Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Technology: general issues > Nanotechnology
The work shows the fascination of topology- and geometry-governed properties of self-rolled micro- and nanoarchitectures. The author provides an in-depth representation of the advanced theoretical and numerical models for analyzing key effects, which underlie engineering of transport, superconducting and optical properties of micro- and nanoarchitectures.
This book presents a unified overview of eco-friendly bionanocomposites on the basis of characterization, design, manufacture, and application. It also explores replacing conventional materials with bionanocomposites with a focus on their use in packaging applications. In addition, the book broadens readers' insights by providing illustrations and tables summarizing the latest research on the packaging applications of different bionanocomposites. By offering a detailed account of this field of research and describing real-world applications, it enables researchers, scientists, and professionals in industry to develop a more informed understanding of the need for bionanocomposites in the development of green, biodegradable, and sustainable packaging applications.
Technology and Development of Self-Reinforced Polymer Composites, by Ben Alcock und Ton Peijs; Recent Advances in High-Temperature Fractionation of Polyolefins, by Harald Pasch, Muhammad Imran Malik und Tibor Macko; Antibacterial Peptidomimetics: Polymeric Synthetic Mimics of Antimicrobial Peptides, by Karen Lienkamp, Ahmad E. Madkour und Gregory N. Tew; Collagen in Human Tissues: Structure, Function, and Biomedical Implications from a Tissue Engineering Perspective, by Molamma P. Prabhakaran;
As the focus in materials science shifts towards designing materials at the sub-micron scale - the "nanotechnology" revolution - it becomes increasingly important to characterize the mechanical properties of thin films and small volumes of material. The development of of nanoscale probes and ultrasensitive transducers for force and depth has made such measurements possible. "Nanoindentation" testing is becoming increasingly used in a wide variety of research and manufacturing areas, ranging from the testing of silicon wafers in the electronics industry to the characterization of hard coatings and other surface treatments for cutting tools, dental restoratives and other biomedical implants, and optical components.This book presents a comprehensive and detailed overview of the field of nanoindentation. The underlying theory behind the extraction of elastic modulus, hardness and other properties from the load-displacement data is discussed along with the various systematic and materials-related corrections involved. Also covered are the various methods of testing, details of an international standard for depth-sensing indentation testing, the significance of surface forces and adhesion details of commercially available instruments, and sample applications of the technique. Self-contained, the treatment is aimed at those entering the field, but by bringing together material scattered widely throughout the research literature the book will also be a useful reference for the more experienced researcher.
This book features selected works presented in the 28th National Conference on Condensed Matter Physics, "Condensed Matter Days (CMDAYS) 2020", which was held from December 11th to 13th December 2020. The conference brought together seasoned experts and upcoming researchers from all over India to share their research and ideas in the field of condensed matter physics. This book is a glimpse into the works and ideas that were discussed and presented at the conference. It includes works on diverse fields from nanomaterials to fuel cells, photocatalysis to ferromagnetism, application studies to fundamental studies.
Provides a comprehensive environmental assessment of advanced nanocatalyst for biodiesel production in world's energy demand supply. Discusses the green platform based nanocatalyst like metal oxides/sulphides, 2D-dimensional layered material synthesis and their relevance for biodiesel production. Presents pathway for a cheaper, cleaner and environmentally friendly processing techniques for biodiesel production
This proceedings volume presents selected and peer reviewed 50 reports of the 2015 International Conference on "Physics and Mechanics of New Materials and Their Applications" (Azov, Russia, 19-22 May, 2015), devoted to 100th Anniversary of the Southern Federal University, Russia. The book presents processing techniques, physics, mechanics, and applications of advanced materials. The book is concentrated on some nanostructures, ferroelectric crystals, materials and composites and other materials with specific properties. In this book are presented nanotechnology approaches, modern piezoelectric techniques, physical and mechanical studies of the structure-sensitive properties of the materials. A wide spectrum of mathematical and numerical methods is applied to the solution of different technological, mechanical and physical problems for applications. Great attention is devoted to novel devices with high accuracy, longevity and extended possibilities to work in a large scale of temperatures and pressure ranges, aggressive media, etc. The characteristics of materials and composites with improved properties is shown, and new possibilities in studying of various physico-mechanical processes and phenomena are demonstrated.
"Control from MEMS to Atoms" illustrates the use of control and control systems as an essential part of functioning integrated systems. The book is organized according to the dimensional scale of the problem, starting with micro-scale systems and ending with atomic-scale systems. Similar to macro-scale machines and processes, control systems can play a major role in improving the performance of micro- and nano-scale systems and in enabling new capabilities that would otherwise not be possible. However, the majority of problems at these scales present many new challenges that go beyond the current state-of-the-art in control engineering. This is a result of the multidisciplinary nature of micro/nanotechnology, which requires the merging of control engineering with physics, biology and chemistry.
Nature is the best example of a system functioning on the nanometer scale, wherethematerialsinvolved,energyconsumption,anddatahandlingareop- mized. Opening the doors to the nanoworld, the emergence of the scanning tunneling microscope in 1982 and the atomic force microscope in 1986 led to a shift of paradigmin the understanding and perception of matter at its most fundamentallevel. As aconsequence,newrevolutionaryconceptsstimulateda number of new technologies. The current volume Scanning Probe Methods in Nanoscience and Nanotechnology showsthat these methods arestill making a tremendous impact on many disciplines that range from fundamental physics andchemistry throughinformationtechnology,spintronics,quantumcomp- ing, and molecular electronics, all the way to life sciences. Indeed, over 6,000 AFM-related papers were published in 2008 alone, bringing the total to more than 70,000 since its invention, according to the web of science, and the STM has inspired a total of 20,000 papers. There are also more than 500 patents related to the various forms of scanning probe microscopes. Commerciali- tion of the technology started at the end of the 1980s, and approximately 12,000 commercial systems have been sold so far to customers in areas as diverse as fundamental research,the car industry, and even the fashion ind- try. There are also a signi?cant number of home-built systems in operation. Some60-80companiesareinvolvedinmanufacturingSPMandrelatedinst- ments. Indeed, not even the sky seems to be the limit for AFM technology. TheRosettamissiontocomet67Plaunchedbythe EuropeanSpaceAgencyin 2004 includes an AFM in its MIDAS (Micro-Imaging Dust Analysis System) instrument.
This book deals with a topic of vital importance to the design and function of nanodevices. It covers combined systems of electrons and electromagnetic fields at nanometer scales. When the dimensions of an electromagnetic field reach the nanometer scale, it is impossible to determine whether it is an electromagnetic phenomenon or an excited electronic system. This volume covers this interdisciplinary field, with contributions from both the electronic system and electromagnetic areas.
This is the first book to cover actinide nano research. It is of interest both for fundamental research into the chemistry and physics of f-block elements as well as for applied researchers such as those studying the long-term safety of nuclear waste disposal and developing remediation strategies. The authors cover important issues of the formation of actinide nano-particles, their properties and structure, environmental behavior of colloids and nanoparticles related to the safe disposal of nuclear wastes, modeling and advanced methods of characterization at the nano-scale.
This book reviews several aspects of the biological response to nanoscale particles on a molecular and cellular level. Nanoscale materials and nanoscale particles in particular have interesting properties and beneficial applications. While they thus have entered our daily lifes on many different levels (from electronics, over textiles, packaging or surface modifications, to biomedical applications), general rules describing their interaction with biological structures and biological matter are still difficult to derive. The existing literature suggests a variety of interaction schemes between nanoparticles and biological objects, not dispelling the public concerns about possible health effects and harmful properties. A systematic approach to the problem is needed and timely. This book specifically emphasizes bioanalytical problems starting from the characterization of the nanomaterials to the pitfalls and potential artifacts of state-of-the-art cytotoxicity assays that are frequently used to study harmful effects on cells. It also highlights the application of label-free bioanalytical techniques that can potentially complement the present approaches and hence provide new perspectives on this highly discussed cutting-edge field of research and public concern.
Nanoscale science and engineering, which deal with size-dependent properties and phenomenon at nanometer scale, are unveiling new mechanisms that scientists must rely on heavily at the present time to achieve efficient and sustainable chemical processing technologies. In Nanoscale Biocatalysis: Methods and Protocols, expert researchers in the field contribute detailed methodologies and procedures that have been developed from recent research in this burgeoning area of nanoscale technology-enabled biocatalysis. The volume opens with concepts in preparing unique and dynamic protein structures for biocatalysis, then moves on to cover methods for preparation of enzyme assembles or complexes that maintain molecular-like Brownian mobility, the development of protein-nanostructure complexes using carbon nanotubes (CNTs) and nanoparticles, as well as methodologies that have great potential for scale-up preparation of nano-structured biocatalysts. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include brief introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and vital tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Nanoscale Biocatalysis: Methods and Protocols is an ideal guide to the new wave of development in nearly all the major areas of science and engineering brought about by this fascinating and greatly promising area of study.
This book presents design techniques, analysis and implementation of high performance and power efficient, variation tolerant on-chip interconnects. Given the design paradigm shift to multi-core, interconnect-centric designs and the increase in sources of variability and their impact in sub-100nm technologies, this book will be an invaluable reference for anyone concerned with the design of next generation, high-performance electronics systems.
Volume 2 of Advances in Carbon Management Technologies has 21 chapters. It presents the introductory chapter again, for framing the challenges that confront the proposed solutions discussed in this volume. Section 4 presents various ways biomass and biomass wastes can be manipulated to provide a low-carbon footprint of the generation of power, heat and co-products, and of recovery and reuse of biomass wastes for beneficial purposes. Section 5 provides potential carbon management solutions in urban and manufacturing environments. This section also provides state-of the-art of battery technologies for the transportation sector. The chapters in section 6 deals with electricity and the grid, and how decarbonization can be practiced in the electricity sector. The overall topic of advances in carbon management is too broad to be covered in a book of this size. It was not intended to cover every possible aspect that is relevant to the topic. Attempts were made, however, to highlight the most important issues of decarbonization from technological viewpoints. Over the years carbon intensity of products and processes has decreased, but the proportion of energy derived from fossil fuels has been stubornly stuck at about 80%. This has occurred despite very rapid development of renewable fuels, because at the same time the use of fossil fuels has also increased. Thus, the challenges are truly daunting. It is hoped that the technology choices provided here will show the myriad ways that solutions will evolve. While policy decisions are the driving forces for technology development, the book was not designed to cover policy solutions.
Nanobiotechnology is one of the key technologies of the 21st century. It is a combination of nanoscience and biotechnology and covers areas ranging from gene transfer and nanoencapsulation to food technology. Nanocarriers are a leading nanobiotechnology tool with the ability to provide protection, site-specific delivery, enhanced bioavailability and controlled release of pharmaceuticals, genetic material, imaging agents, nutraceuticals and cosmetics to name a few. For this reason, the study of nanocarriers, their properties and applications has attracted a great deal of interest over recent years. Designed as an advanced survey of the field, this book describes the key research parameters of nanocarrier technologies including their preparation methods, evaluation of their safety and efficiency, their interaction with biologicals and their application in biotechnology, drug delivery, gene therapy and food technology areas.
The interactions of DNA with force are central to manifold fields of inquiry, including the de novo design of DNA nanostructures, the use of DNA to probe the principles of biological self-assembly, and the operation of cellular nanomachines. This work presents a survey of three distinct ways coarse-grained simulations can help characterize these interactions. A non-equilibrium energy landscape reconstruction technique is validated for use with the oxDNA model and a practical framework to guide future applications is established. A novel method for calculating entropic forces in DNA molecules is outlined and contrasted with existing, flawed approaches. Finally, a joint experimental-simulation study of large DNA origami nanostructures under force sheds light on design principles and, through vivid illustrations, their unfolding process. This text provides an accessible and exciting launching point for any student interested in the computational study of DNA mechanics and force interactions.
This unique book is the only one to discuss various new techniques developed to enhance the application of nanoparticulate drug delivery systems using surface modification of nanoparticles. The understanding of the surface characteristics nano-particles is growing significantly with the advent of new analytical techniques. Polymer chemistry is contributing to the development of many new versatile polymers which have abilities to accommodate many different, very reactive chemical groups, and can be used as a diagnostic tool, for better targeting, for more effective therapeutic results as well as for reducing the toxic and side effects of the drugs. Surface modification of such polymeric nanoparticles has been found by many scientists to enhance the application of nanoparticles and also allows the nano particles to carry specific drug molecule and disease /tumor specific antibodies which refine and improve drug delivery. Surface Modification of Nanoparticles for Targeted Drug Delivery is a collection essential information with various applications of surface modification of nanoparticles and their disease specific applications for therapeutic purposes.
Nanotechnology is believed to be the next great revolution in biology, medicine, and agriculture. This new volume, Biogenic Nanomaterials: Structural Properties and Functional Applications, explores that trend by providing in a global way updated information on the use and applications of nanobiotechnology, starting from a careful characterization and introduction to the various uses of nanoparticles and nanomaterials, their nanomechanical properties in bacteria, and biomedical applications. The book goes on to present nanobiotechnology applications in targeted therapy for multiple pathologies, such as cancer, obstructive pulmonary diseases, chronic infectious diseases, as well as its impact on the modulation of the intestinal microbiota. A special emphasis is also given to the potential of nanobiotechnology in terms of promoting sustainability, such as the ability to improve plant systems in terms of tissue culture, its added value in the transfer of macromolecules to plants, and also in triggering the sustainable exploitation of agriculture, forestry, and food residues, ultimately promoting green nanotechnology. This book offers a unique perspective and overview of the influences of nanobiotechnology researchers and scientists. It delivers an important resource for existing applications and imminent developments of nanobiotechnology.
Metal oxides and particularly their nanostructures have emerged as animportant class of materials with a rich spectrum of properties and greatpotential for device applications. In this book, contributions from leadingexperts emphasize basic physical properties, synthesis and processing, and thelatest applications in such areas as energy, catalysis and data storage. Functional Metal Oxide Nanostructuresis an essential reference for any materials scientist or engineer with aninterest in metal oxides, and particularly in recent progress in defectphysics, strain effects, solution-based synthesis, ionic conduction, and theirapplications.
Nanobiotechnology of Biomimetic Membranes describes the current state of research and development in biomimetic membranes for nanobiotechnology applications. The application areas in nanobiotechnology range from novel nanosensors, to novel methods for sorting and delivering bio-active molecules, to novel drug-delivery systems. The success of these applications relies on a good understanding of the interaction and incorporation of macromolecules in membranes and the fundamental properties of the membrane itself.
Nanoimprint Lithography: An enabling process for nanofabrication presents a comprehensive description of nanotechnology that is one of the most promising low-cost, high-throughput technologies for manufacturing nanostructures, and an emerging lithography candidates for 22, 16 and 11 nm nodes. It provides the exciting, multidisciplinary field, offering a wide range of topics covering: principles, process, material and application. This book would be of specific interest for researchers and graduate students in the field of nanoscience, nanotechnology and nanofabrication, material, physical, chemical, electric engineering and biology. Dr. Weimin Zhou is an associate professor at Shanghai Nanotechnology Promotion Center, China.
This book focuses on nanocarbons (carbon nanotubes, graphene, nanoporous carbon, and carbon black) and related materials for energy conversion, including fuel cells (predominately proton exchange membrane fuel cells [PEMFC]), Li-ion batteries, and supercapacitors. Written by a group of internationally recognized researchers, it offers an in-depth review of the structure, properties, and functions of nanocarbons, and summarizes recent advances in the design, fabrication and characterization of nanocarbon-based catalysts for energy applications. As such, it is an invaluable resource for graduate students, academics and industrial scientists interested in the areas of nanocarbons, energy materials for fuel cells, batteries and supercapacitors as well as materials design, and supramolecular science.
This volume provides comprehensive dry and wet experiments, methods, and applications on nanopore sequencing. Chapters guide readers through bioinformatic procedures, genome sequencing, analysis of repetitive regions, structural variations, rapid and on-site microbial identification, epidemiology, and transcriptome analysis. Written in the format of the highly successful Methods in Molecular Biology series, each chapter includes an introduction to the topic, lists necessary materials and methods, includes tips on troubleshooting and known pitfalls, and step-by-step, readily reproducible protocols. Authoritative and cutting-edge, Nanopore Sequencing: Methods and Protocols aims to be comprehensive guide for researchers. |
You may like...
Sol Plaatje's Mhudi - History…
Sabata-Mpho Mokae, Brian Willan
Paperback
|