![]() |
![]() |
Your cart is empty |
||
Books > Medicine > Other branches of medicine > Medical imaging > Nuclear magnetic resonance (NMR / MRI)
Magnetic resonance imaging (MRI) is a technique used in biomedical imaging and radiology to visualize internal structures of the body. Because MRI provides excellent contrast between different soft tissues, the technique is especially useful for diagnostic imaging of the brain, muscles, and heart. In the past 20 years, MRI technology has improved significantly with the introduction of systems up to 7 Tesla (7 T) and with the development of numerous post-processing algorithms such as diffusion tensor imaging (DTI), functional MRI (fMRI), and spectroscopic imaging. From these developments, the diagnostic potentialities of MRI have improved impressively with an exceptional spatial resolution and the possibility of analyzing the morphology and function of several kinds of pathology. Given these exciting developments, the Magnetic Resonance Imaging Handbook: Image Principles, Neck, and the Brain is a timely addition to the growing body of literature in the field. Covering MRI from fundamentals to practice, this comprehensive book: Discusses the clinical benefits of diagnosing human pathologies using MRI Explains the physical principles of MRI and how to use the technique correctly Highlights each organ's anatomy and pathological processes with high-quality images Examines the protocols and potentialities of advanced MRI scanners such as 7 T systems Includes extensive references at the end of each chapter to enhance further study Thus, the Magnetic Resonance Imaging Handbook: Image Principles, Neck, and the Brain provides radiologists and imaging specialists with a valuable, state-of-the-art reference on MRI.
Magnetic resonance imaging (MRI) is a technique used in biomedical imaging and radiology to visualize internal structures of the body. Because MRI provides excellent contrast between different soft tissues, the technique is especially useful for diagnostic imaging of the brain, muscles, and heart. In the past 20 years, MRI technology has improved significantly with the introduction of systems up to 7 Tesla (7 T) and with the development of numerous post-processing algorithms such as diffusion tensor imaging (DTI), functional MRI (fMRI), and spectroscopic imaging. From these developments, the diagnostic potentialities of MRI have improved impressively with an exceptional spatial resolution and the possibility of analyzing the morphology and function of several kinds of pathology. Given these exciting developments, the Magnetic Resonance Imaging Handbook: Imaging of the Cardiovascular System, Thorax, and Abdomen is a timely addition to the growing body of literature in the field. Offering comprehensive coverage of cutting-edge imaging modalities, this book: Discusses MRI of the heart, blood vessels, lungs, breasts, diaphragm, liver, gallbladder, spleen, pancreas, adrenal glands, and gastrointestinal tract Explains how MRI can be used in vascular, posttraumatic, postsurgical, and computer-aided diagnostic (CAD) applications Highlights each organ's anatomy and pathological processes with high-quality images Examines the protocols and potentialities of advanced MRI scanners such as 7 T systems Includes extensive references at the end of each chapter to enhance further study Thus, the Magnetic Resonance Imaging Handbook: Imaging of the Cardiovascular System, Thorax, and Abdomen provides radiologists and imaging specialists with a valuable, state-of-the-art reference on MRI.
Kinematic MRI refers to imaging a joint through a range of motion to examine the interactions between the soft tissue and osseous anatomy that comprise the joint. Kinematic MRI techniques were developed because various pathologic conditions are dependent on the specific position of the joint or in response to loading or stress. Importantly, static-view MRI examinations often miss abnormal findings because the joint is not assessed through a range of motion. Accordingly, the functional information obtained using kinematic MRI frequently serves to identify the underlying abnormality or to supplement the information acquired with standard MR imaging techniques.
Magnetic Particle Imaging (MPI) is a novel imaging modality. In MPI superparamagnetic iron oxide nanoparticles are used as tracer materials. The volume is the proceeding of the 2nd international workshop on magnetic particle imaging (IWMPI). The workshop aims at covering the status and recent developments of both, the instrumentation and the tracer material, as each of them is equally important in designing a well performing MPI. For instance, the current state of the art in magnetic coil design for MPI is discussed. With a new symmetrical arrangement of coils, a field-free line (FFL) can be produced that promises a significantly higher sensitivity compared with the standard arrangement for a FFP. Furthermore, the workshop aims at presenting results from phantom and pre-clinical studies.
This book provides a description of the phenomenon of magnetic resonance and a brief summary of Fourier transformations. It discusses the hardware and electronics of a magnetic resonance imaging scanner, the typical measurements and simulations of magnetic fields, and advanced imaging techniques.
Magnetic resonance imaging (MRI) is a rapidly developing field in basic applied science and clinical practice. Research efforts in this area have already been recognized with five Nobel prizes awarded to seven Nobel laureates in the past 70 years. Based on courses taught at The Johns Hopkins University, Magnetic Resonance Imaging: The Basics provides a solid introduction to this powerful technology. The book begins with a general description of the phenomenon of magnetic resonance and a brief summary of Fourier transformations in two dimensions. It examines the fundamental principles of physics for nuclear magnetic resonance (NMR) signal formation and image construction and provides a detailed explanation of the mathematical formulation of MRI. Numerous image quantitative indices are discussed, including (among others) signal, noise, signal-to-noise, contrast, and resolution. The second part of the book examines the hardware and electronics of an MRI scanner and the typical measurements and simulations of magnetic fields. It introduces NMR spectroscopy and spectral acquisition and imaging techniques employing various pulse sequences. The final section explores the advanced imaging technique of parallel imaging. Structured so that each chapter builds on the knowledge gained in the previous one, the book is enriched by numerous worked examples and problem sets with selected solutions, giving readers a firm grasp of the foundations of MRI technology.
MRI: Essentials for Innovative Technologies describes novel methods to improve magnetic resonance imaging (MRI) beyond its current limitations. It proposes smart encoding methods and acquisition sequences to deal with frequency displacement due to residual static magnetic field inhomogeneity, motion, and undersampling. Requiring few or no hardware modifications, these speculative methods offer building blocks that can be combined and refined to overcome barriers to more advanced MRI applications, such as real-time imaging and open systems. After a concise review of basic mathematical tools and the physics of MRI, the book describes the severe artifacts produced by conventional MRI techniques. It first tackles magnetic field inhomogeneities, outlining conventional solutions as well as a completely different approach based on time-varying gradients and temporal frequency variation coding (acceleration). The book then proposes two innovative acquisition methods for reducing acquisition time, motion, and undersampling artifacts: adaptive acquisition and compressed sensing. The concluding chapter lays out the author s predictions for the future of MRI. For some of the proposed solutions, this is the first time the reported results have been published. Where experimental data is preliminary or unavailable, the book presents only numerical solutions. Offering insight into emerging MRI techniques, this book provides readers with specialized knowledge to help them design better acquisition sequences and select appropriate correction methods. The author s proceeds from the sale of this book will be entirely donated to Bambin Gesu Children s Hospital in Rome.
Fundamentals of MRI: An Interactive Learning Approach explores the physical principles that underpin the technique of magnetic resonance imaging (MRI). After covering background mathematics, physics, and digital imaging, the book presents fundamental physical principles, including magnetization and rotating reference frame. It describes how relaxation mechanisms help predict tissue contrast and how an MR signal is localized to a selected slice through the body. The text then focuses on frequency and phase encoding. It also explores the spin-echo sequence, its scan parameters, and additional imaging sequences, such as inversion recovery and gradient echo. The authors enhance the learning experience with practical materials. Along with questions, exercises, and solutions, they include ten interactive programs on the accompanying CD-ROM. These programs not only allow concepts to be clearly demonstrated and further developed, but also provide an opportunity to engage in the learningprocess through guided exercises. By providing a solid, hands-on foundation in the physics of MRI, this textbook helps students gain confidence with core concepts before they move on to further study or practical training.
The fourth edition of Clinical Nuclear Medicine incorporates the
rapid and dramatic changes that have occurred in the field within
the last 10 years--particularly the continued growth in clinical
applications for PET and other aspects of molecular imaging--so
that the book reflects modern practice. With its problem-oriented
clinical approach, the book presents relevant topics of current
importance to the practicing clinician, rather than providing a
comprehensive review of all technical and basic science aspects.
Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product. 200 interactive brain imaging cases deliver the best board review possible! Part of McGraw-Hill's Radiology Case Review Series, this unique resource challenges you to look at a group of images, determine the diagnosis, answer related questions, and gauge your knowledge by reviewing the answer. It all adds up to the best review of brain imaging imaging available-one that's ideal for certification or recertification, or as an incomparable clinical refresher. Distinguished by a cohesive 2-page design, each volume in this series is filled with cases, annotated images, questions & answers, pearls, and relevant literature references that will efficiently prepare you for virtually any exam topic. Radiology and neurology residents and fellows, medical students, radiologists, and physicians who want to increase their knowledge of brain imaging will find this book to be an invaluable study partner.
The advent of dedicated whole-body MRI scanners has made it possible to image the human body from head to toe with excellent spatial resolution and with the sensitivity and specificity of conventional MR systems. A comprehensive screening examination by MRI relies on fast image acquisition, and this is now feasible owing to several very recent developments, including multichannel techniques, new surface coil systems, and automatic table movement. The daily analysis of whole-body MRI datasets uncovers many incidental findings, which are discussed by an interdisciplinary advisory board of physicians from all specialties. This book provides a systematic overview of these incidental findings with the aid of approximately 240 high-quality images. The radiologists involved in the project have written chapters on each organ system, presenting a structured compilation of the most common findings, their morphologic appearances on whole-body MRI, and guidance on their clinical management. Chapters on technical and ethical issues are also included. It is hoped that this book will assist other diagnosticians in deciding how to handle the most common incidental findings encountered when performing whole-body MRI.
In compiling this textbook on the exciting novel imaging modality of PET/MRI, the editors have brought together a truly international group of experts in the field. The book is divided into two parts. The first part covers methodology and equipment and includes chapters on basic molecular medicine, contrast agents, MR attenuation and validation, and quantitative MRI and PET motion correction. The second part of the book focuses on clinical applications in oncology, cardiology, and neurology. Imaging of major neoplasms is covered in a series of individual chapters. Further chapters address functional and metabolic cardiovascular examinations and major central nervous system applications such as brain tumors and dementias. This book will be of interest to all radiologists and nuclear medicine physicians who wish to learn more about the latest developments in this important emerging imaging modality and its applications.
The derivation of structural information from spectroscopic data is now an integral part of organic chemistry courses at all Universities. Over recent years, a number of powerful two-dimensional NMR techniques (e.g. HSQC, HMBC, TOCSY, COSY and NOESY) have been developed and these have vastly expanded the amount of structural information that can be obtained by NMR spectroscopy. Improvements in NMR instrumentation now mean that 2D NMR spectra are routinely (and sometimes automatically) acquired during the identification and characterisation of organic compounds. Organic Structures from 2D NMR Spectra is a carefully chosen set of more than 60 structural problems employing 2D-NMR spectroscopy. The problems are graded to develop and consolidate a student s understanding of 2D NMR spectroscopy. There are many easy problems at the beginning of the collection, to build confidence and demonstrate the basic principles from which structural information can be extracted using 2D NMR. The accompanying text is very descriptive and focussed on explaining the underlying theory at the most appropriate level to sufficiently tackle the problems. Organic Structures from 2D NMR Spectra * Is a graded series of about 60 problems in 2D NMR spectroscopy that assumes a basic knowledge of organic chemistry and a basic knowledge of one-dimensional NMR spectroscopy * Incorporates the basic theory behind 2D NMR and those common 2D NMR experiments that have proved most useful in solving structural problems in organic chemistry * Focuses on the most common 2D NMR techniques including COSY, NOESY, HMBC, TOCSY, CH-Correlation and multiplicity-edited C-H Correlation. * Incorporates several examples containing the heteronuclei 31P, 15N and 19F Organic Structures from 2D NMR Spectra is a logical follow-on from the highly successful Organic Structures from Spectra which is now in its fifth edition. The book will be invaluable for students of Chemistry, Pharmacy, Biochemistry and those taking courses in Organic Chemistry. Also available: Instructors Guide and Solutions Manual to Organic Structures from 2D NMR Spectra
This volume contains the proceedings from two closely related workshops: Computational Diffusion MRI (CDMRI'13) and Mathematical Methods from Brain Connectivity (MMBC'13), held under the auspices of the 16th International Conference on Medical Image Computing and Computer Assisted Intervention, which took place in Nagoya, Japan, September 2013. Inside, readers will find contributions ranging from mathematical foundations and novel methods for the validation of inferring large-scale connectivity from neuroimaging data to the statistical analysis of the data, accelerated methods for data acquisition, and the most recent developments on mathematical diffusion modeling. This volume offers a valuable starting point for anyone interested in learning computational diffusion MRI and mathematical methods for brain connectivity as well as offers new perspectives and insights on current research challenges for those currently in the field. It will be of interest to researchers and practitioners in computer science, MR physics, and applied mathematics.
Providing many unique MATLAB codes and functions throughout, this book covers the basics of Magnetic Resonance Imaging (MRI), leading to an in-depth understanding of the concepts and tools required for analysis and interpretation of Phase Contrast MR Angiography (PC-MRA). The concept of PC-MRA is often difficult, but essential for practicing engineers and scientists working in MR related areas. The concepts are better understood by uniquely combining the physical principles of fluid flow and MR imaging, laid out by modeling the theory and applications using a commonly used software tool MATLAB (R). The book starts with a detailed theory of PC-MRA followed by a description of various image processing methods, including detailed MATLAB codes used for their implementation. The flow concepts in the context of MR imaging are explained using MATLAB based simulations.
Nuclear magnetic resonance imaging represents a technique that is indispensable in every day biomedical diagnostics. Thanks to the numerous ways to manipulate and detect an NMR signal, it is possible to obtain a variety of information with excellent spatial and temporal resolution. Today's MRI techniques go far beyond the illustration of pure anatomical structures and include the revealing of processes down to the molecular level. The number of small animal imaging centers relying on MRI as a key method for preclinical research to understand diseases and to test for novel treatments is growing rapidly. In Vivo NMR Imaging: Methods and Protocols is written as an experimental laboratory text to provide a descriptive approach of the various applications of magnetic resonance imaging and its underlying principles. Starting from a compact introduction of basic NMR physics and image encoding techniques suitable for a broad audience in the life sciences, the concept focuses on addressing the many ways of generating contrast in MR images. The authors cover an interdisciplinary range of problems to be addressed by this non-invasive modality, including study protocols for addressing morphological, physiological, functional, and biochemical aspects of various tissues in living organisms. Information about practical aspects of designing experimental studies that follow the special conditions for micro imaging setups are also provided. Written in the successful Methods in Molecular Biology (TM) series format, In Vivo NMR Imaging: Methods and Protocols aims to be an experimental compendium of modern in vivo MR imaging with special focus on recent developments in molecular imaging and new protocols for imaging metabolism and molecular markers.
This volume addresses a wide range of issues in the field of nuclear medicine imaging, with an emphasis on the latest research findings. Initial chapters set the scene by considering the role of imaging in nuclear medicine from the medical perspective and discussing the implications of novel agents and applications for imaging. The physics at the basis of the most modern imaging systems is described, and the reader is introduced to the latest advances in image reconstruction and noise correction. Various novel concepts are then discussed, including those developed within the framework of the EURATOM FP7 MADEIRA research project on the optimization of imaging procedures in order to permit a reduction in the radiation dose to healthy tissues. Advances in quality control and quality assurance are covered, and the book concludes by listing rules of thumb for imaging that will be of use to both beginners and experienced researchers.
This book offers a review of the normal histopathological anatomy, imaging techniques and diagnostic findings for a broad spectrum of clinical problems. It includes a classification of inflammatory syndromes previously described under several different terms. It is the first textbook to describe the imaging of all anterior chest wall disorders.
The foundation for understanding the function and dynamics of biological systems is not only knowledge of their structure, but the new methodologies and applications used to determine that structure. This volume in Biological Magnetic Resonance emphasizes the methods that involve Ultra High Field Magnetic Resonance Imaging. It will interest researchers working in the field of imaging.
Ideal for residents, practicing radiologists, and fellows alike, this updated reference offers easy-to-understand guidance on how to approach musculoskeletal MRI and recognize abnormalities. Concise, to-the-point text covers MRI for the entire musculoskeletal system, presented in a highly templated format. Thoroughly revised and enhanced with full-color artwork throughout, this resource provides just the information you need to perform and interpret quality musculoskeletal MRI. Includes the latest protocols, practical advice, tips, and pearls for diagnosing conditions impacting the temporomandibular joint, shoulder, elbow, wrist/hand, spine, hips and pelvis, knee, and foot and ankle. Follows a quick-reference format throughout, beginning with basic technical information on how to obtain a quality examination, followed by a discussion of the normal appearance and the abnormal appearance for each small unit that composes a joint. Depicts both normal and abnormal anatomy, as well as disease progression, through more than 600 detailed, high-quality images, most of which are new to this edition. Features key information boxes throughout for a quick review of pertinent material. Expert ConsultT eBook version included with purchase. This enhanced eBook experience allows you to search all of the text, figures, and references from the book on a variety of devices.
MRI Handbook presents a concise review of the physical principles underlying magnetic resonance imaging (MRI), explaining MR physics, patient positioning, and protocols in an easy-to-read format. The first five chapters of the book introduce the reader to the basics of MR imaging, including the relaxation concept, MR pulse sequences, and MR imaging parameters and options. The second part of the book (chapters 6-11) uses extensive illustrations, images, and protocol tables to explain tips and tricks to achieve optimal MR image quality while ensuring patient safety. Individual chapters are devoted to each major anatomic region, including the central nervous, musculoskeletal, and cardiovascular systems. By using annotated MR images and examples of patient positions used during scanning correlated with sample protocols and parameters, MRI Handbook is a practical resource for imaging professionals to use in the course of their daily practice as well as for students to learn the basic concepts of MR imaging.
The ability of molecular and cellular imaging to track the survival, migration, and differentiation of cells in vivo as well as monitor particular gene expression in living subjects is rapidly moving from the research laboratory into daily clinical settings. The interdisciplinary nature of the field mandates a constant dialogue among molecular and cellular biology, chemistry, physics, image analysis, and drug discovery to develop and translate promising approaches into reliable scientific applications and viable clinical diagnostic tools. Bringing together a select panel of internationally recognized authors, Molecular and Cellular MR Imaging provides a state-of-the-science overview of the multidisciplinary nature of the field and illustrates the application of these various sciences to investigate specific biological processes in animals and humans. Using a systematic organization to present diverse information, the text begins with an introductory chapter that defines cellular and molecular imaging and explains why magnetic resonance imaging (MRI) is the most versatile approach for noninvasive, in vivo studies. The first section examines the physicochemical principles of various contrast agents including paramagnetic, superparamagnetic, CEST, and PARACEST agents, as well as smart and sensing agents. The second section summarizes the wide variety of applications for molecular imaging of genes and of disease states. Contributions cover cancer, apoptosis, cardiovascular and neurodegenerative disease, and the use of pharmacological MRI. The third section is devoted to cellular imaging under a variety of applications, and the final section discusses the translational aspects and future directions of cellular and molecular MR imaging. Molecular and Cellular MR Imaging highlights the diversity of skills required to translate advancements in various fields of research into practical applications that promise to revolutionize in vivo imaging as a diagnostic
EXPAND YOUR KNOWLEDGE OF MRI OF THE FOOT AND ANKLE. The introduction of MRI, together with rapid technological advancements over the last five years, has provided a powerful diagnostic tool. Despite this development, clinicians are unfamiliar with MRI of the foot and ankle, due to the complexities of this imaging modality and the anatomy and pathology of this region. In Practical MRI of the Foot and Ankle, the authors present a state-of-the-art source for the broad range of topics related to this field. The work illuminates and expands on the limited body of available. A PRACTICAL, COMPREHENSIVE REFERENCE This work provides background information regarding appropriate MRI techniques followed by a brief discussion of the normal anatomy of the foot and ankle. Subsequent chapters encompass a broad spectrum of topics including bone injuries, osseous tumors, infections, arthropathies, and the pediatric foot and ankle. Practical MRI of the Foot and Ankle is sure to become a standard in your reference collection. |
![]() ![]() You may like...
Shocks in Astrophysics - Proceedings of…
T.J. Millar, A.C. Raga
Hardcover
R4,747
Discovery Miles 47 470
Complex and Symplectic Geometry
Daniele Angella, Costantino Medori, …
Hardcover
Stellar Jets and Bipolar Outflows…
L. Errico, Alberto A. Vittone
Hardcover
R6,141
Discovery Miles 61 410
Problems of Condensed Matter Physics…
Alexei L. Ivanov, Sergei G. Tikhodeev
Hardcover
R5,061
Discovery Miles 50 610
Online Advertising and Promotion…
Payam Hanafizadeh, Mehdi Behboudi
Hardcover
R5,313
Discovery Miles 53 130
Environmental Hazards Methodologies for…
Nicolas R. Dalezios
Paperback
R4,587
Discovery Miles 45 870
|