![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Medicine > Other branches of medicine > Medical imaging > Nuclear magnetic resonance (NMR / MRI)
This book covers the latest developments in tissue electrical conductivity and current density imaging, increasingly popular as well as challenging applications of MRI. These applications are enabled by the acquisition of high-quality MR phase images. This book provides a practical description of the MRI physics needed to understand and acquire phase images in MRI and the key details required to reconstruct them into conductivity, current density or electric field distributions. Comprehensive details are provided about the electrical properties of biological tissues, computational modeling considerations, experimental methods, construction of non-biological and biological phantoms and MRI pulse sequences. An inclusive review of image reconstruction algorithms, and their potential applications is provided for applications directed at determining current density or electric fields, such as in transcranial DC or AC stimulation techniques; as well as electrical conductivity reconstructions that may be of use in quantitative MRI applications used to detect cancer or other pathologies. This is an excellent book for undergraduate and graduate students beginning to explore phase, current density, and conductivity imaging in MRI, and will also be of great use to researchers interested in the area of MR-based electrical property imaging.
This volume provides an updated review of imaging abnormalities in orthopedic sports injuries. The first part of the book contains background information on relevant basic science and general imaging principles in sports traumatology. The second part comprises a topographic discussion of sports injuries. Each chapter highlights the merits of different imaging techniques, focused on a specific clinical problem. In the third part, natural history, monitoring and follow-up imaging are discussed.
Taking the reader through the underlying principles of molecular
translational dynamics, Translational Dynamics and Magnetic
Resonance outlines the ways in which magnetic resonance, through
the use of magnetic field gradients, can reveal those dynamics. The
measurement of diffusion and flow, over different length and time
scales, provides unique insight regarding fluid interactions with
porous materials, as well as molecular organization in soft matter
and complex fluids.
MR is a powerful modality. At its most advanced, it can be used not just to image anatomy and pathology, but to investigate organ function, to probe in vivo chemistry, and even to visualise the brain thinking. However, clinicians, technologists and scientists struggle with the study of the subject. The result is sometimes an obscurity of understanding, or a dilution of scientific truth, resulting in misconceptions. This is why MRI from Picture to Proton has achieved its reputation for practical clarity. MR is introduced as a tool, with coverage starting from the images, equipment and scanning protocols and traced back towards the underlying physics theory. With new content on quantitative MRI, MR safety, multi-band excitation, Dixon imaging, MR elastography and advanced pulse sequences, and with additional supportive materials available on the book's website, this new edition is completely revised and updated to reflect the best use of modern MR technology.
This volume explores the revolutionary fMRI field from basic principles to state-of-the-art research. It covers a broad spectrum of topics, including the history of fMRI's development using endogenous MR blood contrast, neurovascular coupling, pulse sequences for fMRI, quantitative fMRI; fMRI of the visual system, auditory cortex, and sensorimotor system; genetic imaging using fMRI, multimodal neuroimaging, brain bioenergetics and function and molecular-level fMRI. Comprehensive and intuitively structured, this book engages the reader with a first-person account of the development and history of the fMRI field by the authors. The subsequent sections examine the physiological basis of fMRI, the basic principles of fMRI and its applications and the latest advances of the technology, ending with a discussion of fMRI's future. fMRI: From Nuclear Spins to Brain Function, co-edited by leading and renowned fMRI researchers Kamil Ugurbil, Kamil Uludag and Lawrence Berliner, is an ideal resource for clinicians and researchers in the fields of neuroscience, psychology and MRI physics.
The first book to introduce X-nuclei MRI to researchers, clinicians and students who are interested in working on the development of an imaging method to assess new metabolic information in tissues in vivo, to help diagnose diseases, to improve prognosis, or to assess the efficiency of therapies in a timely and quantitative manner. A comprehensive overview of the state-of-the-art in X-nuclei MRI, with its many potential clinical applications, but also its limitations. The ideal starting point for a clinical or scientific research project in non-standard MRI techniques. Illustrated throughout with excellent figures, references and reading suggestions to accompany each section.
"Cardiac MRI in Diagnosis, Clinical Management and Prognosis of
Arrythmogenic Right Ventricular Dysplasia/Cardiomyopathy" provides
up-to-date information regarding the most effective diagnostic
protocols and CMR sequences for the evaluation of patients with
suspected or known ARVC. It includes CMR protocol summaries and
clinical algorithms presented as flow diagrams, many of which have
never been previously published. The book contains case reports
from the practice and database of Dr. Frank I. Marcus, world
renowned ARVD expert; as well as input from imaging experts from a
large academic center with unique RV pathology imaging experience.
This title is the perfect pocket companion for cardiologists,
pediatric cardiologists, cardiac imaging and electrophysiology
specialists as well as cardiology researchers.
The field of magnetic resonance imaging (MRI) has developed rapidly over the past decade, benefiting greatly from the newly developed framework of compressed sensing and its ability to drastically reduce MRI scan times. MRI: Physics, Image Reconstruction, and Analysis presents the latest research in MRI technology, emphasizing compressed sensing-based image reconstruction techniques. The book begins with a succinct introduction to the principles of MRI and then: Discusses the technology and applications of T1rho MRI Details the recovery of highly sampled functional MRIs Explains sparsity-based techniques for quantitative MRIs Describes multi-coil parallel MRI reconstruction techniques Examines off-line techniques in dynamic MRI reconstruction Explores advances in brain connectivity analysis using diffusion and functional MRIs Featuring chapters authored by field experts, MRI: Physics, Image Reconstruction, and Analysis delivers an authoritative and cutting-edge treatment of MRI reconstruction techniques. The book provides engineers, physicists, and graduate students with a comprehensive look at the state of the art of MRI.
Based on the experience of two Italian referral centers, the book depicts the characteristic findings obtained when using MR imaging to study the male and female pelvis including the obstetric applications. Each chapter provides a comprehensive account of the use of the imaging technique of examination, including the most recent advances in MR imaging, the anatomy and MR possibilities in the identification, characterization and staging of the different pelvic diseases highlighting its diagnostic possibilities. The advances in fetal MRI, representing the cutting edge of pelvic MR imaging, will also be depicted. The text is complemented by numerous illustrations, as well as clinical cases that make this a very practice-oriented work, presenting the role of diagnostic imaging in every-day clinical activity. The volume will prove an invaluable guide for both residents and professionals with core interest in gynecology, obstetrics and urology.
Leading experts in the use of MRI explain its basic principles and demonstrate its power to understand biological processes with numerous cutting-edge applications. To illustrate its capability to reveal exquisite anatomical detail, the authors discuss MRI applications to developmental biology, mouse phenotyping, and fiber architecture. MRI can also provide information about organ and tissue function based on endogenous cantrast mechanisms. Examples of brain, kidney, and cardiac function are included, as well as applications to neuro and tumor pathophysiology. In addition, the volume demonstrates the use of exogenous contrast material in functional assessment of the lung, noninvasive evaluation of tissue pH, the imaging of metabolic activity or gene expression that occur on a molecular level, and cellular labeling using superparamagnetic iron oxide contrast agents. A companion CD contains all figures in color used in the book.
This is the most comprehensive book to be written on the subject of fetal MRI. It provides a practical hands-on approach to the use of state-of-the-art MRI techniques and the optimization of sequences. Fetal pathological conditions and methods of prenatal MRI diagnosis are discussed by organ system, and the available literature is reviewed. Interpretation of findings and potential artifacts are thoroughly considered with the aid of numerous high-quality illustrations. In addition, the implications of fetal MRI are explored from the medico-legal and ethical points of view. This book will serve as a detailed resource for radiologists, obstetricians, neonatologists, geneticists, and any practitioner wanting to gain an in-depth understanding of fetal MRI technology and applications. In addition, it will provide a reference source for technologists, researchers, students, and those who are implementing a fetal MRI service in their own facility.
This volume presents the latest developments in the highly active and rapidly growing field of diffusion MRI. The reader will find numerous contributions covering a broad range of topics, from the mathematical foundations of the diffusion process and signal generation, to new computational methods and estimation techniques for the in-vivo recovery of microstructural and connectivity features, as well as frontline applications in neuroscience research and clinical practice. These proceedings contain the papers presented at the 2017 MICCAI Workshop on Computational Diffusion MRI (CDMRI'17) held in Quebec, Canada on September 10, 2017, sharing new perspectives on the most recent research challenges for those currently working in the field, but also offering a valuable starting point for anyone interested in learning computational techniques in diffusion MRI. This book includes rigorous mathematical derivations, a large number of rich, full-colour visualisations and clinically relevant results. As such, it will be of interest to researchers and practitioners in the fields of computer science, MRI physics and applied mathematics.
This volume gathers papers presented at the Workshop on Computational Diffusion MRI (CDMRI'18), which was held under the auspices of the International Conference on Medical Image Computing and Computer Assisted Intervention in Granada, Spain on September 20, 2018. It presents the latest developments in the highly active and rapidly growing field of diffusion MRI. The reader will find papers on a broad range of topics, from the mathematical foundations of the diffusion process and signal generation, to new computational methods and estimation techniques for the in-vivo recovery of microstructural and connectivity features, as well as harmonisation and frontline applications in research and clinical practice. The respective papers constitute invited works from high-profile researchers with a specific focus on three topics that are now gaining momentum within the diffusion MRI community: i) machine learning for diffusion MRI; ii) diffusion MRI outside the brain (e.g. in the placenta); and iii) diffusion MRI for multimodal imaging. The book shares new perspectives on the latest research challenges for those currently working in the field, but also offers a valuable starting point for anyone interested in learning computational techniques in diffusion MRI. It includes rigorous mathematical derivations, a wealth of full-colour visualisations, and clinically relevant results. As such, it will be of interest to researchers and practitioners in the fields of computer science, MRI physics and applied mathematics alike.
Over the last decade, some of the greatest achievements in the field of neuroimaging have been related to remarkable advances in magnetic resonance techniques, including diffusion, perfusion, magnetic resonance spectroscopy, and functional MRI. Such techniques have provided valuable insights into tissue microstructure, microvasculature, metabolism and brain connectivity. Previously available mostly in research environments, these techniques are now becoming part of everyday clinical practice in a plethora of clinical MR systems. Nevertheless, despite growing interest and wider acceptance, there remains a lack of a comprehensive body of knowledge on the subject, exploring the intrinsic complexity and physical difficulty of the techniques. This book focuses on the basic principles and theories of diffusion, perfusion, magnetic resonance spectroscopy, and functional MRI. It also explores their clinical applications and places emphasis on the associated artifacts and pitfalls with a comprehensive and didactic approach. This book aims to bridge the gap between research applications and clinical practice. It will serve as an educational manual for neuroimaging researchers and radiologists, neurologists, neurosurgeons, and physicists with an interest in advanced MR techniques. It will also be a useful reference text for experienced clinical scientists who wish to optimize their multi-parametric imaging approach.
Magnetic resonance imaging (MRI) is a technique used in biomedical imaging and radiology to visualize internal structures of the body. Because MRI provides excellent contrast between different soft tissues, the technique is especially useful for diagnostic imaging of the brain, muscles, and heart. In the past 20 years, MRI technology has improved significantly with the introduction of systems up to 7 Tesla (7 T) and with the development of numerous post-processing algorithms such as diffusion tensor imaging (DTI), functional MRI (fMRI), and spectroscopic imaging. From these developments, the diagnostic potentialities of MRI have improved impressively with an exceptional spatial resolution and the possibility of analyzing the morphology and function of several kinds of pathology. Given these exciting developments, the Magnetic Resonance Imaging Handbook: Image Principles, Neck, and the Brain is a timely addition to the growing body of literature in the field. Covering MRI from fundamentals to practice, this comprehensive book: Discusses the clinical benefits of diagnosing human pathologies using MRI Explains the physical principles of MRI and how to use the technique correctly Highlights each organ's anatomy and pathological processes with high-quality images Examines the protocols and potentialities of advanced MRI scanners such as 7 T systems Includes extensive references at the end of each chapter to enhance further study Thus, the Magnetic Resonance Imaging Handbook: Image Principles, Neck, and the Brain provides radiologists and imaging specialists with a valuable, state-of-the-art reference on MRI.
This volume offers a valuable starting point for anyone interested in learning computational diffusion MRI and mathematical methods for brain connectivity, while also sharing new perspectives and insights on the latest research challenges for those currently working in the field. Over the last decade, interest in diffusion MRI has virtually exploded. The technique provides unique insights into the microstructure of living tissue and enables in-vivo connectivity mapping of the brain. Computational techniques are key to the continued success and development of diffusion MRI and to its widespread transfer into the clinic, while new processing methods are essential to addressing issues at each stage of the diffusion MRI pipeline: acquisition, reconstruction, modeling and model fitting, image processing, fiber tracking, connectivity mapping, visualization, group studies and inference. These papers from the 2016 MICCAI Workshop "Computational Diffusion MRI" - which was intended to provide a snapshot of the latest developments within the highly active and growing field of diffusion MR - cover a wide range of topics, from fundamental theoretical work on mathematical modeling, to the development and evaluation of robust algorithms and applications in neuroscientific studies and clinical practice. The contributions include rigorous mathematical derivations, a wealth of rich, full-color visualizations, and biologically or clinically relevant results. As such, they will be of interest to researchers and practitioners in the fields of computer science, MR physics, and applied mathematics.
Written by a leading scholar in mathematics, this monograph discusses the Radon transform. This topic has wide ranging applications, in particular X-ray technology, partial differential equations, nuclear magnetic resonance scanning, and tomography.
This issue of PET Clinics focuses on PET/MRI: Clinical Applications, and is edited by Drs. Drew Torigian and Andreas Kjaer. Articles will include: PET/MRI in Prostate Cancer; PET/MRI in Vascular Disease; PET/MRI in Lymphoma; PET/MRI in Head and Neck Cancer; PET/MRI in Brain Disease; PET/MR in Cancers of GI Tract; PET/MRI in Gynecologic Cancer; Clinical PET/MRI Systems and Patient Workflow; PET/MRI in Heart Disease; PET/MR in Breast Cancer and Lung Cancer; PET/MRI in Musculoskeletal Disorders; PET/MRI in Pediatric Oncology; Clinical PET/MRI: Future Perspectives; and more!
This issue of PET Clinics focuses on PET/MRI: Advances in Instrumentation and Quantitative Procedures. Articles will include: Advances in clinical PET/MRI instrumentation; Magnetic resonance imaging-guided attenuation correction of positron emission tomography data in PET/MRI; Magnetic resonance imaging-guided partial volume correction of positron emission tomography data in PET/MRI; Magnetic resonance imaging-guided derivation of the input function for PET kinetic modeling; Innovations in small-animal PET/MRI instrumentation; Dual-modal PET/MRI molecular imaging probes; Magnetic resonance imaging-guided motion compensation of positron emission tomography data in PET/MRI; Attenuation correction for MR coils in combined PET/MR imaging; and more!
Clinical Cardiac MRI is a comprehensive textbook intended for everyone involved in magnetic resonance imaging of the heart. It is designed both as a useful guide for newcomers to the field and as an aid for those who routinely perform such studies. The first edition, published in 2004-5, was very well received within the cardiac imaging community, and has generally been considered the reference because of its completeness, its clarity, and the number and quality of the illustrations. Moreover, the addition of online material showing 50 real-life cases significantly enhanced the value of the book. In this second edition, the four editors, all experts in the field, have taken great care to maintain a homogeneous high quality throughout the book while incorporating the newest insights and developments in this rapidly evolving domain of medical imaging. Essential theoretical background information is included, and imaging acquisition and potential pitfalls are examined in detail. Most importantly, structured guidelines are provided on the interpretation of clinical data in the wide range of cardiac pathology that can be encountered. Finally, the selection of 100 real-life cases, added as online material, will further enhance the value of this textbook.
Central nervous system (CNS) infections continue to pose a serious problem in health care even with improved knowledge and treatment. Despite the introduction of newer antimicrobial agents and diagnostic techniques, the morbidity and mortality associated with CNS infections remain high. The morbidity associated with CNS infections may be even more important than the death rate especially in developing countries as neurological sequelae may deprive the survivors of intellect and physical ability, demeaning the quality of life and burdening health resources and social services. MR imaging is an important integral part of the protocol for the management of CNS infections and MR spectroscopy is increasingly being utilized in its management. This work is an attempt to provide a comprehensive review of imaging and spectroscopy of the commonly encountered CNS infections in the clinical practice in developing and developed countries. The first chapter deals with basic physical principles of MR imaging and spectroscopy that will help beginners to understand the technical terms used in subsequent chapters. The remaining 10 chapters deal with clinical, pathological, MR imaging and spectroscopy features and their applications in CNS infections. This will help in giving a comprehensive understanding to readers with a background in clinical, radiological, basic MRI, and neurological sciences. The T2 hypointense lesions are a real diagnostic dilemma especially in developing countries for which an algorithm has been suggested in the concluding chapter.
This is the first book that presents a comprehensive introduction to and overview of electro-magnetic tissue property imaging techniques using MRI, focusing on Magnetic Resonance Electrical Impedance Tomography (MREIT), Electrical Properties Tomography (EPT) and Quantitative Susceptibility Mapping (QSM). The contrast information from these novel imaging modalities is unique since there is currently no other method to reconstruct high-resolution images of the electro-magnetic tissue properties including electrical conductivity, permittivity, and magnetic susceptibility. These three imaging modalities are based on Maxwell's equations and MRI data acquisition techniques. They are expanding MRI's ability to provide new contrast information on tissue structures and functions.To facilitate further technical progress, the book provides in-depth descriptions of the most updated research outcomes, including underlying physics, mathematical theories and models, measurement techniques, computation issues, and other challenging problems.
Osteoarthritis is a condition in which low-grade inflammation results in joint pain, and it is the most common joint disease. Interactions between all of the major joint tissues, including the articular cartilage, synovium, bone marrow, subchondral bone, trabecular bone, and muscle, have been implicated in osteoarthritis. Magnetic resonance images have been used to quantify the cartilage morphology, volume and thickness, and focal defects, and may reflect changes in the biochemical composition of articular cartilage. This book brings together contributions from key investigators in the area of magnetic resonance imaging (MRI) for osteoarthritis of the knee. Written by a multidisciplinary group of scientists, engineers, and clinicians, this book is the first to cover MRI as a new emerging modality for the diagnosis of osteoarthritis, and presents new findings in both basic and clinical science research.
Cardiovascular magnetic resonance (CMR) describes the use of magnetic resonance imaging (MRI) for the anatomical and functional evaluation of the heart and vascular tree. CMR is a contemporary and complementary technology to add to the traditional arsenal of non-invasive imaging modalities available to the cardiologist and cardiothoracic surgeon, and is rapidly gaining popularity in this dynamic field. This book provides an easily digestible and portable synopsis of the technique which will suit the needs of cardiologists and cardiothoracic surgeons wishing to acquaint themselves with what CMR can do, and what it cannot. Beginning with an outline of some of the basic principles of MRI, the following chapters concentrate on the cardiac side of CMR with a later section on its more established vascular uses
Presenting an authoritative overview of abdominal and pelvic MRI techniques Consistent image quality and fast-scanning techniques are among the goals of current magnetic resonance imaging (MRI) technology. To maximize the diagnostic possibilities of MRI techniques, especially in the increasingly vital area of abdominal MR, the right reference can make all the difference. Distinguished by its all-inclusive coverage and rich illustrations with detailed captions, Primer on MR Imaging of the Abdomen and Pelvis is just such a reference. Ideal for radiologists, radiology residents, MR technologists, and physicians interested in MRI of abdominal disease, this definitive guide uses a clear pattern-recognition approach, with chapters organized around organ systems and pathology. It offers clinicians an unmatched guide to high-quality MRI studies of the abdomen and pelvis, focusing on disease processes in the liver, gallbladder and bile ducts, pancreas, spleen, kidneys, and more. Primer on MR Imaging of the Abdomen and Pelvis also provides critical coverage of MRI sequences, from the most up-to-date gradient echo and parallel imaging techniques to standard spin-echo sequences. In addition, you'll find a thorough review of modern imaging protocols and strategies, including those for the uncooperative patient. Supported by end-of-chapter summary notes and helpful summary tables, Primer on MR Imaging of the Abdomen and Pelvis is the most clinically relevant guide to the successful use of MRI to image the abdomen and pelvis, as well as a concise yet comprehensive description of the full range of diseases of the abdomen and pelvis. |
You may like...
Magnetic Resonance Techniques in…
Massimo Filippi, R.I Grossmann, …
Hardcover
R1,420
Discovery Miles 14 200
|