![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Numerical analysis
The methods considered in the 7th conference on "Finite Volumes for Complex Applications" (Berlin, June 2014) have properties which offer distinct advantages for a number of applications. The second volume of the proceedings covers reviewed contributions reporting successful applications in the fields of fluid dynamics, magnetohydrodynamics, structural analysis, nuclear physics, semiconductor theory and other topics. The finite volume method in its various forms is a space discretization technique for partial differential equations based on the fundamental physical principle of conservation. Recent decades have brought significant success in the theoretical understanding of the method. Many finite volume methods preserve further qualitative or asymptotic properties, including maximum principles, dissipativity, monotone decay of free energy, and asymptotic stability. Due to these properties, finite volume methods belong to the wider class of compatible discretization methods, which preserve qualitative properties of continuous problems at the discrete level. This structural approach to the discretization of partial differential equations becomes particularly important for multiphysics and multiscale applications. Researchers, PhD and masters level students in numerical analysis, scientific computing and related fields such as partial differential equations will find this volume useful, as will engineers working in numerical modeling and simulations.
From fabrication to testing and modeling this monograph covers all aspects on the materials class of magneto active polymers. The focus is on computational modeling of manufacturing processes and material parameters. As other smart materials, these elastomers have the ability to change electrical and mechanical properties upon application of magnetic fields. This allows for novel applications ranging from biomedical engineering to mechatronics.
This textbook provides a step-by-step approach to numerical methods in engineering modelling. The authors provide a consistent treatment of the topic, from the ground up, to reinforce for students that numerical methods are a set of mathematical modelling tools which allow engineers to represent real-world systems and compute features of these systems with a predictable error rate. Each method presented addresses a specific type of problem, namely root-finding, optimization, integral, derivative, initial value problem, or boundary value problem, and each one encompasses a set of algorithms to solve the problem given some information and to a known error bound. The authors demonstrate that after developing a proper model and understanding of the engineering situation they are working on, engineers can break down a model into a set of specific mathematical problems, and then implement the appropriate numerical methods to solve these problems.
This book highlights recent compelling research results and trends in various aspects of contemporary mathematics, emphasizing applicabilitions to real-world situations. The chapters present exciting new findings and developments in situations where mathematical rigor is combined with common sense. A multi-disciplinary approach, both within each chapter and in the volume as a whole, leads to practical insights that may result in a more synthetic understanding of specific global issues as well as their possible solutions. The volume will be of interest not only to experts in mathematics, but also to graduate students, scientists, and practitioners from other fields including physics, biology, geology, management, and medicine.
This book presents practical applications of the finite element method to general differential equations. The underlying strategy of deriving the finite element solution is introduced using linear ordinary differential equations, thus allowing the basic concepts of the finite element solution to be introduced without being obscured by the additional mathematical detail required when applying this technique to partial differential equations. The author generalizes the presented approach to partial differential equations which include nonlinearities. The book also includes variations of the finite element method such as different classes of meshes and basic functions. Practical application of the theory is emphasised, with development of all concepts leading ultimately to a description of their computational implementation illustrated using Matlab functions. The target audience primarily comprises applied researchers and practitioners in engineering, but the book may also be beneficial for graduate students.
Broadly organized around the applications of Fourier analysis, "Methods of Applied Mathematics with a MATLAB Overview" covers both classical applications in partial differential equations and boundary value problems, as well as the concepts and methods associated to the Laplace, Fourier, and discrete transforms. Transform inversion problems are also examined, along with the necessary background in complex variables. A final chapter treats wavelets, short-time Fourier analysis, and geometrically-based transforms. The computer program MATLAB is emphasized throughout, and an introduction to MATLAB is provided in an appendix. Rich in examples, illustrations, and exercises of varying difficulty, this text can be used for a one- or two-semester course and is ideal for students in pure and applied mathematics, physics, and engineering.
Examining the basic principles in real analysis and their applications, this text provides a self-contained resource for graduate and advanced undergraduate courses. It contains independent chapters aimed at various fields of application, enhanced by highly advanced graphics and results explained and supplemented with practical and theoretical exercises. The presentation of the book is meant to provide natural connections to classical fields of applications such as Fourier analysis or statistics. However, the book also covers modern areas of research, including new and seminal results in the area of functional analysis.
Optimization problems subject to constraints governed by partial differential equations (PDEs) are among the most challenging problems in the context of industrial, economical and medical applications. Almost the entire range of problems in this field of research was studied and further explored as part of the Deutsche Forschungsgemeinschaft (DFG) priority program 1253 on "Optimization with Partial Differential Equations" from 2006 to 2013. The investigations were motivated by the fascinating potential applications and challenging mathematical problems that arise in the field of PDE constrained optimization. New analytic and algorithmic paradigms have been developed, implemented and validated in the context of real-world applications. In this special volume, contributions from more than fifteen German universities combine the results of this interdisciplinary program with a focus on applied mathematics. The book is divided into five sections on "Constrained Optimization, Identification and Control", "Shape and Topology Optimization", "Adaptivity and Model Reduction", "Discretization: Concepts and Analysis" and "Applications". Peer-reviewed research articles present the most recent results in the field of PDE constrained optimization and control problems. Informative survey articles give an overview of topics that set sustainable trends for future research. This makes this special volume interesting not only for mathematicians, but also for engineers and for natural and medical scientists working on processes that can be modeled by PDEs.
This volume developed from a Workshop on Natural Locomotion in Fluids and on Surfaces: Swimming, Flying, and Sliding which was held at the Institute for Mathematics and its Applications (IMA) at the University of Minnesota, from June 1-5, 2010. The subject matter ranged widely from observational data to theoretical mechanics, and reflected the broad scope of the workshop. In both the prepared presentations and in the informal discussions, the workshop engaged exchanges across disciplines and invited a lively interaction between modelers and observers. The articles in this volume were invited and fully refereed. They provide a representative if necessarily incomplete account of the field of natural locomotion during a period of rapid growth and expansion. The papers presented at the workshop, and the contributions to the present volume, can be roughly divided into those pertaining to swimming on the scale of marine organisms, swimming of microorganisms at low Reynolds numbers, animal flight, and sliding and other related examples of locomotion.
An increasing complexity of models used to predict real-world systems leads to the need for algorithms to replace complex models with far simpler ones, while preserving the accuracy of the predictions. This two-volume handbook covers methods as well as applications. This second volume focuses on applications in engineering, biomedical engineering, computational physics and computer science.
This textbook presents finite element methods using exclusively one-dimensional elements. The aim is to present the complex methodology in an easily understandable but mathematically correct fashion. The approach of one-dimensional elements enables the reader to focus on the understanding of the principles of basic and advanced mechanical problems. The reader easily understands the assumptions and limitations of mechanical modeling as well as the underlying physics without struggling with complex mathematics. But although the description is easy it remains scientifically correct. The approach using only one-dimensional elements covers not only standard problems but allows also for advanced topics like plasticity or the mechanics of composite materials. Many examples illustrate the concepts and problems at the end of every chapter help to familiarize with the topics."
The present volume contains invited talks of 11th biennial conference on "Emerging Mathematical Methods, Models and Algorithms for Science and Technology". The main message of the book is that mathematics has a great potential to analyse and understand the challenging problems of nanotechnology, biotechnology, medical science, oil industry and financial technology. The book highlights all the features and main theme discussed in the conference. All contributing authors are eminent academicians, scientists, researchers and scholars in their respective fields, hailing from around the world.
This book revisits the long-standing puzzle of cross-scale energy transfer and dissipation in plasma turbulence and introduces new perspectives based on both magnetohydrodynamic (MHD) and Vlasov models. The classical energy cascade scenario is key in explaining the heating of corona and solar wind. By employing a high-resolution hybrid (compact finite difference & WENO) scheme, the book studies the features of compressible MHD cascade in detail, for example, in order to approximate a real plasma cascade as "Kolmogorov-like" and to understand features that go beyond the usual simplified theories based on incompressible models. When approaching kinetic scales where plasma effects must be considered, it uses an elementary analysis of the Vlasov-Maxwell equations to help identify the channels through which energy transfer must be dissipated. In addition, it shows that the pressure-strain interaction is of great significance in producing internal energy. This analysis, in contrast to many other recent studies, does not make assumptions about wave-modes, instability or other specific mechanisms responsible for the dynamics - the results are direct consequences of the Vlasov-Maxwell system of equations. This is an important step toward understanding dissipation in turbulent collisionless plasma in space and astrophysics.
The first volume of the proceedings of the 7th conference on "Finite Volumes for Complex Applications" (Berlin, June 2014) covers topics that include convergence and stability analysis, as well as investigations of these methods from the point of view of compatibility with physical principles. It collects together the focused invited papers, as well as the reviewed contributions from internationally leading researchers in the field of analysis of finite volume and related methods. Altogether, a rather comprehensive overview is given of the state of the art in the field. The finite volume method in its various forms is a space discretization technique for partial differential equations based on the fundamental physical principle of conservation. Recent decades have brought significant success in the theoretical understanding of the method. Many finite volume methods preserve further qualitative or asymptotic properties, including maximum principles, dissipativity, monotone decay of free energy, and asymptotic stability. Due to these properties, finite volume methods belong to the wider class of compatible discretization methods, which preserve qualitative properties of continuous problems at the discrete level. This structural approach to the discretization of partial differential equations becomes particularly important for multiphysics and multiscale applications. Researchers, PhD and masters level students in numerical analysis, scientific computing and related fields such as partial differential equations will find this volume useful, as will engineers working in numerical modeling and simulations."
Nonlinear matrix equations arise frequently in applied science and engineering. This is the first book to provide a unified treatment of structure-preserving doubling algorithms, which have been recently studied and proven effective for notoriously challenging problems, such as fluid queue theory and vibration analysis for high-speed trains. The authors present recent developments and results for the theory of doubling algorithms for nonlinear matrix equations associated with regular matrix pencils, and highlight the use of these algorithms in achieving robust solutions for notoriously challenging problems that other methods cannot. Structure-Preserving Doubling Algorithms for Nonlinear Matrix Equations is intended for researchers and computational scientists. Graduate students may also find it of interest.
The contributions gathered here provide an overview of current research projects and selected software products of the Fraunhofer Institute for Algorithms and Scientific Computing SCAI. They show the wide range of challenges that scientific computing currently faces, the solutions it offers, and its important role in developing applications for industry. Given the exciting field of applied collaborative research and development it discusses, the book will appeal to scientists, practitioners, and students alike. The Fraunhofer Institute for Algorithms and Scientific Computing SCAI combines excellent research and application-oriented development to provide added value for our partners. SCAI develops numerical techniques, parallel algorithms and specialized software tools to support and optimize industrial simulations. Moreover, it implements custom software solutions for production and logistics, and offers calculations on high-performance computers. Its services and products are based on state-of-the-art methods from applied mathematics and information technology.
This informal introduction to computational fluid dynamics and practical guide to numerical simulation of transport phenomena covers the derivation of the governing equations, construction of finite element approximations, and qualitative properties of numerical solutions, among other topics. To make the book accessible to readers with diverse interests and backgrounds, the authors begin at a basic level and advance to numerical tools for increasingly difficult flow problems, emphasizing practical implementation rather than mathematical theory. Finite Element Methods for Computational Fluid Dynamics: * Explains the basics of the finite element method (FEM) in the context of simple model problems, illustrated by numerical examples. * Comprehensively reviews stabilization techniques for convection-dominated transport problems, introducing the reader to streamline diffusion methods, Petrov-Galerkin approximations, Taylor-Galerkin schemes, flux-corrected transport algorithms, and other nonlinear high-resolution schemes.* Covers Petrov-Galerkin stabilization, classical projection schemes, Schur complement solvers, and the implementation of the k-epsilon turbulence model in its presentation of the FEM for incompressible flow problems.* Ddescribes the open-source finite element library ELMER, which is recommended as a software development kit for advanced applications in an online component.
Tearing and interconnecting methods, such as FETI, FETI-DP, BETI, etc., are among the most successful domain decomposition solvers for partial differential equations. The purpose of this book is to give a detailed and self-contained presentation of these methods, including the corresponding algorithms as well as a rigorous convergence theory. In particular, two issues are addressed that have not been covered in any monograph yet: the coupling of finite and boundary elements within the tearing and interconnecting framework including exterior problems, and the case of highly varying (multiscale) coefficients not resolved by the subdomain partitioning. In this context, the book offers a detailed view to an active and up-to-date area of research.
This book presents the theoretical details and computational performances of algorithms used for solving continuous nonlinear optimization applications imbedded in GAMS. Aimed toward scientists and graduate students who utilize optimization methods to model and solve problems in mathematical programming, operations research, business, engineering, and industry, this book enables readers with a background in nonlinear optimization and linear algebra to use GAMS technology to understand and utilize its important capabilities to optimize algorithms for modeling and solving complex, large-scale, continuous nonlinear optimization problems or applications. Beginning with an overview of constrained nonlinear optimization methods, this book moves on to illustrate key aspects of mathematical modeling through modeling technologies based on algebraically oriented modeling languages. Next, the main feature of GAMS, an algebraically oriented language that allows for high-level algebraic representation of mathematical optimization models, is introduced to model and solve continuous nonlinear optimization applications. More than 15 real nonlinear optimization applications in algebraic and GAMS representation are presented which are used to illustrate the performances of the algorithms described in this book. Theoretical and computational results, methods, and techniques effective for solving nonlinear optimization problems, are detailed through the algorithms MINOS, KNITRO, CONOPT, SNOPT and IPOPT which work in GAMS technology.
This book investigates stability loss problems of the viscoelastic composite materials and structural members within the framework of the Three-Dimensional Linearized Theory of Stability (TDLTS). The stability loss problems are considered the development of the initial infinitesimal imperfection in the structure of the material or of the structural members. This development is studied within the framework of the Three-Dimensional Geometrical Non-Linear Theory of the Deformable Solid Body Mechanics. The solution to the corresponding boundary-value problems is presented in the series form in the small parameter which characterizes the degree of the initial imperfection. In this way, the nonlinear problems for the domains bounded by noncanonical surfaces are reduced for the same nonlinear problem for the corresponding domains bounded by canonical surfaces and the series subsequent linearized problems. It is proven that the equations and relations of these linearized problems coincide with the corresponding ones of the well-known TDLTS. Under concrete investigations as stability loss criterion the case is taken for the initial infinitesimal imperfection that starts to increase indefinitely. Moreover, it is proven that the critical parameters can be determined by the use of only the zeroth and first approximations.
ACMES (Algorithms and Complexity in Mathematics, Epistemology, and Science) is a multidisciplinary conference series that focuses on epistemological and mathematical issues relating to computation in modern science. This volume includes a selection of papers presented at the 2015 and 2016 conferences held at Western University that provide an interdisciplinary outlook on modern applied mathematics that draws from theory and practice, and situates it in proper context. These papers come from leading mathematicians, computational scientists, and philosophers of science, and cover a broad collection of mathematical and philosophical topics, including numerical analysis and its underlying philosophy, computer algebra, reliability and uncertainty quantification, computation and complexity theory, combinatorics, error analysis, perturbation theory, experimental mathematics, scientific epistemology, and foundations of mathematics. By bringing together contributions from researchers who approach the mathematical sciences from different perspectives, the volume will further readers' understanding of the multifaceted role of mathematics in modern science, informed by the state of the art in mathematics, scientific computing, and current modeling techniques.
This book contains the results in numerical analysis and optimization presented at the ECCOMAS thematic conference "Computational Analysis and Optimization" (CAO 2011) held in Jyvaskyla, Finland, June 9-11, 2011. Both the conference and this volume are dedicated to Professor Pekka Neittaanmaki on the occasion of his sixtieth birthday. It consists of five parts that are closely related to his scientific activities and interests: Numerical Methods for Nonlinear Problems; Reliable Methods for Computer Simulation; Analysis of Noised and Uncertain Data; Optimization Methods; Mathematical Models Generated by Modern Technological Problems. The book also includes a short biography of Professor Neittaanmaki.
This book gives an introduction to the finite element method as a general computational method for solving partial differential equations approximately. Our approach is mathematical in nature with a strong focus on the underlying mathematical principles, such as approximation properties of piecewise polynomial spaces, and variational formulations of partial differential equations, but with a minimum level of advanced mathematical machinery from functional analysis and partial differential equations.In principle, the material should be accessible to students with only knowledge of calculus of several variables, basic partial differential equations, and linear algebra, as the necessary concepts from more advanced analysis are introduced when needed. Throughout the text we emphasize implementation of the involved algorithms, and have therefore mixed mathematical theory with concrete computer code using the numerical software MATLAB is and its PDE-Toolbox.We have also had the ambition to cover some of the most important applications of finite elements and the basic finite element methods developed for those applications, including diffusion and transport phenomena, solid and fluid mechanics, and also electromagnetics.
This self-contained text is a step-by-step introduction and a complete overview of interval computation and result verification, a subject whose importance has steadily increased over the past many years. The author, an expert in the field, gently presents the theory of interval analysis through many examples and exercises, and guides the reader from the basics of the theory to current research topics in the mathematics of computation. Contents Preliminaries Real intervals Interval vectors, interval matrices Expressions, P-contraction, -inflation Linear systems of equations Nonlinear systems of equations Eigenvalue problems Automatic differentiation Complex intervals |
You may like...
Numerical Control: Part A, Volume 23
Emmanuel Trelat, Enrique Zuazua
Hardcover
R4,992
Discovery Miles 49 920
Handbook of Numerical Analysis, Volume 7
Philippe G. Ciarlet
Hardcover
R3,524
Discovery Miles 35 240
Numerical Analysis
Annette M Burden, Richard Burden, …
Hardcover
Frontiers in Molecular Design and…
Rachelle J. Bienstock, Veerabahu Shanmugasundaram, …
Hardcover
R4,846
Discovery Miles 48 460
Constructive Approximation on the Sphere…
W Freeden, T. Gervens, …
Hardcover
R3,855
Discovery Miles 38 550
Cohesive Subgraph Computation over Large…
Lijun Chang, Lu Qin
Hardcover
R1,408
Discovery Miles 14 080
|