![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Technology: general issues > Nanotechnology
This book is devoted to various aspects of self-assembly of gold nanoparticles at liquid-liquid interfaces and investigation of their properties. It covers primarily two large fields: (i) self-assembly of nanoparticles and optical properties of these assemblies; and (ii) the role of nanoparticles in redox electrocatalysis at liquid-liquid interfaces. The first part aroused from a long-lasting idea to manipulate adsorption of nanoparticles at liquid-liquid with an external electric field to form 'smart' mirrors and/or filters. Therefore, Chapters 3 to 5 are dedicated to explore fundamental aspects of charged nanoparticles self-assembly and to investigate optical properties (extinction and reflectance) in a through manner. Novel tetrathiafulvalene (TTF)-assisted method leads to self-assembly of nanoparticles into cm-scale nanofilms or, so-called, metal liquid-like droplets (MeLLDs) with remarkable optical properties. The second part (Chapters 6 to 8) clarifies the role of nanoparticles in interfacial electron transfer reactions. They demonstrate how nanoparticles are charged and discharged upon equilibration of Fermi levels with redox couples in solution and how it can be used to perform HER and ORR. Finally, Chapter 9 gives a perspective outlook, including applications of suggested methods in fast, one-step preparation of colloidosomes, SERS substrates as well as pioneer studies on so-called Marangony-type shutters drive by the electric field.
This book presents the select peer-reviewed proceedings of the International Conference on Advances in Bioprocess Engineering and Technology (ICABET 2020). The book covers all aspects of bioprocesses, especially related to fermentation technology, food technology, environmental biotechnology, and sustainable energy. Along with this primary theme, the focus is on recent advances in bioprocessing research such as biosensors, micro-reactors, novel separation techniques, bioprocess control, bio-safety, advanced techniques for waste to wealth generation, and nanobiotechnology. This contents are divided according to the major themes of the conference: (i) Fermentation Technology and Bioreactor, (ii) Food Pharmaceuticals and Health care, (iii) Environment and Agriculture, and (iv) Sustainable Energy. This book is intended to help students, researchers, and industry professionals acquire knowledge on innovative technologies and recent advancements in the field of bioprocess engineering and technology.
Discover the latest models and methods for robotic microassembly from around the world This book presents and analyzes new and emerging models and methods developed around the world for robotic microassembly, a new and innovative way to produce better microsystems. By exploring everything from the physics of micromanipulation to microassembly to microhandling, it provides the first complete overview and review of this rapidly growing field. Robotic Microassembly is divided into three parts: Part One: Modeling of the Microworld Part Two: Handling Strategies Part Three: Robotic and Microassembly Together, these three parts feature eight chapters contributed by eight different authors. The authors, internationally recognized experts in the field of robotic microassembly, represent research laboratories in Asia, Europe, and North America. As a result, readers get a remarkable perspective on different approaches to robotic microassembly from around the world. Examples provided throughout the chapters help readers better understand how these different approaches work in practice. References at the end of each chapter lead to the primary literature for further investigation of individual topics. Robotic microassembly offers a new, improved way to manufacture high-performance microelectro-mechanical systems (MEMS). Therefore, any professional or student involved in microrobotics, micromechatronics, self-assembly or MEMS will find plenty of novel ideas and methods in this book that set the stage for new approaches to design and build the next generation of MEMS and microproducts.
This book introduces the latest research developments in composite nanomaterials and summarizes the fundamentals and technical approaches in synthesis, fabrication and processing of composite nanomaterials. The author describes the intrinsic relationship between the catalytic properties and the physical and chemical effects in the composite materials, providing for theoretical and technical bases for effectively developing novel electrocatalyst - applications of the nanocomposites in energy conversion areas.
Analytical ultracentrifugation (AUC) is a powerful method for the characterization of polymers, biopolymers, polyelectrolytes, nanoparticles, dispersions, and other colloidal systems. The method is able to determine the molar mass, the particle size, the particle density and interaction parameters like virial coefficients and association constants. Because AUC is also a fractionation method, the determination of the molar mass distribution, the particle size distribution, and the particle density distribution is possible. A special technique, the density gradient method, allows fractionating heterogeneous samples according to their chemical nature that means being able to detect chemical heterogeneity. The book is divided into chapters concerning instrumentation, sedimentation velocity runs, density gradient runs, application examples and future developments. In particular, the detailed application chapter demonstrates the versatility and power of AUC by means of many interesting and important industrial examples. Thus the book concentrates on practical aspects rather than details of centrifugation theory. Both authors have many years of experience in an industrial AUC research laboratory of a world leading chemical company.
The aim of this book is to explore the detectable properties of a material to the parameters of bond and non-bond involved and to clarify the interdependence of various properties. This book is composed of four parts; Part I deals with the formation and relaxation dynamics of bond and non-bond during chemisorptions with uncovering of the correlation among the chemical bond, energy band and surface potential barrier (3B) during reactions; Part II is focused on the relaxation of bonds between atoms with fewer neighbors than the ideal in bulk with unraveling of the bond order-length-strength (BOLS) correlation mechanism, which clarifies the nature difference between nanostructures and bulk of the same substance; Part III deals with the relaxation dynamics of bond under heating and compressing with revealing of rules on the temperature-resolved elastic and plastic properties of low-dimensional materials; Part IV is focused on the asymmetric relaxation dynamics of the hydrogen bond (O: H-O) and the anomalous behavior of water and ice under cooling, compressing and clustering. The target audience for this book includes scientists, engineers and practitioners in the area of surface science and nanoscience
Risk is a popular topic in many sciences - in natural, medical, statistical, engineering, social, economic and legal disciplines. Yet, no single discipline can grasp the full meaning of risk. Investigating risk requires a multidisciplinary approach. The authors, coming from two very different disciplinary traditions, meet this challenge by building bridges between the engineering, the statistical and the social science perspectives. The book provides a comprehensive, accessible and concise guide to risk assessment, management and governance. A basic pillar for the book is the risk governance framework proposed by the International Risk Governance Council (IRGC). This framework offers a comprehensive means of integrating risk identification, assessment, management and communication. The authors develop and explain new insights and add substance to the various elements of the framework. The theoretical analysis is illustrated by several examples from different areas of applications.
This volume provides comprehensive dry and wet experiments, methods, and applications on nanopore sequencing. Chapters guide readers through bioinformatic procedures, genome sequencing, analysis of repetitive regions, structural variations, rapid and on-site microbial identification, epidemiology, and transcriptome analysis. Written in the format of the highly successful Methods in Molecular Biology series, each chapter includes an introduction to the topic, lists necessary materials and methods, includes tips on troubleshooting and known pitfalls, and step-by-step, readily reproducible protocols. Authoritative and cutting-edge, Nanopore Sequencing: Methods and Protocols aims to be comprehensive guide for researchers.
An outstanding feature of this book is a collection of
state-of-the-art reviews written by leading researchers in the
nanomechanics of carbon nanotubes, nanocrystalline materials,
biomechanics and polymer nanocomposites. The structure and
properties of carbon nanotubes, polycrystalline metals, and
coatings are discussed in great details. The book is an exceptional
resource on multi-scale modelling of metals, nanocomposites, MEMS
materials and biomedical applications. An extensive bibliography
concerning all these topics is included. Highlights on
bio-materials, MEMS, and the latest multi-scale methods (e.g.,
molecular dynamics and Monte Carlo) are presented. Numerous
illustrations of inter-atomic potentials, nanotube deformation and
fracture, grain rotation and growth in solids, ceramic coating
structures, blood flows and cell adhesion are discussed.
Intended to update scientists and engineers on the current state of the art in a variety of key techniques used extensively in the fabrication of structures at the nanoscale. The present work covers the essential technologies for creating sub 25 nm features lithographically, depositing layers with nanometer control, and etching patterns and structures at the nanoscale. A distinguishing feature of this book is a focus not on extension of microelectronics fabrication, but rather on techniques applicable for building NEMS, biosensors, nanomaterials, photonic crystals, and other novel devices and structures that will revolutionize society in the coming years.
This book describes a series of research topics investigated during the 6 years from 2010 through 2015 in the project "Advanced Materials Development and Integration of Novel Structured Metallic and Inorganic Materials". Every section of the book is aimed at understanding the most advanced research by describing details starting with the fundamentals as often as possible. Because both fundamental and cutting-edge topics are contained in this book, it provides a great deal of useful information for chemists as well as for materials scientists and engineers who wish to consider future prospects and innovations. The contents of Novel Structured Metallic and Inorganic Materials are unique in materials science and technology. The project was carried out through the cooperation of research groups in the following six institutes in Japan: the Institute for Materials Research (IMR), Tohoku University; the Materials and Structures Laboratory (MSL), Tokyo Institute of Technology; the Joining and Welding Research Institute (JWRI), Osaka University; the Eco-Topia Science Institute (EST), Nagoya University; the Institute of Biomaterials and Bioengineering (IBB), Tokyo Medical and Dental University; and the Institute for Nanoscience and Nanotechnology (INN), Waseda University. Major objectives of the project included creation of advanced metallic and inorganic materials with a novel structure, as well as development of materials-joining technologies for development of cutting-edge applications as environmental and energy materials, biomedical materials, and electronic materials for contributing to the creation of a safer and more secure society.
Group theoretical concepts elucidate fundamental physical phenomena, including excitation spectra of quantum systems and complex geometrical structures such as molecules and crystals. These concepts are extensively covered in numerous textbooks. The aim of the present monograph is to illuminate more subtle aspects featuring group theory for quantum mechanics, that is, the concept of dynamical symmetry. Dynamical symmetry groups complement the conventional groups: their elements induce transitions between states belonging to different representations of the symmetry group of the Hamiltonian. Dynamical symmetry appears as a hidden symmetry in the hydrogen atom and quantum rotator problem, but its main role is manifested in nano and meso systems. Such systems include atomic clusters, large molecules, quantum dots attached to metallic electrodes, etc. They are expected to be the building blocks of future quantum electronic devices and information transmitting algorithms. Elucidation of the electronic properties of such systems is greatly facilitated by applying concepts of dynamical group theory.
This book provides an interdisciplinary overview of a new and broad class of materials under the unifying name Nanostructured Soft Matter. It covers materials ranging from short amphiphilic molecules to block copolymers, proteins, colloids and their composites, microemulsions and bio-inspired systems such as vesicles.
"Fundamentals of Nanoscaled Field Effect Transistors" gives comprehensive coverage of thefundamental physical principles and theory behind nanoscale transistors.The specific issues that arise for nanoscale MOSFETs, such as quantum mechanical tunneling and inversion layer quantization, are fully explored. The solutions to these issues, such as high- technology, strained-Si technology, alternate devices structures and graphene technology are also given. Some case studies regarding the above issues and solution are also given in the book.
This book reviews a range of quantum phenomena in novel nanoscale transistors called FinFETs, including quantized conductance of 1D transport, single electron effect, tunneling transport, etc. The goal is to create a fundamental bridge between quantum FinFET and nanotechnology to stimulate readers' interest in developing new types of semiconductor technology. Although the rapid development of micro-nano fabrication is driving the MOSFET downscaling trend that is evolving from planar channel to nonplanar FinFET, silicon-based CMOS technology is expected to face fundamental limits in the near future. Therefore, new types of nanoscale devices are being investigated aggressively to take advantage of the quantum effect in carrier transport. The quantum confinement effect of FinFET at room temperatures was reported following the breakthrough to sub-10nm scale technology in silicon nanowires. With chapters written by leading scientists throughout the world, Toward Quantum FinFET provides a comprehensive introduction to the field as well as a platform for knowledge sharing and dissemination of the latest advances. As a roadmap to guide further research in an area of increasing importance for the future development of materials science, nanofabrication technology, and nano-electronic devices, the book can be recommended for Physics, Electrical Engineering, and Materials Science departments, and as a reference on micro-nano electronic science and device design. Offers comprehensive coverage of novel nanoscale transistors with quantum confinement effect Provides the keys to understanding the emerging area of the quantum FinFET Written by leading experts in each research area Describes a key enabling technology for research and development of nanofabrication and nanoelectronic devices
The seemingly unlimited technological potential of nanotechnology brings with it new practices of governance, networking, and exercising power and agency. Focusing on scholars in the Global South, this text covers nanotechnology discourses, imaginaries, and materialities as they circulate and interact within governance knowledge networks. Rather than adapt their actions to existing governance mechanisms and science, technology, and innovation policy, scientists use the imaginary of nanotechnology to create new symbolic and material incentives, thus shaping its governance. By tracing the constantly shifting asymmetries of knowledge and power, the book offers fresh insights into the dynamics of knowledge networks.
Bismuth-containing compounds comprise a relatively unexplored materials system that is expected to offer many unique and desirable optoelectronic, thermoelectric, and electronic properties for innovative device applications. This book serves as a platform for knowledge sharing and dissemination of the latest advances in novel areas of bismuth-containing compounds for materials and devices, and provides a comprehensive introduction to those new to this growing field. Coverage of bismides includes theoretical considerations, epitaxial growth, characterization, and materials properties (optical, electrical, and structural). In addition to the well-studied area of highly mismatched Bi-alloys, the book covers emerging topics such as topological insulators and ferroelectric materials. Built upon fundamental science, the book is intended to stimulate interest in developing new classes of semiconductor and thermoelectric materials that exploit the properties of Bismuth. Application areas for bismide materials include laser diodes for optical communications, DVD systems, light-emitting diodes, solar cells, transistors, quantum well lasers, and spintronic devices.
This book describes in detail the use of natural cellulose fibers for the production of innovative, low-cost, and easily recyclable lithium-ion (Li-ion) cells by means of fast and reliable papermaking procedures that employ water as a solvent. In addition, it proposes specific methods to optimize the safety features of these paper-based cells and to improve the electronic conductivity of the electrodes by means of a carbonization process- an interesting novel technology that enables higher current rate capabilities to be achieved. The in-depth descriptions of materials, methods, and techniques are complemented by the inclusion of a general overview of electrochemical devices and, in particular, of different Li-ion battery configurations. Presenting the outcomes of this important research, the work is of wide interest to electrochemical engineers in both research institutions and industry.
Few books exist that cover the hot field of second-generation spintronic devices, despite their potential to revolutionize the IT industry.Compiling the obstacles and progress of spin-controlled devices into one source, Spintronic Materials and Technology presents an in-depth examination of the most recent technological spintronic developments. Featuring contributions from active researchers and leading experts, the book chronicles the main research challenges in spintronics. It first depicts the different classes of materials systems currently under investigation for use in spintronic devices. The contributors also address issues concerning the operation of spintronic devices, such as the new principle for future devices that use spin-polarized current. This promises to enable switching of individual spin components of the device while avoiding crosstalk at the nanoscale. The book concludes with descriptions of both Si and III-V semiconductor-based spin transistors and the integration of spin technology with photonics. The second-generation spintronic devices discussed in Spintronic Materials and Technology will not only improve the existing capabilities of electronic transistors, but will enable future computers to run faster and consume less power.
The optical trapping of colloidal matter is an unequalled field of technology for enabling precise handling of particles on microscopic scales, solely by the force of light. Although the basic concept of optical tweezers, which are based on a single laser beam, has matured and found a vast number of exciting applications, in particular in the life sciences, there are strong demands for more sophisticated approaches. This thesis gives an introductory overview of existing optical micromanipulation techniques and reviews the state-of-the-art of the emerging field of structured light fields and their applications in optical trapping, micromanipulation, and organisation. The author presents established, and introduces novel concepts for the holographic and non-holographic shaping of a light field. A special emphasis of the work is the demonstration of advanced applications of the thus created structured light fields in optical micromanipulation, utilising various geometries and unconventional light propagation properties. While most of the concepts developed are demonstrated with artificial microscopic reference particles, the work concludes with a comprehensive demonstration of optical control and alignment of bacterial cells, and hierarchical supramolecular organisation utilising dedicated nanocontainer particles.
The presentation in the book is based on charge balance on the dust particles, number and energy balance of the constituents and atom-ion-electron interaction in the gaseous plasma. Size distribution of dust particles, statistical mechanics, Quantum effects in electron emission from and accretion on dust particles and nonlinear interaction of complex plasmas with electric and electromagnetic fields have been discussed in the book. The book introduces the reader to basic concepts and typical applications. The book should be of use to researchers, engineers and graduate students.
This book reviews and discusses the development of self-assembled nanomaterials applied in biomedical fields. Based on self-assembled nanomaterial constructions, it highlights the mechanisms of the stimuli-response-induced assembly/disassembly and transformation. Moreover, it examines healthcare-related diseases, the applications of nanomaterials and therapy/detection strategies, providing readers with both a deeper understanding of the subject and inspirations for future research. The book is primarily intended for researchers and graduate students in the fields of material sciences and chemistry who wish to learn about the principles, methods, mechanisms and biomedical applications of self-assembled nanomaterials.
This book presents a comprehensive study on a new class of branched polymers, known as hyperbranched polymers (HBPs). It discusses in detail the synthesis strategies for these particular classes of polymers as well as biocompatible and biodegradable HBPs, which are of increasing interest to polymer technologists due to their immense potential in biomedical applications. The book also describes the one-pot synthesis technique for HBPs, which is feasible for large-scale production, as well as HBPs' structure-property relationship, which makes them superior to their linear counterparts. The alterable functional groups present at the terminal ends of the branches make HBPs promising candidates in the biomedical domain, and the book specifically elaborates on the suitable characteristic properties of each of the potential biological HBPs' applications. As such, the book offers a valuable reference guide for all scientists and technologists who are interested in using these newly developed techniques to achieve faster and better treatments.
Since their discovery more than a decade ago, carbon nanotubes (CNTs) have held scientists and engineers in captive fascination, seated on the verge of enormous breakthroughs in areas such as medicine, electronics, and materials science, to name but a few. Taking a broad look at CNTs and the tools used to study them, Carbon Nanotubes: Properties and Applications comprises the efforts of leading nanotube researchers led by Michael O'Connell, protege of the late father of nanotechnology, Richard Smalley. Each chapter is a self-contained treatise on various aspects of CNT synthesis, characterization, modification, and applications. The book opens with a general introduction to the basic characteristics and the history of CNTs, followed by discussions on synthesis methods and the growth of "peapod" structures. Coverage then moves to electronic properties and band structures of single-wall nanotubes (SWNTs), magnetic properties, Raman spectroscopy of electronic and chemical behavior, and electromechanical properties and applications in NEMS (nanoelectromechanical systems). Turning to applications, the final sections of the book explore mechanical properties of SWNTs spun into fibers, sidewall functionalization in composites, and using SWNTs as tips for scanning probe microscopes. Taking a fresh look at this burgeoning field, Carbon Nanotubes: Properties and Applications points the way toward making CNTs commercially viable.
This book deals with the adhesion, friction and contact mechanics of living organisms. Further, it presents the remarkable adhesive abilities of the living organisms which inspired the design of novel micro- and nanostructured adhesives that can be used in various applications, such as climbing robots, reusable tapes, and biomedical bandages. The technologies for both the synthesis and construction of bio-inspired adhesive micro- and nanostructures, as well as their performance, are discussed in detail. Representatives of several animal groups, such as insects, spiders, tree frogs, and lizards, are able to walk on (and therefore attach to) tilted, vertical surfaces, and even ceilings in different environments. Studies have demonstrated that their highly specialized micro- and nanostructures, in combination with particular surface chemistries, are responsible for this impressive and reversible adhesion. These structures can maximize the formation of large effective contact areas on surfaces of varying roughness and chemical composition under different environmental conditions. |
![]() ![]() You may like...
Eight Days In July - Inside The Zuma…
Qaanitah Hunter, Kaveel Singh, …
Paperback
![]()
Long-Term Neurodevelopmental Outcomes of…
Ira Adams-Chapman, Sara B Demauro
Hardcover
R2,266
Discovery Miles 22 660
|