![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Technology: general issues > Nanotechnology
Understanding the physical properties and dynamical behavior of nanochannel flows has been of great interest in recent years and is important for the theoretical study of fluid dynamics and engineering applications in physics, chemistry, medicine, and electronics. The flows inside nanoscale pores are also important due to their highly beneficial drag and heat transfer properties. Nanoscale Flow: Advances, Modeling, and Applications presents the latest research in the multidisciplinary area of nanoscale flow. Featuring contributions from top inventors in industry, academia, and government, this comprehensive book: Highlights the current status of research on nucleate pool boiling heat transfer, flow boiling heat transfer, and critical heat flux (CHF) phenomena of nanofluids Describes two novel fractal models for pool boiling heat transfer of nanofluids, including subcooled pool boiling and nucleate pool boiling Explores thermal conductivity enhancement in nanofluids measured with a hot-wire calorimeter Discusses two-phase laminar mixed convection AL2O3-water nanofluid in an elliptic duct Explains the principles of molecular and omics imaging and spectroscopy techniques for cancer detection Analyzes fluid dynamics modeling of the tumor vasculature and drug transport Studies the properties of nanoscale particles and their impact on diagnosis, therapeutics, and theranostics Provides a brief background and review of medical nanoscale flow applications Contains useful appendices of physical constants, equations, common symbols, mathematical formulas, the periodic table, and more A valuable reference for engineers, scientists, and biologists, Nanoscale Flow: Advances, Modeling, and Applications is also designed for researchers, universities, industrial institutions, and government, giving it broad appeal.
Fuel cells are clean and efficient energy conversion devices expected to be the next generation power source. During more than 17 decades of research and development, various types of fuel cells have been developed with a view to meet the different energy demands and application requirements. Scientists have devoted a great deal of time and effort to the development and commercialization of fuel cells important for our daily lives. However, abundant issues, ranging from mechanistic study to system integration, still need to be figured out before massive applications can be used. Miniaturization is one of the main bottlenecks for the advancement and further development of fuel cells. Thus, research on miniaturization of fuel cells as well as understanding the micro and nano structural effect on fuel cell performance are necessary and of great interest to solve the challenges ahead. In this book, internationally acclaimed experts illustrate how micro & nano engineering technology can be applied as a way of removing the restrictions presently faced by fuel cells both technically and theoretically. Through the twelve well designed chapters, major issues related to the miniaturization of different types of fuel cells are addressed. Theory focusing on micro and nano scale mechanics are outlined to better optimize the performance of fuel cells from laboratory scale to industrial scale. This book will be a good reference to those scientists and researchers interested in developing fuel cells through micro and nano scale engineering.
Optical Properties of Functional Polymers and Nano Engineering Applications provides a basic introduction to the optical properties of polymers, as well as a systematic overview of the latest developments in their nano engineering applications. Covering an increasingly important class of materials relevant not only in academic research but also in industry, this comprehensive text: Considers the advantages of the liquid gradient refractive index (L-GRIN) lenses over the conventional solid lenses Explores the electrochemistry of photorefractive polymers, the molecular structure of commonly used polymers, and various 3D holographic displays Discusses gene detection using the optical properties of conjugated polymers Highlights the physics of fluorescence in photoluminescent polymers, and energy and electron transfer mechanisms Introduces conventional polymer ion sensors based on the optical sensors of conjugated polymers prepared by click chemistry reactions Explains colorimetric visual detection of ions by donor-acceptor chromophores Describes optical sensors based on fluorescent polymers and for the detection of explosives and metal ion analytes Addresses holographic polymer-dispersed liquid crystal technology, its optical setups, and its applications in organic lasers Presents cutting-edge research on electrochromic devices, along with new concepts, prototypes, commercial products, and future prospects Demonstrates new techniques for creating nanoscale morphologies through self-assembly, which affect the optical properties of the functional polymers Optical Properties of Functional Polymers and Nano Engineering Applications emphasizes the importance of nano engineering in improving the fundamental optical properties of the functional polymers, elaborating on high-level research while thoroughly explaining the underlying principles.
An Enlightening Way to Navigate through Mind-Boggling Physics Concepts Physics Curiosities, Oddities, and Novelties highlights unusual aspects of physics and gives a new twist to some fundamental concepts. The book covers both classical and modern physics in an engaging, straightforward style. The author presents perplexing questions that often lack satisfying answers. He also delves into the stories of famous and eccentric past scientists. Many examples reveal interesting ideas, including how: Newton had trouble determining the mass of the moon An electric motor is an electric generator run in reverse Time travel that violates causality is not possible Schr dinger's cat may be both dead and alive, and there may be two of each one of us to observe the two possibilities Particle physics and the basic laws of thermodynamics can appear simple yet are very complicated Accessible to nonspecialists and beginning students, this book provides insight into physics using minimal mathematics and jargon. It summarizes many fascinating aspects of physics employing only essential formulas. Some familiar formulas are written in standard form while other equations are written in words for greater clarity.
Metamaterials have established themselves as one of the most important topics in physics and engineering, and have found practical application across a wide variety of fields including photonics, condensed matter physics, materials science, and biological and medical physics. This modern and self-contained text delivers a pedagogical treatment of the topic, rooted within the fundamental principles of nanophotonics. A detailed and unified description of metamaterials and metasurfaces is developed, beginning with photonic crystals and their underlying electromagnetic properties before introducing plasmonic effects and key metamaterial configurations. Recent developments in research are also presented along with cutting-edge applications in the field. This advanced textbook will be invaluable to students and researchers working in the fields of optics and nanophotonics.
This book covers all aspects of the different classes of nanomaterials - from synthesis to application. It investigates in detail the use and feasibility of developing nanocomposites with these nanomaterials as reinforcements. The book encompasses synthesis and properties of cellulose nanofibers, bacterial nanocellulose, carbon nanotubes / nanofibers, graphene, nanodiamonds, nanoclays, inorganic nanomaterials and their nanocomposites for high-end applications such as electronic devices, energy storage, structural and packaging. The book also provides insight into various modification techniques for improving the functionality of nanomaterials apart from their compatibility with the base matrix.
The deep interconnection between micro/nanooptical components and related fabrication technologies-and the constant changes in this ever-evolving field-means that successful design depends on the engineer's ability to accommodate cutting-edge theoretical developments in fabrication techniques and experimental realization. Documenting the state of the art in fabrication processes, Microoptics and Nanooptics Fabrication provides an up-to-date synopsis of recent breakthroughs in micro- and nanooptics that improve key developmental processes. This text elucidates the precise and miniaturized scale of today's fabrication methods and their importance in creating new optical components to access the spectrum of physical optics. It details successful fabrication techniques and their direct effect on the intended performance of micro- and nanooptical components. The contributors explore the constraints related to material selection, component lateral extent, minimum feature size, and other issues that cause fabrication techniques to lag behind corresponding theory in the development process. Written with the professional optical engineer in mind, this book omits the already well-published broader processing fundamentals. Instead it focuses on key tricks of the trade helpful in reformulating processes to achieve necessary optical targets, improve process fidelity, and reduce production costs. The contributing authors represent the vanguard in micro-optical fabrication. The result of their combined efforts, this searing analysis of emerging fabrication technologies will continue to fuel the expansion of optics components, from the microwave to the infrared through the visible regime.
This book focusses on the spacer engineering aspects of novel MOS-based device-circuit co-design in sub-20nm technology node, its process complexity, variability, and reliability issues. It comprehensively explores the FinFET/tri-gate architectures with their circuit/SRAM suitability and tolerance to random statistical variations.
Emphasizes the Basic Principles of Computational Arithmetic and Computational Structure DesignTaking an interdisciplinary approach to the nanoscale generation of computer devices and systems, Computer Arithmetics for Nanoelectronics develops a consensus between computational properties provided by data structures and phenomenological properties of nano and molecular technology. Covers All Stages of the Design Cycle, from Task Formulation to Molecular-Based ImplementationThe book introduces the theoretical base and properties of various data structures, along with techniques for their manipulation, optimization, and implementation. It also assigns the computational properties of logic design data structures to 3D structures, furnishes information-theoretical measures and design aspects, and discusses the testability problem. The last chapter presents a nanoscale prospect for natural computing based on assorted computing paradigms from nature. Balanced Coverage of State-of-the-Art Concepts, Techniques, and Practices Up-to-date, comprehensive, and pragmatic in its approach, this text provides a unified overview of the relationship between the fundamentals of digital system design, computer architectures, and micro- and nanoelectronics.
In the 20 years since the pilot plant experiments used to develop the concept of electroviscoelasticity, inroads have been made in the understanding of its many related processes. Interfacial Electroviscoelasticity and Electrophoresis meets a massive scientific challenge by presenting deeper research and developments in the basic and applied science and engineering of finely dispersed particles and related systems. Introducing more profound and in-depth treatises related to the liquid-liquid finely dispersed systems (i.e., emulsions and double emulsions), this book describes a new theory developed through the authors' work. These findings are likely to impact other research and applications in a wide array of other fields, considering that the modeling of liquid-liquid interfaces is key to numerous chemical manufacturing processes, including those used for emulsions, suspensions, nanopowders, foams, biocolloids, and plasmas. The authors cover phenomena at the micro, nano, and atto-scales, and their techniques, theory, and supporting data will be of particular interest to nanoscientists, especially with regard to the breaking of emulsions. This groundbreaking book: Takes an interdisciplinary approach to elucidate the momentum transfer and electron transfer phenomena Covers less classical chemical engineering insight and modern molecular and atomic engineering Reviews basic theory of electrokinetics, using the electrophoresis of rigid particles as an example Built around the central themes of hydrodynamic, electrodynamic, and thermodynamic instabilities that occur at interfaces, this book addresses recently developed concepts in the physics, chemistry, and rheological properties of those well-studied interfaces of rigid and deformable particles in homo- and hetero-aggregate dispersed systems. The book also introduces the key phenomenon of electrophoresis, since it is widely adopted either as an analytical tool to characterize the surface properties of colloid-sized particles or in the separation and purification process of both laboratory and industrial scales. The applications and implications of the material presented in the book represent a major contribution to the advanced fundamental, applied, and engineering research of interfacial and colloidal phenomena.
A thorough overview of nanobiotechnology and its place in advances in applied science and engineering, The Nanobiotechnology Handbook combines contributions from physics, bioorganic and bioinorganic chemistry, molecular and cellular biology, materials science, and medicine as well as from mechanical, electrical, chemical, and biomedical engineering to address the full scope of current and future developments. World-class experts discuss the role of nanobiotechnology in bioanalysis, biomolecular and biomedical nanotechnology, biosensors, biocatalysis and biofuel, and education and workforce development. It includes downloadable resources that contain all figures in the book. The book begins with discussions of biomimetic nanotechnology, including a comprehensive overview of DNA nanostructure and DNA-inspired nanotechnology, aptamer-functionalized nanomaterials as artificial antibodies, artificial enzymes, molecular motors, and RNA structures and RNA-inspired nanotechnology. It shows how nanotechnology can be inspired by nature as well as adverse biological events in diagnostic and therapeutic development. From there, the chapters cover major important and widely used nanofabrication techniques, applications of nanotechnology for bioprocessing followed by coverage of the applications of atomic force microscopy (AFM), optical tweezers and nanofluidics as well as other nanotechnology-enabled biomolecular and cellular manipulation and detection. Focusing on major research trends, the book highlights the importance of nanobiotechnology to a range of medical applications such as stem cell technology and tissue engineering, drug development and delivery, imaging, diagnostics, and therapeutics. And with coverage of topics such as nanotoxicity, responsible nanotechnology, and educational and workforce development, it provides a unique overview and perspective of nanobiotechnology impacts from a researcher's, entrepreneur's, economist's and educator's point of view. It provides a resource for current applications and future development of nanobiotechnology.
Colloids show great potential in a wide variety of applications, including drug delivery and medical imaging, and the design and fabrication of colloid systems has attracted considerable interest in the research community. Colloids in Biotechnology describes developments in the field of biotechnological applications in the past decade and bridges the gap between these research efforts and commercially viable options. Highlights the role of colloids in a plethora of biotechnical applications Striking a balance between theory and experiment, between principles and applications, and between molecular and physical approaches to the subject, the book assembles contributions from an international community of colloid scientists to provide a comprehensive reference on the role of colloids in biotechnology and biomedicine. The authors discuss new types of biosurfactants; mixtures of surfactants; and peptides, proteins, and polyelectrolytes. They also describe the formation and properties of magnetic colloids and review their applications in chemical biology and medicine. They highlight current progress in the design of self-assembled materials for biotechnology, and they also cover the formation of nanofibres and the use of sol-gel technology in biology. Contains contributions from a diverse team of researchers The chapter authors have been given the freedom to present the spectrum of the relevant science, from pure to applied, in their particular topic. The compilation of this vast experience makes this text a valuable reference for those working in research and development in a range of technologies as well as academic scientists in the colloid and surface science field.
Micro- and Nanoelectronics: Emerging Device Challenges and Solutions presents a comprehensive overview of the current state of the art of micro- and nanoelectronics, covering the field from fundamental science and material properties to novel ways of making nanodevices. Containing contributions from experts in both industry and academia, this cutting-edge text: Discusses emerging silicon devices for CMOS technologies, fully depleted device architectures, characteristics, and scaling Explains the specifics of silicon compound devices (SiGe, SiC) and their unique properties Explores various options for post-CMOS nanoelectronics, such as spintronic devices and nanoionic switches Describes the latest developments in carbon nanotubes, iii-v devices structures, and more Micro- and Nanoelectronics: Emerging Device Challenges and Solutions provides an excellent representation of a complex engineering field, examining emerging materials and device architecture alternatives with the potential to shape the future of nanotechnology.
With contributions from top international experts from both industry and academia, Nano-Semiconductors: Devices and Technology is a must-read for anyone with a serious interest in future nanofabrication technologies. Taking into account the semiconductor industry's transition from standard CMOS silicon to novel device structures-including carbon nanotubes (CNT), graphene, quantum dots, and III-V materials-this book addresses the state of the art in nano devices for electronics. It provides an all-encompassing, one-stop resource on the materials and device structures involved in the evolution from micro- to nanoelectronics. The book is divided into three parts that address: Semiconductor materials (i.e., carbon nanotubes, memristors, and spin organic devices) Silicon devices and technology (i.e., BiCMOS, SOI, various 3D integration and RAM technologies, and solar cells) Compound semiconductor devices and technology This reference explores the groundbreaking opportunities in emerging materials that will take system performance beyond the capabilities of traditional CMOS-based microelectronics. Contributors cover topics ranging from electrical propagation on CNT to GaN HEMTs technology and applications. Approaching the trillion-dollar nanotech industry from the perspective of real market needs and the repercussions of technological barriers, this resource provides vital information about elemental device architecture alternatives that will lead to massive strides in future development.
Reflecting the breadth of the field from research to manufacturing, Nanoscience and Nanoengineering: Advances and Applications delivers an in-depth survey of emerging, high-impact nanotechnologies. Written by a multidisciplinary team of scientists and engineers and edited by prestigious faculty of the Joint School of Nanoscience and Nanoengineering, this book focuses on important breakthroughs in nanoelectronics, nanobiology, nanomedicine, nanomodeling, nanolithography, nanofabrication, and nanosafety. This authoritative text: Addresses concerns regarding the use of nanomaterials Discusses the advantages of nanocomposites versus conventional materials Explores self-assembly and its potential for nanomanufacturing applications Covers compound semiconductors and their applications in communications Considers display technology and infrared optics in relation to nanoelectronics Explains how computational nanotechnology is critical to the design of process materials and nanobiotechnologies Describes the design and fabrication of nanoelectromechanical systems (NEMS) and their applications in nanomedicine By seamlessly integrating interdisciplinary foundational science with state-of-the-art engineering tools, Nanoscience and Nanoengineering: Advances and Applications offers a holistic approach to understanding the mechanisms underpinning the nanotechnology-based products we enjoy today, as well as those that will change our society in the near future.
Presenting the cutting-edge results of new device developments and circuit implementations, High-Speed Devices and Circuits with THz Applications covers the recent advancements of nano devices for terahertz (THz) applications and the latest high-speed data rate connectivity technologies from system design to integrated circuit (IC) design, providing relevant standard activities and technical specifications. Featuring the contributions of leading experts from industry and academia, this pivotal work: Discusses THz sensing and imaging devices based on nano devices and materials Describes silicon on insulator (SOI) multigate nanowire field-effect transistors (FETs) Explains the theory underpinning nanoscale nanowire metal-oxide-semiconductor field-effect transistors (MOSFETs), simulation methods, and their results Explores the physics of the silicon-germanium (SiGe) heterojunction bipolar transistor (HBT), as well as commercially available SiGe HBT devices and their applications Details aspects of THz IC design using standard silicon (Si) complementary metal-oxide-semiconductor (CMOS) devices, including experimental setups for measurements, detection methods, and more An essential text for the future of high-frequency engineering, High-Speed Devices and Circuits with THz Applications offers valuable insight into emerging technologies and product possibilities that are attractive in terms of mass production and compatibility with current manufacturing facilities.
Micro/nano-scale engineering-especially the design and implementation of ultra-fast and ultra-scale energy devices, sensors, and cellular and molecular systems-remains a daunting challenge. Modeling and control has played an essential role in many technological breakthroughs throughout the course of history. Therefore, the need for a practical guide to modeling and control for micro/nano-scale devices and systems has emerged. The first edited volume to address this rapidly growing field, Modeling and Control for Micro/Nano Devices and Systems gives control engineers, lab managers, high-tech researchers, and graduate students easy access to the expert contributors' cutting-edge knowledge of micro/nanotechnology, energy, and bio-systems. The editors offer an integrated view from theory to practice, covering diverse topics ranging from micro/nano-scale sensors to energy devices and control of biology systems in cellular and molecular levels. The book also features numerous case studies for modeling of micro/nano devices and systems, and explains how the models can be used for control and optimization purposes. Readers benefit from learning the latest modeling techniques for micro/nano-scale devices and systems, and then applying those techniques to their own research and development efforts.
Nanomedical Device and Systems Design: Challenges, Possibilities, Visions serves as a preliminary guide toward the inspiration of specific investigative pathways that may lead to meaningful discourse and significant advances in nanomedicine/nanotechnology. This volume considers the potential of future innovations that will involve nanomedical devices and systems. It endeavors to explore remarkable possibilities spanning medical diagnostics, therapeutics, and other advancements that may be enabled within this discipline. In particular, this book investigates just how nanomedical diagnostic and therapeutic devices and systems might ultimately be designed and engineered to accurately diagnose and eradicate pathogens, toxins, and myriad disease states. This text utilizes an author conceptualized exemplar nanodevice and system, the Vascular Cartographic Scanning Nanodevice (VCSN), to explore various prospective design considerations that might facilitate and enable selected functionalities of advanced autonomous nanomedical devices. It showcases a diverse group of expert contributing authors, who describe actual laboratory-based research aimed at the advancement of nanomedical capabilities. It also articulates more highly conceptual nanomedical possibilities and visions relating to the implementation of nanomedical technologies in remote regions and the developing world, as well as nanomedicine in space applications, human augmentation, and longevity. Investigates nanomedical diagnostic and therapeutic strategies that might be applied in remote regions and the developing world Discusses how nanomedicine might be utilized in space applications, inclusive of spacesuits, spacecraft, future human habitats on the Moon and Mars, and deep space Covers how nanomedicine may be implemented in selected forms of human augmentation and toward the potentially radical extension of the human life span This book benefits undergraduate and graduate students who are studying nanotechnology/nanomedicine, as well as medical administrative, scientific research, and manufacturing professionals in this industry.
Addressing medium- and long-term expectations for human health, this book reviews current scientific and technical developments in nanotechnology for biomedical, agrofood, and environmental applications. This collection of perspectives on the ethical, legal, and societal implications of bionanotechnology provides unique insight into contemporary technological developments. Readers with a technical background will benefit from the overview of the state-of-the-art research in their field, while readers with a social science background will benefit from the discussion of realistic prospects of nanotechnology. The text also includes a glossary as well as extensive end-of-chapter references.
Biological and Medical Sensor Technologies presents contributions from top experts who explore the development and implementation of sensors for various applications used in medicine and biology. Edited by a pioneer in the area of advanced semiconductor materials, the book is divided into two sections. The first part covers sensors for biological applications. Topics include: Advanced sensing and communication in the biological world DNA-derivative architectures for long-wavelength bio-sensing Label-free silicon photonics Quartz crystal microbalance-based biosensors Lab-on-chip technologies for cell-sensing applications Enzyme biosensors Future directions for breath sensors Solid-state gas sensors for clinical diagnosis The second part of the book deals with sensors for medical applications. This section addresses: Bio-sensing and human behavior measurements Sweat rate wearable sensors Various aspects of medical imaging The future of medical imaging Spatial and spectral resolution aspects of semiconductor detectors in medical imaging CMOS SSPM detectors CdTe detectors and their applications to gamma-ray imaging Positron emission tomography (PET) Composed of contributions from some of the world's foremost experts in their respective fields, this book covers a wide range of subjects. It explores everything from sensors and communication systems found in nature to the latest advances in manmade sensors. The end result is a useful collection of stimulating insights into the many exciting applications of sensor technologies in everyday life.
Nanoscale techniques and devices have had an explosive influence on research in life sciences and bioengineering. Reflecting this influence, Nanopatterning and Nanoscale Devices for Biological Applications provides valuable insight into the latest developments in nanoscale technologies for the study of biological systems. Written and edited by experts in the field, this first-of-its-kind collection of topics: Covers device fabrication methods targeting the substrate on the nanoscale through surface modification Explores the generation of nanostructured biointerfaces and bioelectronics elements Examines microfluidically generated droplets as reactors enabling nanoscale sample preparation and analysis Gives an overview of key biosensors and integrated devices with nanoscale functionalities Discusses the biological applications of nanoscale devices, including a review of nanotechnology in tissue engineering Readers gain a deep understanding of the cutting-edge applications of nanotechnologies in biological engineering, and learn how to apply the relevant scientific concepts to their own research. Nanopatterning and Nanoscale Devices for Biological Applications is the definitive reference for researchers in engineering, biology, and biomedicine, and for anyone exploring the newest trends in this innovative field.
Since the first publication of this book in 2007, the field of nanoscience and nanomedicine continues to grow substantially. This second edition, Nanotoxicology: Progress toward Nanomedicine, enlists internationally recognized experts to document the continuing development and rationale for the safe design of engineered nanomaterials (ENM). This includes new improved characterization endpoints, screening, and detection methods for in vitro and in vivo toxicity testing. These tools also contribute greatly to nanosafety research applied to nanomedicines. Topics include The impacts of nanotechnology on biomedicine, including functionalization for tissue-specific targeting, the biointeractions of multifunctional nanoparticle-based therapy, and the ability to control specific physicochemical properties of nanoparticles The requirements for proper detection, measurement, and assessment both for workplace exposure and in consumer products-with a focus on potential health and safety implications Predictive modeling, using quantitative nanostructure activity relationships to predict the pharmacokinetics and biodistribution of nanomaterials in the body Specific methodologies, imaging, and techniques to assess nanomaterials from the manufacturing process to nanomedicine applications Tools for assessing nanoparticle toxicity and the limitations of detection methods for assessing toxicity in both in vivo and in vitro systems and at the single cell and tissue levels Toxicity of nanomaterials to specific organ systems, cell-based targeting to tumors, and other biomedical applications The difficulty of conducting risk assessments and the need for addressing knowledge gaps, especially with long-term studies A roadmap for future research The development of nanotechnology-based products must be complemented with appropriate validated methods to assess, monitor, manage, and reduce the potential risks of ENM to human health and the environment. This volume provides a cogent survey of advances in this area by a well-respected and diverse group of international scientists.
"Physical Fundamentals of Nanomaterials "systematically
describes the principles, structures and formation mechanisms of
nanomaterials, in particular the concepts, principles and theories
of their physical properties as well as the most important and
commonly used preparation methods. The book aims to provide readers
with a basic understanding of how nanomaterials are synthesized as
well as their resultant physical properties It thefore focuses on
the science of nanomaterials rather than applications, serving as
an excellent starting point for researchers, materials scientists
and advanced students who already possess a basic knowledge of
chemistry and physics. Provides thorough coverage of the physics and processes involved in the preparation of nanomaterials Contains separate chapters for various types of synthesis methods, including gas phase, liquid phase, solid phase, and self-assembly Coverage of properties inludes separate chapters on mechanical, thermal, optical, electrical and magnetic
This book is designed to introduce typical cleanroom processes, techniques, and their fundamental principles. It is written for the practicing scientist or engineer, with a focus on being able to transition the information from the book to the laboratory. Basic theory such as electromagnetics and electrochemistry is described in as much depth as necessary to understand and explain the current practice and their limitations. Examples from various areas of interest will be covered, such as the fabrication of photonic devices including photo detectors, waveguides, and optical coatings, which are not commonly found in other fabrication texts.
Nanostructured materials with multiple components and complex structures are the current focus of research and are expected to develop further for material designs in many applications in electrochemical, colloidal, medical, pharmaceutical, and several other fields. This book discusses complex nanostructured systems exemplified by nanoporous silicates, spontaneously formed gels from silica-nanocolloidal solutions, and related systems, and examines them using molecular dynamics simulations. Nanoporous materials, nanocolloidal systems, and gels are useful in many applications and can be used in electric devices and storage, and for gas, ion, and drug delivery. The book gives an overview of the history, current status, and frontiers of the field. It also discusses the fundamental aspects related to the common behaviors of some of these systems and common analytical methods to treat them. |
![]() ![]() You may like...
Radiometric Temperature Measurements…
Zhuomin Zhang, Benjamin K. Tsai, …
Hardcover
R6,704
Discovery Miles 67 040
|