![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Technology: general issues > Nanotechnology
This book discusses the extremophiles explored for biosynthesis of nanoparticles. Nanotechnology is a widely emerging field involving interdisciplinary subjects such as biology, physics, chemistry and medicine. A wide variety of microorganisms, such as bacteria, fungi and algae are employed as biological agents for the synthesis of nanoparticles. Novel routes by which extremophiles can be employed to generate nanoparticles have yet to be discovered. The book is divided into 5 major chapters: (1) Major types of nanoparticles in nanotechnology (2) Diversity of microbes in the synthesis of nanoparticles (3) Extremophiles in nanoparticle biosynthesis (4) Applications of nanoparticles produced by extremophiles (5) Challenges and Future perspectives
This book presents the state of the art in nonlinear nanostructures for ultrafast laser applications. Most recent results in two emerging fields are presented: (i) generation of laser-induced nanostructures in materials like metals, metal oxides and semiconductors, and (ii) ultrafast excitation and energy transfer in nanoscale physical, chemical and hybrid systems. Particular emphasis is laid on the up-to-date controversially discussed mechanisms of sub-wavelength ripple formation including models of self-organized material transport and multiphoton excitation channels, nonlinear optics of plasmonic structures (nanotips, nanowires, 3D-metamaterials), and energy localization and transport on ultrafast time scale and spatial nanoscale. High-resolution spectroscopy, simulation and characterization techniques are reported. New applications of ultrashort-pulsed lasers for materials processing and the use of nanostructured materials for characterizing laser fields and laser-matter-interactions are discussed.
This thesis focuses on chalcogenide compound quantum dots with special crystal structures and behaviors in an effort to achieve the synergistic optimization of electrical and thermal transport for high-efficiency thermoelectric materials. The controllability and large-scale synthesis of chalcogenide quantum dots are realized through simple colloid synthesis, and the synergistic optimization of the materials' electrical and thermal transport properties is successfully achieved. Furthermore, the book explores the mechanism involved in the integration of high thermoelectric performance and reversible p-n semiconducting switching in bimetal chalcogenide semiconductors. As such, the thesis will be of interest to university researchers and graduate students in the materials science, chemistry and physics.
This book presents a comprehensive overview of nanoscale electronics and systems packaging, and covers nanoscale structures, nanoelectronics packaging, nanowire applications in packaging, and offers a roadmap for future trends. Composite materials are studied for high-k dielectrics, resistors and inductors, electrically conductive adhesives, conductive "inks," underfill fillers, and solder enhancement. The book is intended for industrial and academic researchers, industrial electronics packaging engineers who need to keep abreast of progress in their field, and others with interests in nanotechnology. It surveys the application of nanotechnologies to electronics packaging, as represented by current research across the field.
This thesis explores the fabrication of gyroid-forming block copolymer templates and the optical properties of the resulting gyroid optical metamaterials, significantly contributing to our understanding of both. It demonstrates solvent vapour annealing to improve the long-range order of the templates, and investigates the unique crystallisation behaviour of their semicrystalline block. Furthermore, it shows that gyroid optical metamaterials that exhibit only short-range order are optically equivalent to nanoporous gold, and that the anomalous linear dichroism of gyroid optical metamaterials with long-range order is the result of the surface termination of the bulk gyroid morphology. Optical metamaterials are artificially engineered materials that, by virtue of their structure rather than their chemistry, may exhibit various optical properties not otherwise encountered in nature (e.g. a negative refractive index). However, these structures must be significantly smaller than the wavelength of visible light and are therefore challenging to fabricate using traditional "top down" techniques. Instead, a "bottom up" approach can be used, whereby optical metamaterials are fabricated via templates created by the self-assembly of block-copolymers. One such morphology is the gyroid, a chiral, continuous and triply periodic cubic network found in a range of natural and synthetic self-assembled systems.
This book contains a selection of lectures from the first Summer School organized by the Center for Functional nanostructures (CFN) at the University of Karlsruhe. The mission of the CFN is to carry out research in the following areas: nanophotonics, nanoelectronics, molecular nanostructures and nanostructured materials. The aim of the summer schools is mainly to exchange new ideas and illustrate emerging research methodologies through a series of lectures. This is reflected by both the selection of topics addressed in the present volume as well as the tutorial aspect of the contributions.
This book is a snapshot of the current state of the art of research and development on the properties and characteristics of silk and their use in medicine and industry. The field encompasses backyard silk production from ancient time to industrial methods in the modern era and includes an example of efforts to maintain silk production on Madagascar. Once revered as worth its weight in gold, silk has captured the imagination from its mythical origins onwards. The latest methods in molecular biology have opened new descriptions of the underlying properties of silk. Advances in technological innovation have created silk production by microbes as the latest breakthrough in the saga of silk research and development. The application of silk to biomaterials is now very active on the basis of excellent properties of silks including recombinant silks for biomaterials and the accumulated structural information.
The only reference book which discusses the usage of nanoprobes for structure determination, in an industry where miniaturisation is the main focus. Designed for newcomers as well as professionals already in the industry.
Nanoparticles are revolutionizing and helping to improve every sector including engineering, medicine, food safety, transportation, energy, and environmental science. To ensure industries take full advantage of the opportunities nanoparticles provide, further study on the advancements and challenges within the field is required. Diversity and Applications of New Age Nanoparticles considers new developments and applications of nanoparticles and addresses the development of new materials, synthesis routes, and emerging research in this field. Covering key topics such as antibiotics, thin films, battery technologies, and composites, this premier reference source is ideal for industry professionals, computer scientists, policymakers, engineers, pharmacists, medical professionals, researchers, scholars, practitioners, instructors, and students.
The current generation of imaging nanoparticles is diverse and dependent on its myriad of applications. This book provides an overview of how these imaging particles can be designed to fulfill specific requirements for applications across different imaging modalities. It presents, for the first time, a comprehensive interdisciplinary overview of the impact nanoparticles have on biomedical imaging and is a common central resource for researchers and teachers.
The thesis by Merce Pacios exploits properties of carbon nanotubes to design novel nanodevices. The prominent electrochemical properties of carbon nanotubes are used to design diverse electrode configurations. In combination with the chemical properties and (bio)functionalization versatility, these materials prove to be very appropriate for the development of electrochemical biosensors. Furthermore, this work also evaluates the semiconductor character of carbon nanotubes (CNT) for sensor technology by using a field effect transistor configuration (FET). The CNT-FET device has been optimized for operating in liquid environments. These electrochemical and electronic CNT devices are highly promising for biomolecule sensing and for the monitoring of biological processes, which can in the future lead to applications for rapid and simple diagnostics in fields such as biotechnology, clinical and environmental research.
This thesis focuses on the electrochemical synthesis of multi-segmented nanowires. In contrast to previous work, which was largely limited to one-dimensional modifications, Tuncay Ozel presents a technique, termed coaxial Lithography (COAL), which allows for the synthesis of coaxial nanowires in a parallel fashion with sub-10 nanometer resolution in both the axial and radial dimensions. This work has significantly expanded current synthetic capabilities with respect to materials generality and the ability to tailor two-dimensional growth in the formation of core-shell structures. These developments have enabled fundamental and applied studies which were not previously possible. The COAL technique will increase the capabilities of many researchers who are interested in studying light-matter interactions, nanoparticle assembly, solution-dispersible nanoparticles and labels, semiconductor device physics and nanowire biomimetic probe preparation. The methodology and results presented in this thesis appeal to researchers in nanomaterial synthesis, plasmonics, biology, photovoltaics, and photocatalysis.
1. Gives an in-depth account of the extraordinary optical property at the nanoscale and its use in sensing. 2. Useful for academia, researchers and engineers working in water treatment and purification. 3. Provides sensing application of thematic nanomaterials like quantum dots and core-shell.
Magnetic nanocatalysts are garnering attention for development of greener catalytic processes due to their ease of recovery from a reaction medium. This book delves into a variety of magnetic nanocatalysts, their use in the industrial context, and recyclability. Topics covered include wastewater treatment, drug delivery, and industrial catalysis; another available volume focuses on the use of magnetic nanocatalysts in synthetic appliances and transformations.
The AlInGaN and ZnO materials systems have proven to be one of the scientifically and technologically important areas of development over the past 15 years, with applications in UV/visible optoelectronics and in high-power/high-frequency microwave devices. The pace of advances in these areas has been remarkable and the wide band gap community relies on books like the one we are proposing to provide a review and summary of recent progress.
Filling the need for a single work specifically addressing how to
use plasma for the fabrication of nanoscale structures, this book
is the first to cover plasma deposition in sufficient depth.
The book provides an introduction to nanostructured materials and guides the reader through their different engineering applications. It gives an overview of nanostructured materials applied in the fields of physics, chemistry, biology, medicine, and materials science. Materials for different applications in engineering such as those used in opto-electronics, energy, tribology, bio-applications, catalysis, reinforcement and many more have been described in this book. The book will be of interest to researchers and students who want to learn about applications of nanostructured materials in engineering.
This book is intended for researchers who are interested in
investigating the nanomechanical properties of materials using
advanced instrumentation techniques. The chapters of the book are
written in an easy-to-follow format, just like solved examples. The
book comprehensively covers a broad range of materials such as
polymers, ceramics, hybrids, biomaterials, metal oxides,
nanoparticles, minerals, carbon nanotubes and welded joints. Each
chapter describes the application of techniques on the selected
material and also mentions the methodology adopted for the
extraction of information from the raw data.
Mesoscopic physics has made great strides in the last few years. It is an area of research that is attractive to many graduate students of theoretical condensed matter physics. The techniques that are needed to understand it go beyond the conventional perturbative approaches that still form the bulk of the graduate lectures that are given to students. Even when the non-perturbative techniques are presented, they often are presented within an abstract context. It is important to have lectures given by experts in the field, which present both theory and experiment in an illuminating and inspiring way, so that the impact of new methodology on novel physics is clear. It is an apt time to have such a volume since the field has reached a level of maturity. The pedagogical nature of the articles and the variety of topics makes it an important resource for newcomers to the field. The topics range from the newly emerging area of quantum computers and quantum information using Josephson junctions to the formal mathematical methods of conformal field theory which are applied to the understanding of Luttinger liquids. Electrons which interact strongly can give rise to non-trivial ground states such as superconductivity, quantum Hall states and magnetism. Both their theory and application are discussed in a pedagogical way for quantum information in mesoscopic superconducting devices, skyrmions and magnetism in two dimensional electron gases, transport in quantum wires, metal-insulator transitions and spin electronics.
This book presents the recent progress in the field of nanophotonics. It contains review-like chapters focusing on various but mutually related topics in nanophotonics written by the world's leading scientists. Following the elaboration of the idea of nanophotonics, much theoretical and experimental work has been carried out, and several novel photonic devices, high-resolution fabrication, highly efficient energy conversion, and novel information processing have been developed in these years. Novel theoretical models describing the nanometric light-matter interaction, nonequilibrium statistical mechanical models for photon breeding processes and near-field-assisted chemical reactions as well as light-matter interaction are also explained in this book. It describes dressed photon technology and its applications, including implementation of nanophotonic devices and systems, fabrication methods and performance characteristics of ultrathin, ultraflexible organic light-emitting diodes, organic solar cells and organic transistors.
Multiscale Dissipative Mechanisms and Hierarchical Surfaces covers the rapidly developing topics of hierarchical surfaces, roughness-induced superhydrophobicity and biomimetic surfaces. The research in these topics has been progressing rapidly in the recent years due to the advances in the nanosciences and surfaces science and due to potential applications in nanotechnology. The first in its field, this monograph provides a comprehensive review of these subjects and presents the background introduction as well as recent and new results in the area.
In this book, the term "electrochemical nanotechnology" is defined as nanoprocessing by means of electrochemical techniques. This introductory book reviews the application of electrochemical nanotechnologies with the aim of understanding their wider applicability in evolving nanoindustries. These advances have impacted microelectronics, sensors, materials science, and corrosion science, generating new fields of research that promote interaction between biology, medicine, and microelectronics. This volume reviews nanotechnology applications in selected high technology areas with particular emphasis on advances in such areas. Chapters are classified under four different headings: Nanotechnology for energy devices - Nanotechnology for magnetic storage devices - Nanotechnology for bio-chip applications - Nanotechnology for MEMS/Packaging.
Miniaturization has revolutionized human affairs by making possible inexpensive integrated electronic circuits comprised of devices and wires with sub-micrometer dimensions. These integrated circuits are now ubiquitous, controlling everything from our automobiles to our toasters. Continued miniaturization, beyond sub-micrometer dimensions, seems likely. And so we are compelled to explore science and technology on a new, yet smaller scale: the nanometer scale. This volume is a survey of the machinery and science of the nanometer scale. Its twenty-two contributing authors, drawn from many different disciplines including atomic physics, microelectronics, polymer chemistry, and bio-physics, delineate the course of current research and articulate a vision for the development of the nanometer frontiers in electronics, mechanics, chemistry, magnetics, materials, and biology. They reveal a world thirty years hence where motors are smaller than the diameter of a human hair; where single-celled organisms are programmed to fabricate materials with nanometer precision; where single atoms are used for computation, and where quantum chaos is the norm. Aimed at the level of comprehension of at least a junior- or senior-level undergraduate science (biology, chemistry, physics, or engineering) student, the book provides a survey of developments within the breadth of the nanotechnology field. The book is thus intended for both students and researchers in tunneling microscopy, polymer chemistry, bio-physics, atomic physics, electrical engineering, mechanical engineering, materials science, condensed matter physics, biology, lithography, and chaos. Mathematical derivations have been minimized, but not eliminted. The book contains many illustrations, some in color.
The ability to arrange precisely designed patterns of nanoparticles into a desired spatial configuration is the key to creating novel nanoscale devices that take advantage of the unique properties of nanomaterials. While two-dimensional arrays of nanoparticles have been demonstrated successfully by various techniques, a controlled way of building ordered arrays of three-dimensional (3D) nanoparticle structures remains challenging. This book describes a new technique called the 'nanoscopic lens' which is able to produce a variety of 3D nano-structures in a controlled manner. This ebook describes the nanoscopic lens technique and how it can serve as the foundation for device development that is not limited to a variety of optical, magnetic and electronic devices, but can also create a wide range of bio-nanoelectronic devices.
This book focuses the recent progress in nanophotonics technology to be used to develop novel nano-optical devices, fabrication technology, and advanced systems. It begins with a review of near-field excitation dynamics in molecules. Further topics include: wavelength up-converting a phonon-assisted excitation process with degenerate beams and non-degenerate beams in dye grains, a fabrication method of semiconductor quantum dots including self-assembly of InAs quantum dots based on the Stranski-Krastanov growth mode, single-nanotube spectroscopy and time-resolved spectroscopy for studying novel excitonic properties of single-walled carbon nanotubes. The striking features of ecxitons in the carbon nanotube, multiple-exciton states, and microfluidic and extended-nano fluidic techniques. These topics are reviewed by nine leading scientists. This overview is a variable resource for engineers and scientists working in the field of nanophotonics. |
![]() ![]() You may like...
1 Recce: Volume 3 - Onsigbaarheid Is Ons…
Alexander Strachan
Paperback
The Unresolved National Question - Left…
Edward Webster, Karin Pampallis
Paperback
![]()
Kirstenbosch - A Visitor's Guide
Colin Paterson-Jones, John Winter
Paperback
|