![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Numerical analysis
This book describes grouping detection and initiation; group initiation algorithm based on geometry center; data association and track continuity; as well as separate-detection and situation cognition for group-target. It specifies the tracking of the target in different quantities and densities. At the same time, it integrates cognition into the application. Group-target Tracking is designed as a book for advanced-level students and researchers in the area of radar systems, information fusion of multi-sensors and electronic countermeasures. It is also a valuable reference resource for professionals working in this field.
This book introduces readers to one of the first methods developed for the numerical treatment of boundary value problems on polygonal and polyhedral meshes, which it subsequently analyzes and applies in various scenarios. The BEM-based finite element approaches employs implicitly defined trial functions, which are treated locally by means of boundary integral equations. A detailed construction of high-order approximation spaces is discussed and applied to uniform, adaptive and anisotropic polytopal meshes. The main benefits of these general discretizations are the flexible handling they offer for meshes, and their natural incorporation of hanging nodes. This can especially be seen in adaptive finite element strategies and when anisotropic meshes are used. Moreover, this approach allows for problem-adapted approximation spaces as presented for convection-dominated diffusion equations. All theoretical results and considerations discussed in the book are verified and illustrated by several numerical examples and experiments. Given its scope, the book will be of interest to mathematicians in the field of boundary value problems, engineers with a (mathematical) background in finite element methods, and advanced graduate students.
This book results from the XVIII Spanish-French School 'Jacques Louis Lions' on Numerical Simulation in Physics and Engineering, that took place in Las Palmas de Gran Canaria from 25th to 29th June 2018. These conferences are held biennially since 1984 and sponsored by the Spanish Society of Applied Mathematics (SEMA). They also have the sponsorship of the Societe de Mathematiques Appliquees et Industrielles (SMAI) of France since 2008. Each edition is organized around several main courses and talks delivered by renowned French/Spanish scientists. This volume is highly recommended to graduate students in Engineering or Science who want to focus on numerical simulation, either as a research topic or in the field of industrial applications. It can also benefit senior researchers and technicians working in industry who are interested in the use of state-of-the-art numerical techniques. Moreover, the book can be used as a textbook for master courses in Mathematics, Physics, or Engineering.
This volume presents the proceedings of the 11th Conference on Problems and Methods in Mathematical Physics (11th TMP), held in Chemnitz, March 25-28, 1999. The conference was dedicated to the memory of Siegfried PrAssdorf, who made important contributions to the theory and numerical analysis of operator equations and their applications in mathematical physics and mechanics. The main part of the book comprises original research papers. The topics are ranging from integral and pseudodifferential equations, boundary value problems, operator theory, boundary element and wavelet methods, approximation theory and inverse problems to various concrete problems and applications in physics and engineering, and reflect PrAssdorf's broad spectrum of research activities. The volume also contains articles describing the life and mathematical achievements of Siegfried PrAssdorf and includes a list of his publications. The book is addressed to a wide audience in the mathematical and engineering sciences.
The topics covered in this book, written by researchers at the forefront of their field, represent some of the most relevant research areas in modern coding theory: codes and combinatorial structures, algebraic geometric codes, group codes, quantum codes, convolutional codes, network coding and cryptography. The book includes a survey paper on the interconnections of coding theory with constrained systems, written by an invited speaker, as well as 37 cutting-edge research communications presented at the 4th International Castle Meeting on Coding Theory and Applications (4ICMCTA), held at the Castle of Palmela in September 2014. The event's scientific program consisted of four invited talks and 39 regular talks by authors from 24 different countries. This conference provided an ideal opportunity for communicating new results, exchanging ideas, strengthening international cooperation, and introducing young researchers into the coding theory community.
Based on their research experience, the authors propose a reference textbook in two volumes on the theory of generalized locally Toeplitz sequences and their applications. This first volume focuses on the univariate version of the theory and the related applications in the unidimensional setting, while the second volume, which addresses the multivariate case, is mainly devoted to concrete PDE applications. This book systematically develops the theory of generalized locally Toeplitz (GLT) sequences and presents some of its main applications, with a particular focus on the numerical discretization of differential equations (DEs). It is the first book to address the relatively new field of GLT sequences, which occur in numerous scientific applications and are especially dominant in the context of DE discretizations. Written for applied mathematicians, engineers, physicists, and scientists who (perhaps unknowingly) encounter GLT sequences in their research, it is also of interest to those working in the fields of Fourier and functional analysis, spectral analysis of DE discretization matrices, matrix analysis, measure and operator theory, numerical analysis and linear algebra. Further, it can be used as a textbook for a graduate or advanced undergraduate course in numerical analysis.
This volume arose from the Third Annual Workshop on Inverse Problems, held in Stockholm on May 2-6, 2012. The proceedings present new analytical developments and numerical methods for solutions of inverse and ill-posed problems, which consistently pose complex challenges to the development of effective numerical methods. The book highlights recent research focusing on reliable numerical techniques for the solution of inverse problems, with relevance to a range of fields including acoustics, electromagnetics, optics, medical imaging, and geophysics.
An increasing complexity of models used to predict real-world systems leads to the need for algorithms to replace complex models with far simpler ones, while preserving the accuracy of the predictions. This three-volume handbook covers methods as well as applications. This third volume focuses on applications in engineering, biomedical engineering, computational physics and computer science.
This two-volume work introduces the theory and applications of Schur-convex functions. The second volume mainly focuses on the application of Schur-convex functions in sequences inequalities, integral inequalities, mean value inequalities for two variables, mean value inequalities for multi-variables, and in geometric inequalities.
Contemporary engineering design is heavily based on computer simulations. Accurate, high-fidelity simulations are used not only for design verification but, even more importantly, to adjust parameters of the system to have it meet given performance requirements. Unfortunately, accurate simulations are often computationally very expensive with evaluation times as long as hours or even days per design, making design automation using conventional methods impractical. These and other problems can be alleviated by the development and employment of so-called surrogates that reliably represent the expensive, simulation-based model of the system or device of interest but they are much more reasonable and analytically tractable. This volume features surrogate-based modeling and optimization techniques, and their applications for solving difficult and computationally expensive engineering design problems. It begins bypresentingthe basic concepts and formulations of the surrogate-based modeling and optimization paradigm and thendiscusses relevant modeling techniques, optimization algorithms and design procedures, as well as state-of-the-art developments. The chapters are self-contained with basic concepts and formulations along with applications and examples. The book will be useful toresearchers in engineering and mathematics, in particular those who employ computationally heavy simulations in their design work.
The main aim of this book is to discuss model order reduction (MOR) methods for differential-algebraic equations (DAEs) with linear coefficients that make use of splitting techniques before applying model order reduction. The splitting produces a system of ordinary differential equations (ODE) and a system of algebraic equations, which are then reduced separately. For the reduction of the ODE system, conventional MOR methods can be used, whereas for the reduction of the algebraic systems new methods are discussed. The discussion focuses on the index-aware model order reduction method (IMOR) and its variations, methods for which the so-called index of the original model is automatically preserved after reduction.
This book presents and discusses the state of the art and future perspectives in mathematical modeling and homogenization techniques with the focus on addressing key physiological issues in the context of multiphase healthy and malignant biological materials. The highly interdisciplinary content brings together contributions from scientists with complementary areas of expertise, such as pure and applied mathematicians, engineers, and biophysicists. The book also features the lecture notes from a half-day introductory course on asymptotic homogenization. These notes are suitable for undergraduate mathematics or physics students, while the other chapters are aimed at graduate students and researchers.
Intersecting two large research areas - numerical analysis and applied probability/queuing theory - this book is a self-contained introduction to the numerical solution of structured Markov chains, which have a wide applicability in queuing theory and stochastic modeling and include M/G/1 and GI/M/1-type Markov chain, quasi-birth-death processes, non-skip free queues and tree-like stochastic processes. Written for applied probabilists and numerical analysts, but accessible to engineers and scientists working on telecommunications and evaluation of computer systems performances, it provides a systematic treatment of the theory and algorithms for important families of structured Markov chains and a thorough overview of the current literature. The book, consisting of nine Chapters, is presented in three parts. Part 1 covers a basic description of the fundamental concepts related to Markov chains, a systematic treatment of the structure matrix tools, including finite Toeplitz matrices, displacement operators, FFT, and the infinite block Toeplitz matrices, their relationship with matrix power series and the fundamental problems of solving matrix equations and computing canonical factorizations. Part 2 deals with the description and analysis of structure Markov chains and includes M/G/1, quasi-birth-death processes, non-skip-free queues and tree-like processes. Part 3 covers solution algorithms where new convergence and applicability results are proved. Each chapter ends with bibliographic notes for further reading, and the book ends with an appendix collecting the main general concepts and results used in the book, a list of the main annotations and algorithms used in the book, and an extensive index.
This book covers original research and the latest advances in symbolic, algebraic and geometric computation; computational methods for differential and difference equations, symbolic-numerical computation; mathematics software design and implementation; and scientific and engineering applications based on features, invited talks, special sessions and contributed papers presented at the 9th (in Fukuoka, Japan in 2009) and 10th (in Beijing China in 2012) Asian Symposium on Computer Mathematics (ASCM). Thirty selected and refereed articles in the book present the conference participants' ideas and views on researching mathematics using computers.
This book covers different, current research directions in the context of variational methods for non-linear geometric data. Each chapter is authored by leading experts in the respective discipline and provides an introduction, an overview and a description of the current state of the art. Non-linear geometric data arises in various applications in science and engineering. Examples of nonlinear data spaces are diverse and include, for instance, nonlinear spaces of matrices, spaces of curves, shapes as well as manifolds of probability measures. Applications can be found in biology, medicine, product engineering, geography and computer vision for instance. Variational methods on the other hand have evolved to being amongst the most powerful tools for applied mathematics. They involve techniques from various branches of mathematics such as statistics, modeling, optimization, numerical mathematics and analysis. The vast majority of research on variational methods, however, is focused on data in linear spaces. Variational methods for non-linear data is currently an emerging research topic. As a result, and since such methods involve various branches of mathematics, there is a plethora of different, recent approaches dealing with different aspects of variational methods for nonlinear geometric data. Research results are rather scattered and appear in journals of different mathematical communities. The main purpose of the book is to account for that by providing, for the first time, a comprehensive collection of different research directions and existing approaches in this context. It is organized in a way that leading researchers from the different fields provide an introductory overview of recent research directions in their respective discipline. As such, the book is a unique reference work for both newcomers in the field of variational methods for non-linear geometric data, as well as for established experts that aim at to exploit new research directions or collaborations. Chapter 9 of this book is available open access under a CC BY 4.0 license at link.springer.com.
The book contains a consistent and sufficiently comprehensive theory of smooth functions and maps insofar as it is connected with differential calculus. The scope of notions includes, among others, Lagrange inequality, Taylor's formula, finding absolute and relative extrema, theorems on smoothness of the inverse map and on conditions of local invertibility, implicit function theorem, dependence and independence of functions, classification of smooth functions up to diffeomorphism. The concluding chapter deals with a more specific issue of critical values of smooth mappings. In several chapters, a relatively new technical approach is used that allows the authors to clarify and simplify some of the technically difficult proofs while maintaining full integrity. Besides, the book includes complete proofs of some important results which until now have only been published in scholarly literature or scientific journals (remainder estimates of Taylor's formula in a nonconvex area (Chapter I, 8), Whitney's extension theorem for smooth function (Chapter I, 11) and some of its corollaries, global diffeomorphism theorem (Chapter II, 5), results on sets of critical values of smooth mappings and the related Whitney example (Chapter IV). The text features multiple examples illustrating the results obtained and demonstrating their accuracy. Moreover, the book contains over 150 problems and 19 illustrations. Perusal of the book equips the reader to further explore any literature basing upon multivariable calculus.
This book discusses email spam detection and its challenges such as text classification and categorization. The book proposes an efficient spam detection technique that is a combination of Character Segmentation and Recognition and Classification (CSRC). The author describes how this can detect whether an email (text and image based) is a spam mail or not. The book presents four solutions: first, to extract the text character from the image by segmentation process which includes a combination of Discrete Wavelet Transform (DWT) and skew detection. Second, text characters are via text recognition and visual feature extraction approach which relies on contour analysis with improved Local Binary Pattern (LBP). Third, extracted text features are classified using improvised K-Nearest Neighbor search (KNN) and Support Vector Machine (SVM). Fourth, the performance of the proposed method is validated by the measure of metric named as sensitivity, specificity, precision, recall, F-measure, accuracy, error rate and correct rate. Presents solutions to email spam detection and discusses its challenges such as text classification and categorization; Analyzes the proposed techniques' performance using precision, F-measure, recall and accuracy; Evaluates the limitations of the proposed research thereby recommending future research.
This book contains extended, in-depth presentations of the plenary talks from the 16th French-German-Polish Conference on Optimization, held in Krakow, Poland in 2013. Each chapter in this book exhibits a comprehensive look at new theoretical and/or application-oriented results in mathematical modeling, optimization, and optimal control. Students and researchers involved in image processing, partial differential inclusions, shape optimization, or optimal control theory and its applications to medical and rehabilitation technology, will find this book valuable. The first chapter by Martin Burger provides an overview of recent developments related to Bregman distances, which is an important tool in inverse problems and image processing. The chapter by Piotr Kalita studies the operator version of a first order in time partial differential inclusion and its time discretization. In the chapter by Gunter Leugering, Jan Sokolowski and Antoni Zochowski, nonsmooth shape optimization problems for variational inequalities are considered. The next chapter, by Katja Mombaur is devoted to applications of optimal control and inverse optimal control in the field of medical and rehabilitation technology, in particular in human movement analysis, therapy and improvement by means of medical devices. The final chapter, by Nikolai Osmolovskii and Helmut Maurer provides a survey on no-gap second order optimality conditions in the calculus of variations and optimal control, and a discussion of their further development.
This book addresses the current status, challenges and future directions of data-driven materials discovery and design. It presents the analysis and learning from data as a key theme in many science and cyber related applications. The challenging open questions as well as future directions in the application of data science to materials problems are sketched. Computational and experimental facilities today generate vast amounts of data at an unprecedented rate. The book gives guidance to discover new knowledge that enables materials innovation to address grand challenges in energy, environment and security, the clearer link needed between the data from these facilities and the theory and underlying science. The role of inference and optimization methods in distilling the data and constraining predictions using insights and results from theory is key to achieving the desired goals of real time analysis and feedback. Thus, the importance of this book lies in emphasizing that the full value of knowledge driven discovery using data can only be realized by integrating statistical and information sciences with materials science, which is increasingly dependent on high throughput and large scale computational and experimental data gathering efforts. This is especially the case as we enter a new era of big data in materials science with the planning of future experimental facilities such as the Linac Coherent Light Source at Stanford (LCLS-II), the European X-ray Free Electron Laser (EXFEL) and MaRIE (Matter Radiation in Extremes), the signature concept facility from Los Alamos National Laboratory. These facilities are expected to generate hundreds of terabytes to several petabytes of in situ spatially and temporally resolved data per sample. The questions that then arise include how we can learn from the data to accelerate the processing and analysis of reconstructed microstructure, rapidly map spatially resolved properties from high throughput data, devise diagnostics for pattern detection, and guide experiments towards desired targeted properties. The authors are an interdisciplinary group of leading experts who bring the excitement of the nascent and rapidly emerging field of materials informatics to the reader.
This volume presents easy-to-understand yet surprising properties obtained using topological, geometric and graph theoretic tools in the areas covered by the Geometry Conference that took place in Mulhouse, France from September 7-11, 2014 in honour of Tudor Zamfirescu on the occasion of his 70th anniversary. The contributions address subjects in convexity and discrete geometry, in distance geometry or with geometrical flavor in combinatorics, graph theory or non-linear analysis. Written by top experts, these papers highlight the close connections between these fields, as well as ties to other domains of geometry and their reciprocal influence. They offer an overview on recent developments in geometry and its border with discrete mathematics, and provide answers to several open questions. The volume addresses a large audience in mathematics, including researchers and graduate students interested in geometry and geometrical problems.
This book explores various intelligent algorithms including evolutionary algorithms, swarm intelligence-based algorithms for analysis and control of dynamical systems. Both single-input-single-output (SISO) and multi-input-multi-output (MIMO) systems are explored for analysis and control purposes. The applications of intelligent algorithm vary from approximation to optimal control design. The applications of intelligent algorithms not only improve understanding of a dynamical system but also enhance the control efficacy. The intelligent algorithms are now readily applied to all fields of control including linear control, nonlinear control, digital control, optimal control, etc. The book also discusses the main benefits attained due to the application of algorithms to analyze and control.
From fabrication to testing and modeling this monograph covers all aspects on the materials class of magneto active polymers. The focus is on computational modeling of manufacturing processes and material parameters. As other smart materials, these elastomers have the ability to change electrical and mechanical properties upon application of magnetic fields. This allows for novel applications ranging from biomedical engineering to mechatronics.
In the second edition of this classic monograph, complete with four new chapters and updated references, readers will now have access to content describing and analysing classical and modern methods with emphasis on the algebraic structure of linear iteration, which is usually ignored in other literature. The necessary amount of work increases dramatically with the size of systems, so one has to search for algorithms that most efficiently and accurately solve systems of, e.g., several million equations. The choice of algorithms depends on the special properties the matrices in practice have. An important class of large systems arises from the discretization of partial differential equations. In this case, the matrices are sparse (i.e., they contain mostly zeroes) and well-suited to iterative algorithms. The first edition of this book grew out of a series of lectures given by the author at the Christian-Albrecht University of Kiel to students of mathematics. The second edition includes quite novel approaches. |
![]() ![]() You may like...
Reasoning About Program Transformations…
Jean-Francois Collard
Hardcover
R1,670
Discovery Miles 16 700
Semantic Web Services
Dieter Fensel, Federico Michele Facca, …
Hardcover
R1,574
Discovery Miles 15 740
Amstrad Games Book - Cpc464 & Cpc664
Kevin Bergin, Andrew Lacey
Hardcover
R689
Discovery Miles 6 890
Minecraft: Guide to Redstone (Updated)
Mojang AB, The Official Minecraft Team
Hardcover
Architectural Intelligence - Selected…
Philip F. Yuan, Mike Xie, …
Hardcover
R4,392
Discovery Miles 43 920
|