![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Technology: general issues > Nanotechnology
Light has always played a significant role in the synthesis of materials and formation of small-scale solid structures. The invention of holographic and phase mask projection has enabled engineers to fabricate devices with characteristic features much smaller than the wavelength of the light used for processing. A further reduction of device dimensions has been achieved by implementing the processes that rely strongly on the non-linear effects of light-matter interaction. The intention of this book was to provide the Reader, primarily graduate students and young researchers in materials engineering, bio(chem)physics, medical physics and biophysics, with a set of articles reviewing state-of-the art research and recent advancements in the field of photon-matter interaction for micro/nanomaterials synthesis and manipulation of properties of biological and inorganic materials at the atomic level. Photon-based nanoscience and related technologies have created exciting opportunities for the fabrication and characterization of nano(bio)material devices and systems, and it is expected to significantly contribute to the development of Nanobiophotonics and Nanomedicine.
This volume provides an introduction to the state-of-the-art of controlled nanoscale motion in biological and artificial systems. Coverage includes the control and function of protein motors, the physics of non-equilibrium Brownian motion, and the physics and fabrication of synthetic molecular motors. The chapters in this book are based on selected contributions on the 2005 Nobel Symposium on Controlled Nanoscale Motion.
Nanoscale physics has become one of the rapidly developing areas of contemporary physics because of its direct relevance to newly emerging area, nanotechnologies. Nanoscale devices and quantum functional materials are usually constructed based on the results of fundamental studies on nanoscale physics. Therefore studying physical phenomena in nanosized systems is of importance for progressive development of nanotechnologies. In this context study of complex phenomena in such systems and using them for controlling purposes is of great practical importance. Namely, such studies are brought together in this book, which contains 27 papers on various aspects of nanoscale physics and nonlinear dynamics.
Calixarenes have been widely exploited in all areas of supramolecular chemistry over the past three decades and many recent developments have concerned their applications in the production of chemical entities with the dimensions of nanometres, as in nanochemistry. This book will provide a timely review of both what is known and the exciting prospects provided by calixarenes in this field. The book will comprise several review articles defining the importance of calixarenes as reagents in nanochemistry. It is expected that Calixarenes in the Nanoworld will be well-received by: universities, research institutions, industries engaged in the production of high-tech materials.
This book provides a comprehensive presentation of the most frequently used high resolution manufacturing techniques available, as well as the polymeric materials used for each of the techniques. Divided into two parts covering the technologies and materials used and the impact on different research fields and case studies, High Resolution Manufacturing from 2D to 3D/4D Printing: Applications in Engineering and Medicine addresses issues like throughput improvement by volumetric 3D printing and presenting novel applications and case studies. In addition, this book also covers the latest breakthrough developments and innovations to help readers understand the future applications of this technology across various disciplines, including biomedicine, electronics, energy, and photonics.
This book presents a collection of selected lectures discussing current problems in molecular physics and reviews the main cutting-edge advances in condensed and soft matter physics. It offers deep insights and a powerful basis for scientists and engineers to study complicated problems in physics, chemistry, biology, and medicine. The unification of experimental, theoretical, and computational methods allows milestone results to be achieved in areas such as ionic and ionic-electronic liquids, magnetic liquid systems, liquid systems with nanoparticles, structural phase transitions and critical phenomena, and small-angle neutron and X-ray scattering in liquids and liquid systems. The lectures selected for this book were held at the 7th International Conference "Physics of Liquid Matter: Modern Problems" (PLMMP-2016), 27-31 May in Kiev, Ukraine.
"Nanoscale Applications for Information and Energy Systems "presents nanotechnology fundamentals and applications in the key research areas of information technology (electronics and photonics) and alternative (solar) energy: plasmonics, photovoltaics, transparent conducting electrodes, silicon electroplating, and resistive switching. The three major technology areas electronics, photonics, and solar energy are linked on the basis of similar applications of nanostructured materials in research and development. By bridging the materials physics and chemistry at the atomic scale with device and system design, integration, and performance requirements, tutorial chapters from worldwide leaders in the field provide a coherent picture of theoretical and experimental research efforts and technology development in these highly interdisciplinary areas."
The book covers a range of topics dealing with emerging computing technologies which are being developed in response to challenges faced due to scaling CMOS technologies. It provides a sneak peek into the capabilities unleashed by these technologies across the complete system stack, with contributions by experts discussing device technology, circuit, architecture and design automation flows. Presenting a gradual progression of the individual sub-domains and the open research and adoption challenges, this book will be of interest to industry and academic researchers, technocrats and policymakers. Chapters "Innovative Memory Architectures Using Functionality Enhanced Devices" and "Intelligent Edge Biomedical Sensors in the Internet of Things (IoT) Era" are available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
This thesis presents original research on how to seamlessly integrate electronics with living biological systems. Jia Liu has used silicon nanowires as active sensors to investigate biological signals at the cellular level. He has also designed nanoelectronic networks into flexible, three-dimensional (3D) and macroporous architectures, which mimic the structure of tissue scaffolds for in vitro 3D integrations with synthetic tissues and in vivo implantation by means of syringe injection. Importantly, the results demonstrate 3D interpenetrations of nanoelectronic networks with neural networks, 3D mapping of tissue activity and long-term implantation with minimal immunoresponses. Further, the book discusses potential applications for pharmacological studies, brain activity mapping and nanoelectronics enabled therapies. The findings presented here have gained wide recognition, including a top research ranking by Chemical & Engineering News and being listed among Scientific American's 10 world changing ideas in 2015.
Catalysts, heterogeneous, homogeneous and enzyme, are usually nanoparticles. These are of vital for the functioning of the human body, for photosynthesis, and for producing fuels and chemicals in the petroleum and chemical industries. Interest in nanoscience and in nanotechnology in recent years focused attention on the opportunity to develop catalysts that exhibit 100% selectivity for a desired product, thus removing byproducts and eliminating waste. This type of selective process is often called green chemistry or green technology. This book is mainly based on the first and second symposia on Nanotechnology 51 in Catalysis which were held in spring 2001 at the ACS 221 National Meeting in San Diego, CA, and in fall 2002 at the ACS 2241h National Meeting in Boston, MA, respectively. We also extended our invitation to those who did not attend the meetings to contribute chapters where we saw a need to round out the scope of the topic. All chapters were peer-reviewed prior to final acceptance. We believe that the additional chapters and the peer-review significantly improved the quality of the book. In the summer of 2000 when we first proposed to organize a symposium on Nanotechnology in Catalysis to the ACS Secretariat of Catalysis and Surface Science (CATL), we received strong support from Dr. Nancy B. Jackson, then General Secretary of CATL. The symposium was enthusiastically received by the catalysis community. On the first day of the symposium, the conference room could not hold all the attendees.
This book presents the structure formation and dynamics of animate and inanimate matter on the nanometre scale. This is a new interdisciplinary field known as Meso-Bio-Nano (MBN) science that lies at the intersection of physics, chemistry, biology and material science. Special attention in the book is devoted to investigations of the structure, properties and dynamics of complex MBN systems by means of photonic, electronic, heavy particle and atomic collisions. This includes problems of fusion and fission, fragmentation, surfaces and interfaces, reactivity, nanoscale phase and morphological transitions, irradiation-driven transformations of complex molecular systems, collective electron excitations, radiation damage and biodamage, channeling phenomena and many more. Emphasis in the book is placed on the theoretical and computational physics research advances in these areas and related state-of-the-art experiments. Particular attention in the book is devoted to the utilization of advanced computational techniques and high-performance computing in studies of the dynamics of systems.
Emerging Phytosynthesized Nanomaterials for Biomedical Applications provides readers with an increased understanding of the efficacy of phytochemicals obtained from plant extracts for the synthesis of nanomaterials, mechanism of formation, and the development of functional composites, all while still minimizing toxicity to humans and the environment. The book presents various novel biomedical applications of phytosynthesized nanomaterials for cancer, diabetes and cardiovascular treatment, drug delivery, antimicrobial agents, orthopedics, and biosensors, as well as pharmaceutical product development. This is an important reference source for biomaterials scientists and plant scientists looking to increase their understanding of how photosynthesized nanomaterials can be used in biomedical applications.
This book equips students with a thorough understanding of various types of sensors and biosensors that can be used for chemical, biological, and biomedical applications, including but not limited to temperature sensors, strain sensor, light sensors, spectrophotometric sensors, pulse oximeter, optical fiber probes, fluorescence sensors, pH sensor, ion-selective electrodes, piezoelectric sensors, glucose sensors, DNA and immunosensors, lab-on-a-chip biosensors, paper-based lab-on-a-chip biosensors, and microcontroller-based sensors. The author treats the study of biosensors with an applications-based approach, including over 15 extensive, hands-on labs given at the end of each chapter. The material is presented using a building-block approach, beginning with the fundamentals of sensor design and temperature sensors, and ending with more complicated biosensors.New to this second edition are sections on op-amp filters, pulse oximetry, meat quality monitoring, advanced fluorescent dyes, autofluorescence, various fluorescence detection methods, fluoride ion-selective electrode, advanced glucose sensing methods including continuous glucose monitoring, paper-based lab-on-a-chip, etc. A new chapter on nano-biosensors and an appendix on microcontrollers make this textbook ideal for undergraduate engineering students studying biosensors. It can also serve as a hands-on guide for scientists and engineers working in the sensor or biosensor industries.
This book presents selected work from the Florence Heri-Tech, a conference focused on the use of innovative technologies and methods for analyzing, managing, and preserving cultural heritage. This book presents chapters on the chemical and physical advancement in the development of new materials and methods for the conservation and restoration of cultural heritage. It also covers trends in conservation and restoration technology: biotechnology, nanotechnology, tailored materials, and physical technologies. The reader also finds information on methods and instruments for the conservation diagnosis and treatments.
Representing the first text to cover this exciting new area of research, this book will describe synthesis techniques of CNWs, their characterization and various expected applications using CNWs. Carbon-nanowalls (CNWs) can be described as two-dimensional graphite nanostructures with edges comprised of stacks of plane graphene sheets standing almost vertically on the substrate. These sheets form a wall structure with a high aspect ratio. The thickness of CNWs ranges from a few nm to a few tens of nm. The large surface area and sharp edges of CNWs may prove useful for a number of applications such as electrochemical devices, field electron emitters, storage materials for hydrogen gas, catalyst support. In particular, vertically standing CNWs with a high surface-to-volume ratio, serve as an ideal material for catalyst support for fuel cells and in gas storage materials.
Nanotechnology has shown great potential in all spheres of life. With the increasing pressure to meet the food demands of rapidly increasing population, thus, novel innovation and research are required in agriculture. The principles of nanotechnology can be implemented to meet the challenges faced by agricultural demands. Major challenges include the loss of nutrients in the soil and nutrient-deficient plants, which result in a lower crop yield and quality. Subsequently, consumption of such crops leads to malnourishment in humans, especially in underprivileged and rural populations. One convenient approach to tackle nutrient deficiency in plants is via the use of fertilizers; however, this method suffers from lower uptake efficiency in plants. Another approach to combat nutrient deficiency in humans is via the use of supplements and diet modifications; however, these approaches are less affordably viable in economically challenged communities and in rural areas. Therefore, the use of nano-fertilizers to combat this problem holds the greatest potential. Additionally, nanotechnology can be used to meet other challenges in agriculture including enhancing crop yield, protection from insect pests and animals, and by use of nano-pesticides and nano-biosensors to carry out the remediation of polluted soils. The future use of nanomaterials in soil ecosystems will be influenced by their capability to interact with soil constituents and the route of nanoparticles into the environment includes both natural and anthropogenic sources. The last decade has provided increasing research on the impact and use of nanoparticles in plants, animals, microbes, and soils, and yet these studies often lacked data involving the impact of nanoparticles on biotic and abiotic stress factors. This book provides significant recent research on the use of nano-fertilizers, which can have a major impact on components of an ecosystem. This work should provide a basis to further study these potential key areas in order to achieve sustainable and safe application of nanoparticles in agriculture.
Nanotechnology in Agriculture and Agroecosystems presents the latest research on the role of nanotechnology in agriculture and agroecosystems, offering innovations and many potential benefits in terms of plant growth, food production, crop protection and ecosystem management. Sections introduce new perspectives on the use of nanotechnology in agroecosystems and sustainable agriculture. Subsequent chapters focus on specific areas of innovation, covering a wide range of applications, including plant disease and protection, food processing and packaging, soil quality, precision farming, and groundwater treatment. This is a valuable resource for researchers and advanced students across a range of disciplines, but it is also ideal for industrial scientists, engineers and R&D professionals with an interest in nanotechnology and sustainable technologies for agriculture and agro-industries.
This book summarizes recent research and development in the field of nanostructured ceramics and their composites. It presents selected examples of ceramic materials with special electronic, catalytic and optical properties and exceptional mechanical characteristics. A special focus is on sol-gel based and organic-inorganic hybrid nanoceramic materials. The book highlights examples for preparation techniques including scale-up, properties of smart ceramic composites, and applications including e.g. waste water treatment, heavy metal removal, sensors, electronic devices and fuel cells. Recent challenges are addressed and potential solutions are suggested for these. This book hence addresses chemists, materials scientists, and engineers, working with nanoceramic materials and on their applications.
This book collects 42 peer-reviewed papers presented in the NATO Advanced Research Workshop on Nanostructured Materials by High-Pressure Severe Plastic Deformation, held in Donetsk, Ukraine, September 22-24, 2004. Recently, it was reported that nanostructured materials processed under high pressure by HPT and ECAP have an extraordinary combination of both high strength and high ductility, which are two desirable, but rarely co-existing properties. These findings indicate that high-pressure is a critical factor that can be employed to process nanostructured materials with superior mechanical, and possibly also physical, properties. It is the objective of this workshop to review our current knowledge, identify issues for future research, and discuss future directions on the processing and properties of nanostructured materials via SPD techniques, with a special emphasis on high-pressure effects. During the 3-day workshop, about 60 scientists from 12 countries presented 60 papers. Over 20 keynote presentations were given by distinguished scientists in this field. Papers in this book cover areas of high pressure effect on the nanostructure and properties of SPD-processed materials, fundamentals of nanostructured materials, development of high-pressure SPD technologies for commercializations, recent advances of SPD technologies as well as applications and future markets of SPD-processed nanostructured materials
The bioelectronic nose, the device which has a similar function to the human smell sensing system, can be realized by combining the olfactory cells or receptors with nanotechnology.In the last two decades, much has been learned about the smell sensing mechanism in biological systems. With knowledge about the biological olfactory system and the techniques for the expression of biological receptor proteins, we are able to utilize biological materials and systems to mimic the biological olfactory system. In addition to the advances in biological and biotechnological area, nanotechnology has progressed to a great degree. The bioelectronic nose is a good example of the integration of biotechnology and nanotechnology. This book describes basic biological sciences of the olfactory system, biotechnology for the production of olfactory biological elements, and nanotechnology for the development of various sensing devices. The purpose of this book is to provide the reader with a concept, basic sciences, fundamental technologies, applications, and perspectives of the bioelectronic nose."
This book highlights some of the latest advances in nanotechnology and nanomaterials from leading researchers in Ukraine, Europe and beyond. It features contributions presented at the 7th International Science and Practice Conference Nanotechnology and Nanomaterials (NANO2019), which was held on August 27-30, 2019 at Lviv Polytechnic National University, and was jointly organized by the Institute of Physics of the National Academy of Sciences of Ukraine, University of Tartu (Estonia), University of Turin (Italy), and Pierre and Marie Curie University (France). Internationally recognized experts from a wide range of universities and research institutions share their knowledge and key findings on material properties, behavior, and synthesis. This book's companion volume also addresses topics such as nano-optics, energy storage, and biomedical applications.
The realm of ultraprecise mechanisms, for example in controlling
motion to small fractions of a micrometer, is encroaching rapidly
into many fields of technology. This book provides a bridge for
those moving from either an engineering or physics background
towards the unique challenges offered by ultraprecision mechanisms.
Using case study examples this book provides a guide to basic
techniques and gives vital technical, analytical and practical
information.
This book presents the latest advances in rechargeable lithium-sulfur (Li-S) batteries and provides a guide for future developments in this field. Novel electrode compositions and architectures as well as innovative cell designs are needed to make Li-S technology practically viable. Nowadays, several challenges still persist, such as the shuttle of lithium polysulfides and the poor reversibility of lithium-metal anode, among others. However over the past several years significant progress has been made in the research and development of Li-S batteries. This book addresses most aspects of Li-S batteries and reviews the topic in depth. Advances are summarized and guidance for future development is provided. By elevating our understanding of Li-S batteries to a high level this may inspire new ideas for advancing this technology and making it commercially viable. This book is of interest to the battery community and will benefit graduate students and professionals working in this field
This book presents recent advances in nanostructured materials. It describes the characterization of nanomaterials, their preparation methods and performance testing techniques; the design and development of nano-scale devices; and the applications of nanomaterials, with examples taken from different industries, such as energy, bioengineering and medicine. The book is broadly divided into sections such as nanostructure semiconductor materials for device applications, nanostructured ferroelectric and ferromagnetic materials.. The topics covered include experimental approaches of device fabrication, photovoltaics and supercapacitors applications, etc. Given the contents, the book will be useful for students, researchers, and professionals working in the area of nanotechnology and nanomaterials.
Particulate products make up around 80% of chemical products, from all industry sectors. Examples given in this book include the construction materials, fine ceramics and concrete; the delicacies, chocolate and ice cream; pharmaceutical, powders, medical inhalers and sun screen; liquid and powder paints. Size distribution and the shape of the particles provide for different functionalities in these products. Some functions are general, others specific. General functions are powder flow and require at the typical particulate concentrations of these products that the particles cause adequate rheological behavior during processing and/or for product performance. Therefore, this book addresses particle packing as well as its relation to powder flow and rheological behavior. Moreover, general relationships to particle size are discussed for e.g. color and sensorial aspects of particulate products. Product-specific functionalities are often relevant for comparable product groups. Particle size distribution and shape provide, for example, the following functionalities: - dense particle packing in relation to sufficient strength is required in concrete construction, ceramic objects and pharmaceutical tablets - good sensorial properties (mouthfeel) to chocolate and ice cream - effective dissolution, flow and compression properties for pharmaceutical powders - adequate hiding power and effective coloring of paints for protection and the desired esthetical appeal of the objects - adequate protection of our body against sun light by sunscreen - effective particle transport and deposition to desired locations for medical inhalers and powder paints. Adequate particle size distribution, shape and porosity of particulate products have to be achieved in order to reach optimum product performance. This requires adequate management of design and development as well as sufficient knowledge of the underlying principles of physics and chemistry. Moreover, flammability, explosivity and other health hazards from powders, during handling, are taken into account. This is necessary, since great risks may be involved. In all aspects, the most relevant parameters of the size distribution (and particle shape) have to be selected. In this book, experts in the different product fields have contributed to the product chapters. This provides optimum information on what particulate aspects are most relevant for behavior and performance within specified industrial products and how optimum results can be obtained. It differs from other books in the way that the critical aspects of different products are reported, so that similarities and differences can be identified. We trust that this approach will lead to improved optimization in design, development and quality of many particulate products." |
![]() ![]() You may like...
Emerging Capital Markets - Financial and…
J.Jay Choi, John A. Doukas
Hardcover
R2,820
Discovery Miles 28 200
Research Anthology on Implementing…
Information R Management Association
Hardcover
R17,082
Discovery Miles 170 820
|