonics), renewable energy (solar systems, fuel cells, and batteries), and sensor (nano and bio) technologies have reached a new stage in their development in terms of engineering limits to cost-effective impro- ment of current technological approaches. The latest miniaturization of electronic devices is approaching atomic dimensions.
"Fundamental Tests of Physics with Optically Trapped Microspheres
"details experiments on studying the Brownian motion of an
optically trapped microsphere with ultrahigh resolution and the
cooling of its motion towards the quantum ground state.
Proceedings of the International Conferences LEAP'11 (Low Energy Antiproton Physics) held from April 27th to May, 1st 2011 in Vancouver, Canada and hosted by TRIUMF, Canada's National Laboratory for Particle and Nuclear Physics. Now the research in exotic atoms has a remarkable history of more than 50 years. Enormous success in the understanding of fundamental interactions and symmetries resulted from the research on these tiny objects at the femtoscale. This volume contains research papers on recent achievements and future opportunities of this highly interdisciplinary field of atomic, nuclear, and particle physics. The Proceedings are structured according to the conference session topics. It is directed to researchers in the field and advanced students.
As the focus in materials science shifts towards designing materials at the sub-micron scale - the "nanotechnology" revolution - it becomes increasingly important to characterize the mechanical properties of thin films and small volumes of material. The development of of nanoscale probes and ultrasensitive transducers for force and depth has made such measurements possible. "Nanoindentation" testing is becoming increasingly used in a wide variety of research and manufacturing areas, ranging from the testing of silicon wafers in the electronics industry to the characterization of hard coatings and other surface treatments for cutting tools, dental restoratives and other biomedical implants, and optical components.This book presents a comprehensive and detailed overview of the field of nanoindentation. The underlying theory behind the extraction of elastic modulus, hardness and other properties from the load-displacement data is discussed along with the various systematic and materials-related corrections involved. Also covered are the various methods of testing, details of an international standard for depth-sensing indentation testing, the significance of surface forces and adhesion details of commercially available instruments, and sample applications of the technique. Self-contained, the treatment is aimed at those entering the field, but by bringing together material scattered widely throughout the research literature the book will also be a useful reference for the more experienced researcher.
Advances in Quantum Methods and Applications in Chemistry, Physics, and Biology includes peer-reviewed contributions based on carefully selected presentations given at the 17th International Workshop on Quantum Systems in Chemistry, Physics, and Biology. New trends and state-of-the-art developments in the quantum theory of atomic and molecular systems, and condensed matter (including biological systems and nanostructures) are described by academics of international distinction.
This book captures cutting-edge research in semiconductor quantum dot devices, discussing preparation methods and properties, and providing a comprehensive overview of their optoelectronic applications. Quantum dots (QDs), with particle sizes in the nanometer range, have unique electronic and optical properties. They have the potential to open an avenue for next-generation optoelectronic methods and devices, such as lasers, biomarker assays, field effect transistors, LEDs, photodetectors, and solar concentrators. By bringing together leaders in the various application areas, this book is both a comprehensive introduction to different kinds of QDs with unique physical properties as well as their preparation routes, and a platform for knowledge sharing and dissemination of the latest advances in a novel area of nanotechnology.
The chemistry and physics of group 14 elements such as silicon and germanium have been extensively studied, largely due to their fundamental importance in the development of semiconductor electronics. In addition, crystalline open-framework and nano-porous materials are attracting increasing attention for their potential technological applications. Inorganic open-framework materials comprised of group 14 elements crystallizing in crystal structures known as clathrates are of particular interest. These materials correspond to expanded forms, and in some cases metastable allotropes, of silicon, germanium and tin. The novel crystal structures these materials possess are intimately related to the unique physical properties they exhibit. Just as interesting as the structure and properties group 14 clathrates display is the diverse range of synthetic techniques developed to synthesize and grow single crystals of these materials. This volume will encompass many of these aspects and describe their potential for important technological applications.
Technology and Development of Self-Reinforced Polymer Composites, by Ben Alcock und Ton Peijs; Recent Advances in High-Temperature Fractionation of Polyolefins, by Harald Pasch, Muhammad Imran Malik und Tibor Macko; Antibacterial Peptidomimetics: Polymeric Synthetic Mimics of Antimicrobial Peptides, by Karen Lienkamp, Ahmad E. Madkour und Gregory N. Tew; Collagen in Human Tissues: Structure, Function, and Biomedical Implications from a Tissue Engineering Perspective, by Molamma P. Prabhakaran;
This book deals with a topic of vital importance to the design and function of nanodevices. It covers combined systems of electrons and electromagnetic fields at nanometer scales. When the dimensions of an electromagnetic field reach the nanometer scale, it is impossible to determine whether it is an electromagnetic phenomenon or an excited electronic system. This volume covers this interdisciplinary field, with contributions from both the electronic system and electromagnetic areas.
Nature is the best example of a system functioning on the nanometer scale, wherethematerialsinvolved,energyconsumption,anddatahandlingareop- mized. Opening the doors to the nanoworld, the emergence of the scanning tunneling microscope in 1982 and the atomic force microscope in 1986 led to a shift of paradigmin the understanding and perception of matter at its most fundamentallevel. As aconsequence,newrevolutionaryconceptsstimulateda number of new technologies. The current volume Scanning Probe Methods in Nanoscience and Nanotechnology showsthat these methods arestill making a tremendous impact on many disciplines that range from fundamental physics andchemistry throughinformationtechnology,spintronics,quantumcomp- ing, and molecular electronics, all the way to life sciences. Indeed, over 6,000 AFM-related papers were published in 2008 alone, bringing the total to more than 70,000 since its invention, according to the web of science, and the STM has inspired a total of 20,000 papers. There are also more than 500 patents related to the various forms of scanning probe microscopes. Commerciali- tion of the technology started at the end of the 1980s, and approximately 12,000 commercial systems have been sold so far to customers in areas as diverse as fundamental research,the car industry, and even the fashion ind- try. There are also a signi?cant number of home-built systems in operation. Some60-80companiesareinvolvedinmanufacturingSPMandrelatedinst- ments. Indeed, not even the sky seems to be the limit for AFM technology. TheRosettamissiontocomet67Plaunchedbythe EuropeanSpaceAgencyin 2004 includes an AFM in its MIDAS (Micro-Imaging Dust Analysis System) instrument.
"Control from MEMS to Atoms" illustrates the use of control and control systems as an essential part of functioning integrated systems. The book is organized according to the dimensional scale of the problem, starting with micro-scale systems and ending with atomic-scale systems. Similar to macro-scale machines and processes, control systems can play a major role in improving the performance of micro- and nano-scale systems and in enabling new capabilities that would otherwise not be possible. However, the majority of problems at these scales present many new challenges that go beyond the current state-of-the-art in control engineering. This is a result of the multidisciplinary nature of micro/nanotechnology, which requires the merging of control engineering with physics, biology and chemistry.
This is the first book to cover actinide nano research. It is of interest both for fundamental research into the chemistry and physics of f-block elements as well as for applied researchers such as those studying the long-term safety of nuclear waste disposal and developing remediation strategies. The authors cover important issues of the formation of actinide nano-particles, their properties and structure, environmental behavior of colloids and nanoparticles related to the safe disposal of nuclear wastes, modeling and advanced methods of characterization at the nano-scale.
This proceedings volume presents selected and peer reviewed 50 reports of the 2015 International Conference on "Physics and Mechanics of New Materials and Their Applications" (Azov, Russia, 19-22 May, 2015), devoted to 100th Anniversary of the Southern Federal University, Russia. The book presents processing techniques, physics, mechanics, and applications of advanced materials. The book is concentrated on some nanostructures, ferroelectric crystals, materials and composites and other materials with specific properties. In this book are presented nanotechnology approaches, modern piezoelectric techniques, physical and mechanical studies of the structure-sensitive properties of the materials. A wide spectrum of mathematical and numerical methods is applied to the solution of different technological, mechanical and physical problems for applications. Great attention is devoted to novel devices with high accuracy, longevity and extended possibilities to work in a large scale of temperatures and pressure ranges, aggressive media, etc. The characteristics of materials and composites with improved properties is shown, and new possibilities in studying of various physico-mechanical processes and phenomena are demonstrated.
Nanoscale science and engineering, which deal with size-dependent properties and phenomenon at nanometer scale, are unveiling new mechanisms that scientists must rely on heavily at the present time to achieve efficient and sustainable chemical processing technologies. In Nanoscale Biocatalysis: Methods and Protocols, expert researchers in the field contribute detailed methodologies and procedures that have been developed from recent research in this burgeoning area of nanoscale technology-enabled biocatalysis. The volume opens with concepts in preparing unique and dynamic protein structures for biocatalysis, then moves on to cover methods for preparation of enzyme assembles or complexes that maintain molecular-like Brownian mobility, the development of protein-nanostructure complexes using carbon nanotubes (CNTs) and nanoparticles, as well as methodologies that have great potential for scale-up preparation of nano-structured biocatalysts. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include brief introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and vital tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Nanoscale Biocatalysis: Methods and Protocols is an ideal guide to the new wave of development in nearly all the major areas of science and engineering brought about by this fascinating and greatly promising area of study.
Nanobiotechnology is one of the key technologies of the 21st century. It is a combination of nanoscience and biotechnology and covers areas ranging from gene transfer and nanoencapsulation to food technology. Nanocarriers are a leading nanobiotechnology tool with the ability to provide protection, site-specific delivery, enhanced bioavailability and controlled release of pharmaceuticals, genetic material, imaging agents, nutraceuticals and cosmetics to name a few. For this reason, the study of nanocarriers, their properties and applications has attracted a great deal of interest over recent years. Designed as an advanced survey of the field, this book describes the key research parameters of nanocarrier technologies including their preparation methods, evaluation of their safety and efficiency, their interaction with biologicals and their application in biotechnology, drug delivery, gene therapy and food technology areas.
This book presents design techniques, analysis and implementation of high performance and power efficient, variation tolerant on-chip interconnects. Given the design paradigm shift to multi-core, interconnect-centric designs and the increase in sources of variability and their impact in sub-100nm technologies, this book will be an invaluable reference for anyone concerned with the design of next generation, high-performance electronics systems.
This book reviews several aspects of the biological response to nanoscale particles on a molecular and cellular level. Nanoscale materials and nanoscale particles in particular have interesting properties and beneficial applications. While they thus have entered our daily lifes on many different levels (from electronics, over textiles, packaging or surface modifications, to biomedical applications), general rules describing their interaction with biological structures and biological matter are still difficult to derive. The existing literature suggests a variety of interaction schemes between nanoparticles and biological objects, not dispelling the public concerns about possible health effects and harmful properties. A systematic approach to the problem is needed and timely. This book specifically emphasizes bioanalytical problems starting from the characterization of the nanomaterials to the pitfalls and potential artifacts of state-of-the-art cytotoxicity assays that are frequently used to study harmful effects on cells. It also highlights the application of label-free bioanalytical techniques that can potentially complement the present approaches and hence provide new perspectives on this highly discussed cutting-edge field of research and public concern.
The work shows the fascination of topology- and geometry-governed properties of self-rolled micro- and nanoarchitectures. The author provides an in-depth representation of the advanced theoretical and numerical models for analyzing key effects, which underlie engineering of transport, superconducting and optical properties of micro- and nanoarchitectures.
Nanobiotechnology of Biomimetic Membranes describes the current state of research and development in biomimetic membranes for nanobiotechnology applications. The application areas in nanobiotechnology range from novel nanosensors, to novel methods for sorting and delivering bio-active molecules, to novel drug-delivery systems. The success of these applications relies on a good understanding of the interaction and incorporation of macromolecules in membranes and the fundamental properties of the membrane itself.
This book presents a unified overview of eco-friendly bionanocomposites on the basis of characterization, design, manufacture, and application. It also explores replacing conventional materials with bionanocomposites with a focus on their use in packaging applications. In addition, the book broadens readers' insights by providing illustrations and tables summarizing the latest research on the packaging applications of different bionanocomposites. By offering a detailed account of this field of research and describing real-world applications, it enables researchers, scientists, and professionals in industry to develop a more informed understanding of the need for bionanocomposites in the development of green, biodegradable, and sustainable packaging applications.
Metal oxides and particularly their nanostructures have emerged as animportant class of materials with a rich spectrum of properties and greatpotential for device applications. In this book, contributions from leadingexperts emphasize basic physical properties, synthesis and processing, and thelatest applications in such areas as energy, catalysis and data storage. Functional Metal Oxide Nanostructuresis an essential reference for any materials scientist or engineer with aninterest in metal oxides, and particularly in recent progress in defectphysics, strain effects, solution-based synthesis, ionic conduction, and theirapplications.
Nanoscience and nanotechnologies are leading to a major point to our understanding of nature. Nanotechnology can be generally defined as creation and use of nano-sized systems, devices, and structures which have special functions or properties because of their small size. This volume on Nanotechnology Applications in Health and Environmental Sciences focuses on biotechnological and environmental applications of nanomaterials. It covers popular and various nanomedical topics such as oncology, genetics, and reconstructive medicine. Additionally, many chapters give leading-edge information on nano-sensor applications and usage in specific disciplines. Also, two chapters on novel subjects have been included on Lantibiotics and microbiota. This book should be useful for nanotechnologists, microbiologists, and researchers interested in nanomedicine and nano-biotechnology, as well as environmental nanotechnology.
As one of the fastest growing fields of research in the 21st century, nanotechnology is sure to have an enormous impact on many aspects of our lives. Nanostructure Design: Methods and Protocols serves as a major reference for theoretical and experimental considerations in the design of biological and bio-inspired building blocks, the physical characterization of the formed structures, and the development of their technical applications. The chapters contributed by leading experts are divided into two sections, the first of which covers experimental aspects of nanostructure design and the second delves into computational methods. As a volume of the highly successful Methods in Molecular Biology (TM) series, this collection pulls together cutting-edge protocols, written in a step-by-step, readily reproducible format certain to guide researchers to the desired results. Comprehensive and essential, Nanostructure Design: Methods and Protocols uses biological principles and vehicles on design to aid scientists in the great challenges still ahead.
Nanoimprint Lithography: An enabling process for nanofabrication presents a comprehensive description of nanotechnology that is one of the most promising low-cost, high-throughput technologies for manufacturing nanostructures, and an emerging lithography candidates for 22, 16 and 11 nm nodes. It provides the exciting, multidisciplinary field, offering a wide range of topics covering: principles, process, material and application. This book would be of specific interest for researchers and graduate students in the field of nanoscience, nanotechnology and nanofabrication, material, physical, chemical, electric engineering and biology. Dr. Weimin Zhou is an associate professor at Shanghai Nanotechnology Promotion Center, China. |
![]() ![]() You may like...
Art-Care Practices for Restoring the…
Barbara A. Bickel, R. Michael Fisher
Paperback
R1,240
Discovery Miles 12 400
Journey of the Star Children Through…
Sonja Christiansen KRMT, Ed Webber Rmt
Hardcover
R933
Discovery Miles 9 330
Madness Reimagined: Envisioning a Better…
Leonard A. Steverson
Hardcover
R1,695
Discovery Miles 16 950
Resilience, Response, and Risk in Water…
Manish Kumar, Francisco Munoz-Arriola, …
Hardcover
R2,939
Discovery Miles 29 390
|