![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Numerical analysis
The first edition (94301-3) was published in 1995 in TIMS and had 2264 regular US sales, 928 IC, and 679 bulk. This new edition updates the text to Mathematica 5.0 and offers a more extensive treatment of linear algebra. It has been thoroughly revised and corrected throughout.
This book gathers selected contributions by top Portuguese and international researchers in the field of Operations Research, presented at the 19th Congress of APDIO (Portuguese Association of Operational Research). The papers address a broad range of complex real-world problems, which are approached using recent theoretical techniques. Of particular interest are the applications of e.g. linear, nonlinear and mixed-integer programming, multiobjective optimization, metaheuristics and hybrid heuristics, multicriteria decision analysis, data envelopment analysis, clustering techniques and decision support systems, in such varied contexts as: supply chain management, scheduling problems, production management, logistics, energy, finance and healthcare. This conference, organized by APDIO and held in Aveiro, Portugal in September 2018, offered an ideal opportunity to discuss the latest developments in this field and to build new bridges between academic researchers and practitioners. Summarizing the outcomes, this book offers a valuable tool for all researchers, students and practitioners who wish to learn about the latest trends in this field.
These volumes cover all the major aspects of numerical analysis. This particular volume discusses the solution of equations in Rn, Gaussian elimination, techniques of scientific computer, the analysis of multigrid methods, wavelet methods, and finite volume methods.
The book contains recent developments and contemporary research in mathematical analysis and in its application to problems arising from the biological and physical sciences. The book is of interest to readers who wish to learn of new research in such topics as linear and nonlinear analysis, mathematical biology and ecology, dynamical systems, graph theory, variational analysis and inequalities, functional analysis, differential and difference equations, partial differential equations, approximation theory, and chaos. All papers were prepared by participants at the International Conference on Recent Advances in Mathematical Biology, Analysis and Applications (ICMBAA-2015) held during 4-6 June 2015 in Aligarh, India. A focal theme of the conference was the application of mathematics to the biological sciences and on current research in areas of theoretical mathematical analysis that can be used as sophisticated tools for the study of scientific problems. The conference provided researchers, academicians and engineers with a platform that encouraged them to exchange their innovative ideas in mathematical analysis and its applications as well as to form interdisciplinary collaborations. The content of the book is divided into three parts: Part I contains contributions from participants whose topics are related to nonlinear dynamics and its applications in biological sciences. Part II has contributions which concern topics on nonlinear analysis and its applications to a variety of problems in science, engineering and industry. Part III consists of contributions dealing with some problems in applied analysis.
The quantitative and qualitative study of the physical world makes use of many mathematical models governed by a great diversity of ordinary, partial differential, integral, and integro-differential equations. An essential step in such investigations is the solution of these types of equations, which sometimes can be performed analytically, while at other times only numerically. This edited, self-contained volume presents a series of state-of-the-art analytic and numerical methods of solution constructed for important problems arising in science and engineering, all based on the powerful operation of (exact or approximate) integration. The book, consisting of twenty seven selected chapters presented by well-known specialists in the field, is an outgrowth of the Eighth International Conference on Integral Methods in Science and Engineering, held August 2a "4, 2004, in Orlando, FL. Contributors cover a wide variety of topics, from the theoretical development of boundary integral methods to the application of integration-based analytic and numerical techniques that include integral equations, finite and boundary elements, conservation laws, hybrid approaches, and other procedures. The volume may be used as a reference guide and a practical resource. It is suitable for researchers and practitioners in applied mathematics, physics, and mechanical and electrical engineering, as well as graduate students in these disciplines.
This book focuses on various aspects of dynamic game theory, presenting state-of-the-art research and serving as a testament to the vitality and growth of the field of dynamic games and their applications. Its contributions, written by experts in their respective disciplines, are outgrowths of presentations originally given at the 14th International Symposium of Dynamic Games and Applications held in Banff. "Advances in Dynamic Games" covers a variety of topics, ranging from evolutionary games, theoretical developments in game theory and algorithmic methods to applications, examples, and analysis in fields as varied as mathematical biology, environmental management, finance and economics, engineering, guidance and control, and social interaction. Featured throughout are valuable tools and resources for researchers, practitioners, and graduate students interested in dynamic games and their applications to mathematics, engineering, economics, and management science. "
This book evolved out of a graduate course given at the University of New Orleans in 1997. The class consisted of students from applied mathematics andengineering. Theyhadthebackgroundofatleastafirstcourseincomplex analysiswithemphasisonconformalmappingandSchwarz-Christoffeltrans- formation, a firstcourse in numerical analysis, and good to excellent working knowledgeofMathematica* withadditionalknowledgeofsomeprogramming languages. Sincetheclasshad nobackground inIntegralEquations, thechap- tersinvolvingintegralequationformulations werenotcoveredindetail,except for Symm's integral equation which appealed to a subsetofstudents who had some training in boundary element methods. Mathematica was mostly used for computations. In fact, it simplified numerical integration and other oper- ations very significantly, which would have otherwise involved programming inFortran, C, orotherlanguageofchoice, ifclassical numericalmethods were attempted. Overview Exact solutions of boundary value problems for simple regions, such as cir- cles, squares or annuli, can be determined with relative ease even where the boundaryconditionsarerathercomplicated. Green'sfunctionsforsuchsimple regions are known. However, for regions with complex structure the solution ofa boundary value problem often becomes more difficult, even for a simple problemsuchastheDirichletproblem. Oneapproachtosolvingthesedifficult problems is to conformally transform a given multiply connected region onto *Mathematica is a registered trade mark of Wolfram Research, Inc. ix x PREFACE simpler canonical regions. This will, however, result in change not only in the region and the associated boundary conditions but also in the governing differential equation. As compared to the simply connected regions, confor- mal mapping ofmultiply connected regions suffers from severe limitations, one of which is the fact that equal connectivity ofregions is not a sufficient condition to effect a reciprocally connected map ofone region onto another.
Evolution equations of hyperbolic or more general p-evolution type form an active field of current research. This volume aims to collect some recent advances in the area in order to allow a quick overview of ongoing research. The contributors are first rate mathematicians. This collection of research papers is centred around parametrix constructions and microlocal analysis; asymptotic constructions of solutions; energy and dispersive estimates; and associated spectral transforms. Applications concerning elasticity and general relativity complement the volume. The book gives an overview of a variety of ongoing current research in the field and, therefore, allows researchers as well as students to grasp new aspects and broaden their understanding of the area. "
This book provides a comprehensive introduction to the theory of ordinary differential equations with a focus on mechanics and dynamical systems as important applications of the theory. The text is written to be used in the traditional way or in a more applied way. In addition to its use in a traditional one or two semester graduate course in mathematics, the book is organized to be used for interdisciplinary courses in applied mathematics, physics, and engineering.
This book presents open optimization problems in graph theory and networks. Each chapter reflects developments in theory and applications based on Gregory Gutin's fundamental contributions to advanced methods and techniques in combinatorial optimization. Researchers, students, and engineers in computer science, big data, applied mathematics, operations research, algorithm design, artificial intelligence, software engineering, data analysis, industrial and systems engineering will benefit from the state-of-the-art results presented in modern graph theory and its applications to the design of efficient algorithms for optimization problems. Topics covered in this work include: * Algorithmic aspects of problems with disjoint cycles in graphs * Graphs where maximal cliques and stable sets intersect * The maximum independent set problem with special classes * A general technique for heuristic algorithms for optimization problems * The network design problem with cut constraints * Algorithms for computing the frustration index of a signed graph * A heuristic approach for studying the patrol problem on a graph * Minimum possible sum and product of the proper connection number * Structural and algorithmic results on branchings in digraphs * Improved upper bounds for Korkel--Ghosh benchmark SPLP instances
Analysis, Control and Optimization of Complex Dynamic Systems gathers in a single volume a spectrum of complex dynamic systems related papers written by experts in their fields, and strongly representative of current research trends. Complex systems present important challenges, in great part due to their sheer size which makes it difficult to grasp their dynamic behavior, optimize their operations, or study their reliability. Yet, we live in a world where, due to increasing inter-dependencies and networking of systems, complexity has become the norm. With this in mind, the volume comprises two parts. The first part is dedicated to a spectrum of complex problems of decision and control encountered in the area of production and inventory systems. The second part is dedicated to large scale or multi-agent system problems occurring in other areas of engineering such as telecommunication and electric power networks, as well as more generic context.
This unique text/reference reviews algorithms for the exact or approximate solution of shortest-path problems, with a specific focus on a class of algorithms called rubberband algorithms. Discussing each concept and algorithm in depth, the book includes mathematical proofs for many of the given statements. Topics and features: provides theoretical and programming exercises at the end of each chapter; presents a thorough introduction to shortest paths in Euclidean geometry, and the class of algorithms called rubberband algorithms; discusses algorithms for calculating exact or approximate ESPs in the plane; examines the shortest paths on 3D surfaces, in simple polyhedrons and in cube-curves; describes the application of rubberband algorithms for solving art gallery problems, including the safari, zookeeper, watchman, and touring polygons route problems; includes lists of symbols and abbreviations, in addition to other appendices.
Since publication of the initial papers in 2006, compressed sensing has captured the imagination of the international signal processing community, and the mathematical foundations are nowadays quite well understood. Parallel to the progress in mathematics, the potential applications of compressed sensing have been explored by many international groups of, in particular, engineers and applied mathematicians, achieving very promising advances in various areas such as communication theory, imaging sciences, optics, radar technology, sensor networks, or tomography. Since many applications have reached a mature state, the research center MATHEON in Berlin focusing on "Mathematics for Key Technologies", invited leading researchers on applications of compressed sensing from mathematics, computer science, and engineering to the "MATHEON Workshop 2013: Compressed Sensing and its Applications" in December 2013. It was the first workshop specifically focusing on the applications of compressed sensing. This book features contributions by the plenary and invited speakers of this workshop. To make this book accessible for those unfamiliar with compressed sensing, the book will not only contain chapters on various applications of compressed sensing written by plenary and invited speakers, but will also provide a general introduction into compressed sensing. The book is aimed at both graduate students and researchers in the areas of applied mathematics, computer science, and engineering as well as other applied scientists interested in the potential and applications of the novel methodology of compressed sensing. For those readers who are not already familiar with compressed sensing, an introduction to the basics of this theory will be included.
The theory of complex Ginzburg-Landau type phase transition and its applica tions to superconductivity and superfluidity has been a topic of great interest to theoretical physicists and has been continuously and persistently studied since the 1950s. Today, there is an abundance of mathematical results spread over numer ous scientific journals. However, before 1992, most of the studies concentrated on formal asymptotics or linear analysis. Only isolated results by Berger, Jaffe and Taubes and some of their colleagues touched the nonlinear aspects in great detail. In 1991, a physics seminar given by Ed Copeland at Sussex University inspired Q. Tang, the co-author of this monograph, to study the subject. Independently in Munich, K.-H. Hoffmann and his collaborators Z. Chen and J. Liang started to work on the topic at the same time. Soon it became clear that at that time, groups of mathematicians at Oxford and Virginia Tech had already studied the subject for a couple of years. They inspired experts in interface phase transition problems and their combined effort established a rigorous mathematical framework for the Ginzburg-Landau system. At the beginning Q. Tang collaborated with C.M. Elliott and H. Matano."
Mathematical Visualization is a young new discipline. It offers
efficient visualization tools to the classical subjects of
mathematics, and applies mathematical techniques to problems in
computer graphics and scientific visualization. Originally, it
started in the interdisciplinary area of differential geometry,
numerical mathematics, and computer graphics. In recent years, the
methods developed have found important applications.
Any financial asset that is openly traded has a market price. Except for extreme market conditions, market price may be more or less than a fair value. Fair value is likely to be some complicated function of the current intrinsic value of tangible or intangible assets underlying the claim and our assessment of the characteristics of the underlying assets with respect to the expected rate of growth, future dividends, volatility, and other relevant market factors. Some of these factors that affect the price can be measured at the time of a transaction with reasonably high accuracy. Most factors, however, relate to expectations about the future and to subjective issues, such as current management, corporate policies and market environment, that could affect the future financial performance of the underlying assets. Models are thus needed to describe the stochastic factors and environment, and their implementations inevitably require computational finance tools.
Feller Semigroups, Bernstein type Operators and Generalized Convexity Associated with Positive Projections.- Gregory's Rational Cubic Splines in Interpolation Subject to Derivative Obstacles.- Interpolation by Splines on Triangulations Oleg Davydov.- On the Use of Quasi-Newton Methods in DAE-Codes.- On the Regularity of Some Differential Operators.- Some Inequalities for Trigonometric Polynomials and their Derivatives.- Inf-Convolution and Radial Basis Functions.- On a Special Property of the Averaged Modulus for Functions of Bounded Variation.- A Simple Approach to the Variational Theory for Interpolation on Spheres.- Constants in Comonotone Polynomial Approximation - A Survey.- Will Ramanujan kill Baker-Gammel-Wills? (A Selective Survey of Pade Approximation).- Approximation Operators of Binomial Type.- Certain Results involving Gammaoperators.- Recent research at Cambridge on radial basis functions.- Representation of quasi-interpolants as differential operators and applications.- Native Hilbert Spaces for Radial Basis Functions I.- Adaptive Approximation with Walsh-similar Functions.- Dual Recurrence and Christoffel-Darboux-Type Formulas for Orthogonal Polynomials.- On Some Problems of Weighted Polynomial Approximation and Interpolation.- Asymptotics of derivatives of orthogonal polynomials based on generalized Jacobi weights. Some new theorems and applications.- List of participants.
This volume contains original research articles, survey articles and lecture notes related to the Computations with Modular Forms 2011 Summer School and Conference, held at the University of Heidelberg. A key theme of the Conference and Summer School was the interplay between theory, algorithms and experiment. The 14 papers offer readers both, instructional courses on the latest algorithms for computing modular and automorphic forms, as well as original research articles reporting on the latest developments in the field. The three Summer School lectures provide an introduction to modern algorithms together with some theoretical background for computations of and with modular forms, including computing cohomology of arithmetic groups, algebraic automorphic forms, and overconvergent modular symbols. The 11 Conference papers cover a wide range of themes related to computations with modular forms, including lattice methods for algebraic modular forms on classical groups, a generalization of the Maeda conjecture, an efficient algorithm for special values of p-adic Rankin triple product L-functions, arithmetic aspects and experimental data of Bianchi groups, a theoretical study of the real Jacobian of modular curves, results on computing weight one modular forms, and more.
This book introduces and analyzes the multigrid approach for the numerical solution of large sparse linear systems arising from the discretization of elliptic partial differential equations. Special attention is given to the powerful matrix-based-multigrid approach, which is particularly useful for problems with variable coefficients and nonsymmetric and indefinite problems. This approach applies not only to model problems on rectangular grids but also to more realistic applications with complicated grids and domains and discontinuous coefficients. Matrix-Based Multigrid can be used as a textbook in courses in numerical analysis, numerical linear algebra, and numerical PDEs at the advanced undergraduate and graduate levels in computer science, math, and applied math departments. The theory is written in simple algebraic terms and therefore requires preliminary knowledge in basic linear algebra and calculus only. Because it is self contained and includes useful exercises, the book is also suitable for self study by research students, researchers, engineers, and others interested in the numerical solution of partial differential equations.
Mobile Intention Recognition addresses problems of practical relevance for mobile system engineers: how can we make mobile assistance systems more intelligent? How can we model and recognize patterns of human behavior which span more than a limited spatial context? This text provides an overview on plan and intention recognition, ranging from the late 1970s to very recent approaches. This overview is unique as it discusses approaches with respect to the specificities of mobile intention recognition. This book covers problems from research on mobile assistance systems using methods from artificial intelligence and natural language processing. It thus addresses an extraordinary interdisciplinary audience.
Computational Electromagnetics is a young and growing discipline, expanding as a result of the steadily increasing demand for software for the design and analysis of electrical devices. This book introduces three of the most popular numerical methods for simulating electromagnetic fields: the finite difference method, the finite element method and the method of moments. In particular it focuses on how these methods are used to obtain valid approximations to the solutions of Maxwell's equations, using, for example, "staggered grids" and "edge elements." The main goal of the book is to make the reader aware of different sources of errors in numerical computations, and also to provide the tools for assessing the accuracy of numerical methods and their solutions. To reach this goal, convergence analysis, extrapolation, von Neumann stability analysis, and dispersion analysis are introduced and used frequently throughout the book. Another major goal of the book is to provide students with enough practical understanding of the methods so they are able to write simple programs on their own. To achieve this, the book contains several MATLAB programs and detailed description of practical issues such as assembly of finite element matrices and handling of unstructured meshes. Finally, the book aims at making the students well-aware of the strengths and weaknesses of the different methods, so they can decide which method is best for each problem. In thissecond edition, extensive computer projects are added as well as new material throughout. Reviews of previous edition: "The well-written monograph is devoted to students at the undergraduate level, but is also useful for practising engineers." (Zentralblatt MATH, 2007)"
Since the early 1960s, the mathematical theory of variational inequalities has been under rapid development, based on complex analysis and strongly influenced by 'real-life' application. Many, but of course not all, moving free (Le., a priori un known) boundary problems originating from engineering and economic applica tions can directly, or after a transformation, be formulated as variational inequal ities. In this work we investigate an evolutionary variational inequality with a memory term which is, as a fixed domain formulation, the result of the application of such a transformation to a degenerate moving free boundary problem. This study includes mathematical modelling, existence, uniqueness and regularity results, numerical analysis of finite element and finite volume approximations, as well as numerical simulation results for applications in polymer processing. Essential parts of these research notes were developed during my work at the Chair of Applied Mathematics (LAM) of the Technical University Munich. I would like to express my sincerest gratitude to K. -H. Hoffmann, the head of this chair and the present scientific director of the Center of Advanced European Studies and Research (caesar), for his encouragement and support. With this work I am fol lowing a general concept of Applied Mathematics to which he directed my interest and which, based on application problems, comprises mathematical modelling, mathematical and numerical analysis, computational aspects and visualization of simulation results."
This book provides a snapshot of the state of the art of the rapidly evolving field of integration of geometric data in finite element computations. The contributions to this volume, based on research presented at the UCL workshop on the topic in January 2016, include three review papers on core topics such as fictitious domain methods for elasticity, trace finite element methods for partial differential equations defined on surfaces, and Nitsche's method for contact problems. Five chapters present original research articles on related theoretical topics, including Lagrange multiplier methods, interface problems, bulk-surface coupling, and approximation of partial differential equations on moving domains. Finally, two chapters discuss advanced applications such as crack propagation or flow in fractured poroelastic media. This is the first volume that provides a comprehensive overview of the field of unfitted finite element methods, including recent techniques such as cutFEM, traceFEM, ghost penalty, and augmented Lagrangian techniques. It is aimed at researchers in applied mathematics, scientific computing or computational engineering.
This volume contains a collection of research and survey papers written by some of the most eminent mathematicians in the international community and is dedicated to Helmut Maier, whose own research has been groundbreaking and deeply influential to the field. Specific emphasis is given to topics regarding exponential and trigonometric sums and their behavior in short intervals, anatomy of integers and cyclotomic polynomials, small gaps in sequences of sifted prime numbers, oscillation theorems for primes in arithmetic progressions, inequalities related to the distribution of primes in short intervals, the Moebius function, Euler's totient function, the Riemann zeta function and the Riemann Hypothesis. Graduate students, research mathematicians, as well as computer scientists and engineers who are interested in pure and interdisciplinary research, will find this volume a useful resource. Contributors to this volume: Bill Allombert, Levent Alpoge, Nadine Amersi, Yuri Bilu, Regis de la Breteche, Christian Elsholtz, John B. Friedlander, Kevin Ford, Daniel A. Goldston, Steven M. Gonek, Andrew Granville, Adam J. Harper, Glyn Harman, D. R. Heath-Brown, Aleksandar Ivic, Geoffrey Iyer, Jerzy Kaczorowski, Daniel M. Kane, Sergei Konyagin, Dimitris Koukoulopoulos, Michel L. Lapidus, Oleg Lazarev, Andrew H. Ledoan, Robert J. Lemke Oliver, Florian Luca, James Maynard, Steven J. Miller, Hugh L. Montgomery, Melvyn B. Nathanson, Ashkan Nikeghbali, Alberto Perelli, Amalia Pizarro-Madariaga, Janos Pintz, Paul Pollack, Carl Pomerance, Michael Th. Rassias, Maksym Radziwill, Joel Rivat, Andras Sarkoezy, Jeffrey Shallit, Terence Tao, Gerald Tenenbaum, Laszlo Toth, Tamar Ziegler, Liyang Zhang.
Orthogonal designs have proved fundamental to constructing code division multiple antenna systems for more efficient mobile communications. Starting with basic theory, this book develops the algebra and combinatorics to create new communications modes. Intended primarily for researchers, it is also useful for graduate students wanting to understand some of the current communications coding theories. |
![]() ![]() You may like...
Relativistic Nonlinear Electrodynamics…
Hamlet Karo Avetissian
Hardcover
R5,243
Discovery Miles 52 430
Handbook of Defeasible Reasoning and…
Dov M. Gabbay, Philippe Smets
Hardcover
R5,887
Discovery Miles 58 870
Inorganic Radicals, Metal Complexes and…
A.L.J. Beckwith, R.F.C. Claridge, …
Hardcover
R15,568
Discovery Miles 155 680
Handbook of Research on Multimedia…
Sumit Kumar Mahana, Rajesh Kumar Aggarwal, …
Hardcover
R6,114
Discovery Miles 61 140
|