![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Numerical analysis
Althoughsubmanifoldscomplexmanifoldshasbeenanactive?eldofstudyfor many years, in some sense this area is not su?ciently covered in the current literature. This text deals with the CR submanifolds of complex manifolds, with particular emphasis on CR submanifolds of complex projective space, and it covers the topics which are necessary for learning the basic properties of these manifolds. We are aware that it is impossible to give a complete overview of these submanifolds, but we hope that these notes can serve as an introduction to their study. We present the fundamental de?nitions and results necessary for reaching the frontiers of research in this ?eld. There are many monographs dealing with some current interesting topics in di?erential geometry, but most of these are written as encyclopedias, or research monographs, gathering recent results and giving the readers ample usefulinformationaboutthetopics. Therefore, thesekindsofmonographsare attractive to specialists in di?erential geometry and related ?elds and acce- able to professional di?erential geometers. However, for graduate students who are less advanced in di?erential geometry, these texts might be hard to read without assistance from their instructors. By contrast, the general philosophy of this book is to begin with the elementary facts about complex manifolds and their submanifolds, give some details and proofs, and introduce the reader to the study of CR submanifolds of complex manifolds; especially complex projective space. It includes only a few original results with precise proofs, while the others are cited in the reference list.
This book investigates in detail the emerging deep learning (DL) technique in computational physics, assessing its promising potential to substitute conventional numerical solvers for calculating the fields in real-time. After good training, the proposed architecture can resolve both the forward computing and the inverse retrieve problems. Pursuing a holistic perspective, the book includes the following areas. The first chapter discusses the basic DL frameworks. Then, the steady heat conduction problem is solved by the classical U-net in Chapter 2, involving both the passive and active cases. Afterwards, the sophisticated heat flux on a curved surface is reconstructed by the presented Conv-LSTM, exhibiting high accuracy and efficiency. Besides, the electromagnetic parameters of complex medium such as the permittivity and conductivity are retrieved by a cascaded framework in Chapter 4. Additionally, a physics-informed DL structure along with a nonlinear mapping module are employed to obtain the space/temperature/time-related thermal conductivity via the transient temperature in Chapter 5. Finally, in Chapter 6, a series of the latest advanced frameworks and the corresponding physics applications are introduced. As deep learning techniques are experiencing vigorous development in computational physics, more people desire related reading materials. This book is intended for graduate students, professional practitioners, and researchers who are interested in DL for computational physics.
This two-volume work introduces the theory and applications of Schur-convex functions. The first volume introduces concepts and properties of Schur-convex functions, including Schur-geometrically convex functions, Schur-harmonically convex functions, Schur-power convex functions, etc. and also discusses applications of Schur-convex functions in symmetric function inequalities.
The contributions by leading experts in this book focus on a variety of topics of current interest related to information-based complexity, ranging from function approximation, numerical integration, numerical methods for the sphere, and algorithms with random information, to Bayesian probabilistic numerical methods and numerical methods for stochastic differential equations.
This book constitutes the edited proceedings of the Advanced Studies Institute on Boundary Element Techniques in Computer Aided Engineering held at The Institute of Computational Mechanics, Ashurst Lodge, Southampton, England, from September 19 to 30, 1984. The Institute was held under the auspices of the newly launched "Double Jump Programme" which aims to bring together academics and industrial scientists. Consequently the programme was more industr ially based than other NATO ASI meetings, achieving an excellent combination of theoretical and practical aspects of the newly developed Boundary Element Method. In recent years engineers have become increasingly interested in the application of boundary element techniques for'the solution of continuum mechanics problems. The importance of boundary elements is that it combines the advantages of boundary integral equations (i.e. reduction of dimensionality of the problems, possibility of modelling domains extending to infinity, numerical accura'cy) with the versatility of finite elements (i.e. modelling of arbitrary curved surfaces). Because of this the technique has been well received by the engineering and scientific communities. Another important advantage of boundary elements stems from its reduction of dimensionality, that is that the technique requires much less data input than classical finite elements. This makes the method very well suited for Computer Aided Design and in great part explains the interest of the engineering profession in the new technique."
This volume contains contributions from the Gulf International Conference in Applied Mathematics, held at the Gulf University for Science & Technology. The proceedings reflects the three major themes of the conference. The first of these was mathematical biology, including a keynote address by Professor Philip Maini. The second theme was computational science/numerical analysis, including a keynote address by Professor Grigorii Shishkin. The conference also addressed more general applications topics, with papers in business applications, fluid mechanics, optimization, scheduling problems and engineering applications, as well as a keynote by Professor Ali Nayfeh.
This book is about the computational aspects of invariant theory. Of central interest is the question how the invariant ring of a given group action can be calculated. Algorithms for this purpose form the main pillars around which the book is built. There are two introductory chapters, one on Groebner basis methods and one on the basic concepts of invariant theory, which prepare the ground for the algorithms. Then algorithms for computing invariants of finite and reductive groups are discussed. Particular emphasis lies on interrelations between structural properties of invariant rings and computational methods. Finally, the book contains a chapter on applications of invariant theory, covering fields as disparate as graph theory, coding theory, dynamical systems, and computer vision. The book is intended for postgraduate students as well as researchers in geometry, computer algebra, and, of course, invariant theory. The text is enriched with numerous explicit examples which illustrate the theory and should be of more than passing interest. More than ten years after the first publication of the book, the second edition now provides a major update and covers many recent developments in the field. Among the roughly 100 added pages there are two appendices, authored by Vladimi r Popov, and an addendum by Norbert A'Campo and Vladimir Popov.
The main aim of this book is twofold. Firstly, it shows engineers why it is useful to deal with, for example, Hilbert spaces, imbedding theorems, weak convergence, monotone operators, compact sets, when solving real-life technical problems. Secondly, mathematicians will see the importance and necessity of dealing with material anisotropy, inhomogeneity, nonlinearity and complicated geometrical configurations of electrical devices, which are not encountered when solving academic examples with the Laplace operator on square or ball domains. Mathematical and numerical analysis of several important technical problems arising in electrical engineering are offered, such as computation of magnetic and electric field, nonlinear heat conduction and heat radiation, semiconductor equations, Maxwell equations and optimal shape design of electrical devices. The reader is assumed to be familiar with linear algebra, real analysis and basic numerical methods. Audience: This volume will be of interest to mathematicians and engineers whose work involves numerical analysis, partial differential equations, mathematical modelling and industrial mathematics, or functional analysis.
This volume presents results of the International Meshing Roundtable conference organized by Sandia National Laboratories held in September 2005. The conference is held annually and since its inception eleven years ago has become widely recognized as a major forum for the exchange of ideas in this field. The papers of this proceedings are devoted to mesh generation and adaptation which has applications to finite element simulation as well as to computational geometry and computer graphics. This book introduces theoretical and novel ideas with practical potential as well as technical applications from industrial researchers, bringing together renowned specialists from engineering, computer science and mathematics.
This book collects many of the presented papers, as plenary presentations, mini-symposia invited presentations, or contributed talks, from the European Conference on Numerical Mathematics and Advanced Applications (ENUMATH) 2017. The conference was organized by the University of Bergen, Norway from September 25 to 29, 2017. Leading experts in the field presented the latest results and ideas in the designing, implementation, and analysis of numerical algorithms as well as their applications to relevant, societal problems. ENUMATH is a series of conferences held every two years to provide a forum for discussing basic aspects and new trends in numerical mathematics and scientific and industrial applications. These discussions are upheld at the highest level of international expertise. The first ENUMATH conference was held in Paris in 1995 with successive conferences being held at various locations across Europe, including Heidelberg (1997), Jyvaskyla (1999), lschia Porto (2001), Prague (2003), Santiago de Compostela (2005), Graz (2007), Uppsala (2009), Leicester (2011), Lausanne (2013), and Ankara (2015).
In the quest to understand and model the healthy or sick human body, re searchers and medical doctors are utilizing more and more quantitative tools and techniques. This trend is pushing the envelope of a new field we call Biomedical Computing, as an exciting frontier among signal processing, pattern recognition, optimization, nonlinear dynamics, computer science and biology, chemistry and medicine. A conference on Biocomputing was held during February 25-27, 2001 at the University of Florida. The conference was sponsored by the Center for Applied Optimization, the Computational Neuroengineering Center, the Biomedical En gineering Program (through a Whitaker Foundation grant), the Brain Institute, the School of Engineering, and the University of Florida Research & Graduate Programs. The conference provided a forum for researchers to discuss and present new directions in Biocomputing. The well-attended three days event was highlighted by the presence of top researchers in the field who presented their work in Biocomputing. This volume contains a selective collection of ref ereed papers based on talks presented at this conference. You will find seminal contributions in genomics, global optimization, computational neuroscience, FMRI, brain dynamics, epileptic seizure prediction and cancer diagnostics. We would like to take the opportunity to thank the sponsors, the authors of the papers, the anonymous referees, and Kluwer Academic Publishers for making the conference successful and the publication of this volume possible. Panos M. Pardalos and Jose C."
Since their introduction in the 1980's, wavelets have become a
powerful tool in mathematical analysis, with applications such as
image compression, statistical estimation and numerical simulation
of partial differential equations. One of their main attractive
features is the ability to accurately represent fairly general
functions with a small number of adaptively chosen wavelet
coefficients, as well as to characterize the smoothness of such
functions from the numerical behaviour of these coefficients. The
theoretical pillar that underlies such properties involves
approximation theory and function spaces, and plays a pivotal role
in the analysis of wavelet-based numerical methods.
This book offers a brief introduction to the general-purpose finite element program MSC Marc, focusing on providing simple examples, often single-element problems, which can easily be related to the theory that is discussed in finite element lectures. As such, it is an ideal companion book to classical introductory courses on the finite element method. MSC Marc is a specialized program for non-linear problems (implicit solver), which is distributed by the MSC Software Corporation and commonly used in academia and industry. The documentation of all finite element programs now includes a variety of step-by-step examples of differing complexity, and all software companies offer professional workshops on different topics. Since the first edition of the book, there have been several new releases of Marc/Mentat and numerous changes. This new edition incorporates the latest Marc/Mentat software developments and new examples.
In the last decade parallel computing has been put forward as the only computational answer to the increasing computational needs arising from very large and complex fluid dynamic problems. Considerable efforts are being made to use parallel computers efficiently to solve several fluid dynamic problems originating in aerospace, climate modelling and environmental applications. Parallel CFD Conferences are international and aim to increase discussion among researchers worldwide. Topics covered in this particular book include typical CFD areas such as turbulence, Navier-Stokes and Euler solvers, reactive flows, with a good balance between both university and industrial applications. In addition, other applications making extensive use of CFD such as climate modelling and environmental applications are also included. Anyone involved in the challenging field of Parallel Computational Fluid Dynamics will find this volume useful in their daily work.
The aim of this book is to present a substantial part of matrix analysis that is functional analytic in spirit. Much of this will be of interest to graduate students and research workers in operator theory, operator algebras, mathematical physics and numerical analysis. The book can be used as a basic text for graduate courses on advanced linear algebra and matrix analysis. It can also be used as supplementary text for courses in operator theory and numerical analysis. Among topics covered are the theory of majorization, variational principles for eigenvalues, operator monotone and convex functions, perturbation of matrix functions and matrix inequalities. Much of this is presented for the first time in a unified way in a textbook. The reader will learn several powerful methods and techniques of wide applicability, and see connections with other areas of mathematics. A large selection of matrix inequalities will make this book a valuable reference for students and researchers who are working in numerical analysis, mathematical physics and operator theory.
In this text, we introduce the basic concepts for the numerical modeling of partial differential equations. We consider the classical elliptic, parabolic and hyperbolic linear equations, but also the diffusion, transport, and Navier-Stokes equations, as well as equations representing conservation laws, saddle-point problems and optimal control problems. Furthermore, we provide numerous physical examples which underline such equations. We then analyze numerical solution methods based on finite elements, finite differences, finite volumes, spectral methods and domain decomposition methods, and reduced basis methods. In particular, we discuss the algorithmic and computer implementation aspects and provide a number of easy-to-use programs. The text does not require any previous advanced mathematical knowledge of partial differential equations: the absolutely essential concepts are reported in a preliminary chapter. It is therefore suitable for students of bachelor and master courses in scientific disciplines, and recommendable to those researchers in the academic and extra-academic domain who want to approach this interesting branch of applied mathematics.
This book promotes the experimental mathematics approach in the context of secondary mathematics curriculum by exploring mathematical models depending on parameters that were typically considered advanced in the pre-digital education era. This approach, by drawing on the power of computers to perform numerical computations and graphical constructions, stimulates formal learning of mathematics through making sense of a computational experiment. It allows one (in the spirit of Freudenthal) to bridge serious mathematical content and contemporary teaching practice. In other words, the notion of teaching experiment can be extended to include a true mathematical experiment. When used appropriately, the approach creates conditions for collateral learning (in the spirit of Dewey) to occur including the development of skills important for engineering applications of mathematics. In the context of a mathematics teacher education program, thebook addresses a call for the preparation of teachers capable of utilizing modern technology tools for the modeling-based teaching of mathematics with a focus on methods conducive to the improvement of the whole STEM education at the secondary level. By the same token, using the book's pedagogy and its mathematical content in a pre-college classroom can assist teachers in introducing students to the ideas that develop the foundation of engineering profession."
Methods of signal analysis represent a broad research topic with applications in many disciplines, including engineering, technology, biomedicine, seismography, eco nometrics, and many others based upon the processing of observed variables. Even though these applications are widely different, the mathematical background be hind them is similar and includes the use of the discrete Fourier transform and z-transform for signal analysis, and both linear and non-linear methods for signal identification, modelling, prediction, segmentation, and classification. These meth ods are in many cases closely related to optimization problems, statistical methods, and artificial neural networks. This book incorporates a collection of research papers based upon selected contri butions presented at the First European Conference on Signal Analysis and Predic tion (ECSAP-97) in Prague, Czech Republic, held June 24-27, 1997 at the Strahov Monastery. Even though the Conference was intended as a European Conference, at first initiated by the European Association for Signal Processing (EURASIP), it was very gratifying that it also drew significant support from other important scientific societies, including the lEE, Signal Processing Society of IEEE, and the Acoustical Society of America. The organizing committee was pleased that the re sponse from the academic community to participate at this Conference was very large; 128 summaries written by 242 authors from 36 countries were received. In addition, the Conference qualified under the Continuing Professional Development Scheme to provide PD units for participants and contributors.
Whatdoasupernovaexplosioninouterspace, ?owaroundanairfoil and knocking in combustion engines have in common? The physical and chemical mechanisms as well as the sizes of these processes are quite di?erent. So are the motivations for studying them scienti?cally. The super- 8 nova is a thermo-nuclear explosion on a scale of 10 cm. Astrophysicists try to understand them in order to get insight into fundamental properties of the universe. In ?ows around airfoils of commercial airliners at the scale of 3 10 cm shock waves occur that in?uence the stability of the wings as well as fuel consumption in ?ight. This requires appropriate design of the shape and structure of airfoils by engineers. Knocking occurs in combustion, a chemical 1 process, and must be avoided since it damages motors. The scale is 10 cm and these processes must be optimized for e?ciency and environmental conside- tions. The common thread is that the underlying ?uid ?ows may at a certain scale of observation be described by basically the same type of hyperbolic s- tems of partial di?erential equations in divergence form, called conservation laws. Astrophysicists, engineers and mathematicians share a common interest in scienti?c progress on theory for these equations and the development of computational methods for solutions of the equations. Due to their wide applicability in modeling of continua, partial di?erential equationsareamajor?eldofresearchinmathematics. Asubstantialportionof mathematical research is related to the analysis and numerical approximation of solutions to such equations. Hyperbolic conservation laws in two or more spacedimensionsstillposeoneofthemainchallengestomodernmathematics
This is an advanced book on modular forms. While there are many books published about modular forms, they are written at an elementary level, and not so interesting from the viewpoint of a reader who already knows thebasics. This book offers something new, which may satisfy the desire of such a reader. However, we state every definition and every essential fact concerning classical modular forms of one variable. One of the principal new features of this book is the theory of modular forms of half-integral weight, another being the discussion of theta functions and Eisenstein series of holomorphic and nonholomorphic types. Thus the book is presented so that the reader can learn such theories systematically. Ultimately, we concentrate on the following two themes: (I) The correspondence between the forms of half-integral weight and those of integral weight. (II) The arithmeticity of various Dirichlet series associated with modular forms of integral or half-integral weight."
This book contains the main results of the talks given at the workshop "Recent Advances in PDEs: Analysis, Numerics and Control", which took place in Sevilla (Spain) on January 25-27, 2017. The work comprises 12 contributions given by high-level researchers in the partial differential equation (PDE) area to celebrate the 60th anniversary of Enrique Fernandez-Cara (University of Sevilla). The main topics covered here are: Control and inverse problems, Analysis of Fluid mechanics and Numerical Analysis. The work is devoted to researchers in these fields.
The proceedings represent the state of knowledge in the area of algorithmic differentiation (AD). The 31 contributed papers presented at the AD2012 conference cover the application of AD to many areas in science and engineering as well as aspects of AD theory and its implementation in tools. For all papers the referees, selected from the program committee and the greater community, as well as the editors have emphasized accessibility of the presented ideas also to non-AD experts. In the AD tools arena new implementations are introduced covering, for example, Java and graphical modeling environments or join the set of existing tools for Fortran. New developments in AD algorithms target the efficiency of matrix-operation derivatives, detection and exploitation of sparsity, partial separability, the treatment of nonsmooth functions, and other high-level mathematical aspects of the numerical computations to be differentiated. Applications stem from the Earth sciences, nuclear engineering, fluid dynamics, and chemistry, to name just a few. In many cases the applications in a given area of science or engineering share characteristics that require specific approaches to enable AD capabilities or provide an opportunity for efficiency gains in the derivative computation. The description of these characteristics and of the techniques for successfully using AD should make the proceedings a valuable source of information for users of AD tools.
The ADI Model Problem presents the theoretical foundations of Alternating Direction Implicit (ADI) iteration for systems with both real and complex spectra and extends early work for real spectra into the complex plane with methods for computing optimum iteration parameters for both one and two variable problems. This book provides application of theory to the solution of boundary value problems and description of stable similarity reduction of a full matrix to low-band upper Hessenberg form, with application to computation of eigenvalues and solution of Lyapunov and Sylvester equations. Also included are MATLAB programs and numerical verification of theory and applications. |
You may like...
Domain Decomposition Methods in Science…
Jocelyne Erhel, Martin J. Gander, …
Hardcover
R5,340
Discovery Miles 53 400
The Finite Element Method: Theory…
Mats G. Larson, Fredrik Bengzon
Hardcover
R2,487
Discovery Miles 24 870
Approximation Algorithms for Complex…
Emmanuil H Georgoulis, Armin Iske, …
Hardcover
R4,044
Discovery Miles 40 440
MARINE 2011, IV International Conference…
Luis Eca, Eugenio Onate, …
Hardcover
R3,432
Discovery Miles 34 320
Nonlinear Behaviour and Stability of…
Natalia I. Obodan, Olexandr G Lebedeyev, …
Hardcover
Model Reduction of Parametrized Systems
Peter Benner, Mario Ohlberger, …
Hardcover
R4,602
Discovery Miles 46 020
Recent Developments in the Numerics of…
Rainer Ansorge, Hester Bijl, …
Hardcover
R5,185
Discovery Miles 51 850
Innovative Algorithms and Analysis
Laurent Gosse, Roberto Natalini
Hardcover
R3,802
Discovery Miles 38 020
|