Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Numerical analysis
This open access book gives an overview of cutting-edge work on a new paradigm called the "sublinear computation paradigm," which was proposed in the large multiyear academic research project "Foundations of Innovative Algorithms for Big Data." That project ran from October 2014 to March 2020, in Japan. To handle the unprecedented explosion of big data sets in research, industry, and other areas of society, there is an urgent need to develop novel methods and approaches for big data analysis. To meet this need, innovative changes in algorithm theory for big data are being pursued. For example, polynomial-time algorithms have thus far been regarded as "fast," but if a quadratic-time algorithm is applied to a petabyte-scale or larger big data set, problems are encountered in terms of computational resources or running time. To deal with this critical computational and algorithmic bottleneck, linear, sublinear, and constant time algorithms are required.The sublinear computation paradigm is proposed here in order to support innovation in the big data era. A foundation of innovative algorithms has been created by developing computational procedures, data structures, and modelling techniques for big data. The project is organized into three teams that focus on sublinear algorithms, sublinear data structures, and sublinear modelling. The work has provided high-level academic research results of strong computational and algorithmic interest, which are presented in this book. The book consists of five parts: Part I, which consists of a single chapter on the concept of the sublinear computation paradigm; Parts II, III, and IV review results on sublinear algorithms, sublinear data structures, and sublinear modelling, respectively; Part V presents application results. The information presented here will inspire the researchers who work in the field of modern algorithms.
Presents a systematic study of the common zeros of polynomials in several variables which are related to higher dimensional quadrature. The author uses a new approach which is based on the recent development of orthogonal polynomials in several variables and differs significantly from the previous ones based on algebraic ideal theory. Featuring a great deal of new work, new theorems and, in many cases, new proofs, this self-contained work will be of great interest to researchers in numerical analysis, the theory of orthogonal polynomials and related subjects.
This book is devoted to the numerical analysis of compressible fluids in the spirit of the celebrated Lax equivalence theorem. The text is aimed at graduate students in mathematics and fluid dynamics, researchers in applied mathematics, numerical analysis and scientific computing, and engineers and physicists. The book contains original theoretical material based on a new approach to generalized solutions (dissipative or measure-valued solutions). The concept of a weak-strong uniqueness principle in the class of generalized solutions is used to prove the convergence of various numerical methods. The problem of oscillatory solutions is solved by an original adaptation of the method of K-convergence. An effective method of computing the Young measures is presented. Theoretical results are illustrated by a series of numerical experiments. Applications of these concepts are to be expected in other problems of fluid mechanics and related fields.
This book discusses numerical methods for solving time-fractional evolution equations. The approach is based on first discretizing in the spatial variables by the Galerkin finite element method, using piecewise linear trial functions, and then applying suitable time stepping schemes, of the type either convolution quadrature or finite difference. The main concern is on stability and error analysis of approximate solutions, efficient implementation and qualitative properties, under various regularity assumptions on the problem data, using tools from semigroup theory and Laplace transform. The book provides a comprehensive survey on the present ideas and methods of analysis, and it covers most important topics in this active area of research. It is recommended for graduate students and researchers in applied and computational mathematics, particularly numerical analysis.
This book is about adaptive mesh generation and moving mesh methods for the numerical solution of time-dependent partial differential equations. It presents a general framework and theory for adaptive mesh generation and gives a comprehensive treatment of moving mesh methods and their basic components, along with their application for a number of nontrivial physical problems. Many explicit examples with computed figures illustrate the various methods and the effects of parameter choices for those methods. Graduate students, researchers and practitioners working in this area will benefit from this book. "
In a world with highly competitive markets and economic instability due to capitalization, industrial competition has increasingly intensified. In order for many industries to survive and succeed, they need to develop highly effective coordination between supply chain partners, dynamic collaborative and strategic alliance relationships, and efficient logistics and supply chain network designs. Consequently, in the past decade, there has been an explosion of interest among academic researchers and industrial practitioners in innovative supply chain and logistics models, algorithms, and coordination policies. Mathematically distinct from classical supply chain management, this emerging research area has been proven to be useful and applicable to a wide variety of industries. This book brings together recent advances in supply chain and logistics research and computational optimization that apply to a collaborative environment in the enterprise.
This book addresses and disseminates state-of-the-art research and development of differential evolution (DE) and its recent advances, such as the development of adaptive, self-adaptive and hybrid techniques. Differential evolution is a population-based meta-heuristic technique for global optimization capable of handling non-differentiable, non-linear and multi-modal objective functions. Many advances have been made recently in differential evolution, from theory to applications. This book comprises contributions which include theoretical developments in DE, performance comparisons of DE, hybrid DE approaches, parallel and distributed DE for multi-objective optimization, software implementations, and real-world applications. The book is useful for researchers, practitioners, and students in disciplines such as optimization, heuristics, operations research and natural computing.
In the last decades, algorithmic advances as well as hardware and software improvements have provided an excellent environment to create and develop solving methods to hard optimization problems. Modern exact and heuristic techniques are dramatically enhancing our ability to solve significant practical problems. This monograph sets out state-of-the-art methodologies for solving combinatorial optimization problems, illustrating them with two well-known problems. This second edition of the book extends the first one by adding to the 'linear ordering problem' (LOP), included in the first edition, the 'maximum diversity problem' (MDP). In this way, we provide the reader with the background, elements and strategies to tackle a wide range of different combinatorial optimization problems. The exact and heuristic techniques outlined in these pages can be put to use in any number of combinatorial optimization problems. While the authors employ the LOP and the MDP to illustrate cutting-edge optimization technologies, the book is also a tutorial on how to design effective and successful implementations of exact and heuristic procedures alike. This monograph provides the basic principles and fundamental ideas that will enable students and practitioners to create valuable applications based on both exact and heuristic technologies. Specifically, it is aimed at engineers, scientists, operations researchers, and other applications specialists who are looking for the most appropriate and recent optimization tools to solve particular problems. The book provides a broad spectrum of advances in search strategies with a focus on its algorithmic and computational aspects.
This book contains detailed lecture notes on four topics at the forefront of current research in computational mathematics. Each set of notes presents a self-contained guide to a current research area and has an extensive bibliography. In addition, most of the notes contain detailed proofs of the key results. The notes start from a level suitable for first year graduate students in applied mathematics, mathematical analysis or numerical analysis, and proceed to current research topics. The reader should therefore be able to gain quickly an insight into the important results and techniques in each area without recourse to the large research literature. Current (unsolved) problems are also described and directions for future research are given. This book is also suitable for professional mathematicians who require a succint and accurate account of recent research in areas parallel to their own, and graduates in mathematical sciences.
This book includes selected contributions on applied mathematics, numerical analysis, numerical simulation and scientific computing related to fluid mechanics problems, presented at the FEF-"Finite Element for Flows" conference, held in Rome in spring 2017. Written by leading international experts and covering state-of-the-art topics in numerical simulation for flows, it provides fascinating insights into and perspectives on current and future methodological and numerical developments in computational science. As such, the book is a valuable resource for researchers, as well as Masters and Ph.D students.
The classical circle method of Hardy and Littlewood is one of the most effective methods of additive number theory. Two examples are its success with Waring's problem and Goldbach's conjecture. In this book, Wang offers instances of generalizations of important results on diophantine equations and inequalities over rational fields to algebraic number fields. The book also contains an account of Siegel's generalized circle method and its applications to Waring's problem and additive equations and an account of Schmidt's method on diophantine equations and inequalities in several variables in algebraic number fields.
In this popular text for an Numerical Analysis course, the authors introduce several major methods of solving various partial differential equations (PDEs) including elliptic, parabolic, and hyperbolic equations. It covers traditional techniques including the classic finite difference method, finite element method, and state-of-the-art numercial methods.The text uniquely emphasizes both theoretical numerical analysis and practical implementation of the algorithms in MATLAB. This new edition includes a new chapter, Finite Value Method, the presentation has been tightened, new exercises and applications are included, and the text refers now to the latest release of MATLAB. Key Selling Points: A successful textbook for an undergraduate text on numerical analysis or methods taught in mathematics and computer engineering. This course is taught in every university throughout the world with an engineering department or school. Competitive advantage broader numerical methods (including finite difference, finite element, meshless method, and finite volume method), provides the MATLAB source code for most popular PDEs with detailed explanation about the implementation and theoretical analysis. No other existing textbook in the market offers a good combination of theoretical depth and practical source codes.
This book concerns the practical solution of Partial Differential Equations (PDEs). It reflects an interdisciplinary approach to problems occurring in natural environmental media: the hydrosphere, atmosphere, cryosphere, lithosphere, biosphere and ionosphere. It assumes the reader has gained some intuitive knowledge of PDE solution properties and now wants to solve some for real, in the context of practical problems arising in real situations. The practical aspect of this book is the infused focus on computation. It presents two major discretization methods a " Finite Difference and Finite Element. The blend of theory, analysis, and implementation practicality supports solving and understanding complicated problems. It is divided into three parts. Part I is an overview of Finite Difference Methods. Part II focuses on Finite Element Methods, including an FEM tutorial. Part III deals with Inverse Methods, introducing formal approaches to practical problems which are ill-posed.
This is the third corrected and extended edition of a book on deterministic and stochastic Growth Theory and the computational methods needed to produce numerical solutions. Exogenous and endogenous growth, non-monetary and monetary models are thoroughly reviewed. Special attention is paid to the use of these models for fiscal and monetary policy analysis. Models under modern theories of the Business Cycle, New Keynesian Macroeconomics, and Dynamic Stochastic General Equilibrium models, can be all considered as special cases of economic growth models, and they can be analyzed by the theoretical and numerical procedures provided in the textbook. Analytical discussions are presented in full detail. The book is self-contained and it is designed so that the student advances in the theoretical and the computational issues in parallel. Spreadsheets are used to solve simple examples. Matlab files are provided on an accompanying website to illustrate theoretical results from all chapters as well as to simulate the effects of economic policy interventions. The logical structure of these program files is described in "Numerical exercise"-type of sections, where the output of these programs is also interpreted. The third edition corrects a few typographical errors, includes two new and original chapters on frequentist and Bayesian estimation, and improves some notation.
This book presents theories and the main useful techniques of the Finite Element Method (FEM), with an introduction to FEM and many case studies of its use in engineering practice. It supports engineers and students to solve primarily linear problems in mechanical engineering, with a main focus on static and dynamic structural problems. Readers of this text are encouraged to discover the proper relationship between theory and practice, within the finite element method: Practice without theory is blind, but theory without practice is sterile. Beginning with elasticity basic concepts and the classical theories of stressed materials, the work goes on to apply the relationship between forces, displacements, stresses and strains on the process of modeling, simulating and designing engineered technical systems. Chapters discuss the finite element equations for static, eigenvalue analysis, as well as transient analyses. Students and practitioners using commercial FEM software will find this book very helpful. It uses straightforward examples to demonstrate a complete and detailed finite element procedure, emphasizing the differences between exact and numerical procedures.
This two-volume work presents a systematic theoretical and computational study of several types of generalizations of separable matrices. The main attention is paid to fast algorithms (many of linear complexity) for matrices in semiseparable, quasiseparable, band and companion form. The work is focused on algorithms of multiplication, inversion and description of eigenstructure and includes a large number of illustrative examples throughout the different chapters. The second volume, consisting of four parts, addresses the eigenvalue problem for matrices with quasiseparable structure and applications to the polynomial root finding problem. In the first part the properties of the characteristic polynomials of principal leading submatrices, the structure of eigenspaces and the basic methods to compute eigenvalues are studied in detail for matrices with quasiseparable representation of the first order. The second part is devoted to the divide and conquer method, with the main algorithms being derived also for matrices with quasiseparable representation of order one. The QR iteration method for some classes of matrices with quasiseparable of any order representations is studied in the third part. This method is then used in the last part in order to get a fast solver for the polynomial root finding problem. The work is based mostly on results obtained by the authors and their coauthors. Due to its many significant applications and the accessible style the text will be useful to engineers, scientists, numerical analysts, computer scientists and mathematicians alike.
This well-written book explains the theory of spectral methods and their application to the computation of viscous incompressible fluid flows in clear and elementary terms. It begins with an introduction to the fundamentals of spectral methods and then moves on to cover, in particular, the Fourier and Chebyshev methods. Examples are included. Chapters 6 and 7 handle streamfunction-vorticity and velocity-pressure fomulations of the Navier-Stokes equations. Chapter 8 and 9 address special topics such as self- adaptive coordinate transform, treatment of singularities, and domain decomposition. The work will be useful to those teaching in the field at the graduate level, as well as to researchers working in the area.
This volume gives an up-to-date review of the subject Integration in Finite Terms. The book collects four significant texts together with an extensive bibliography and commentaries discussing these works and their impact. These texts, either out of print or never published before, are fundamental to the subject of the book. Applications in combinatorics and physics have aroused a renewed interest in this well-developed area devoted to finding solutions of differential equations and, in particular, antiderivatives, expressible in terms of classes of elementary and special functions.
This monograph explores applications of Carleman estimates in the study of stabilization and controllability properties of partial differential equations, including quantified unique continuation, logarithmic stabilization of the wave equation, and null-controllability of the heat equation. Where the first volume derived these estimates in regular open sets in Euclidean space and Dirichlet boundary conditions, here they are extended to Riemannian manifolds and more general boundary conditions. The book begins with the study of Lopatinskii-Sapiro boundary conditions for the Laplace-Beltrami operator, followed by derivation of Carleman estimates for this operator on Riemannian manifolds. Applications of Carleman estimates are explored next: quantified unique continuation issues, a proof of the logarithmic stabilization of the boundary-damped wave equation, and a spectral inequality with general boundary conditions to derive the null-controllability result for the heat equation. Two additional chapters consider some more advanced results on Carleman estimates. The final part of the book is devoted to exposition of some necessary background material: elements of differential and Riemannian geometry, and Sobolev spaces and Laplace problems on Riemannian manifolds.
In this book we gather recent mathematical developments and engineering applications of Trefftz methods, with particular emphasis on the Method of Fundamental Solutions (MFS). These are true meshless methods that have the advantage of avoiding the need to set up a mesh altogether, and therefore going beyond the reduction of the mesh to a boundary. These Trefftz methods have advantages in several engineering applications, for instance in inverse problems where the domain is unknown and some numerical methods would require a remeshing approach. Trefftz methods are also known to perform very well with regular domains and regular data in boundary value problems, achieving exponential convergence. On the other hand, they may also under certain conditions, exhibit instabilities and lead to ill-conditioned systems. This book is divided into ten chapters that illustrate recent advances in Trefftz methods and their application to engineering problems. The first eight chapters are devoted to the MFS and variants whereas the last two chapters are devoted to related meshless engineering applications. Part of these selected contributions were presented in the 9th International Conference on Trefftz Methods and 5th International Conference on the MFS, held in 2019, July 29-31, in Lisbon, Portugal.
The focus of this book is on establishing theories and methods of both decision and game analysis in management using intuitionistic fuzzy sets. It proposes a series of innovative theories, models and methods such as the representation theorem and extension principle of intuitionistic fuzzy sets, ranking methods of intuitionistic fuzzy numbers, non-linear and linear programming methods for intuitionistic fuzzy multi-attribute decision making and (interval-valued) intuitionistic fuzzy matrix games. These theories and methods form the theory system of intuitionistic fuzzy decision making and games, which is not only remarkably different from those of the traditional, Bayes and/or fuzzy decision theory but can also provide an effective and efficient tool for solving complex management problems. Since there is a certain degree of inherent hesitancy in real-life management, which cannot always be described by the traditional mathematical methods and/or fuzzy set theory, this book offers an effective approach to using the intuitionistic fuzzy set expressed with membership and non-membership functions. This book is addressed to all those involved in theoretical research and practical applications from a variety of fields/disciplines: decision science, game theory, management science, fuzzy sets, operational research, applied mathematics, systems engineering, industrial engineering, economics, etc.
Formal methods is a field of computer science that emphasizes the use of rigorous mathematical techniques for verification and design of hardware and software systems. Analysis and design of nonlinear control design plays an important role across many disciplines of engineering and applied sciences, ranging from the control of an aircraft engine to the design of genetic circuits in synthetic biology. While linear control is a well-established subject, analysis and design of nonlinear control systems remains a challenging topic due to some of the fundamental difficulties caused by nonlinearity. Formal Methods for Control of Nonlinear Systems provides a unified computational approach to analysis and design of nonlinear systems. Features Constructive approach to nonlinear control. Rigorous specifications and validated computation. Suitable for graduate students and researchers who are interested in learning how formal methods and validated computation can be combined together to tackle nonlinear control problems with complex specifications from an algorithmic perspective. Combines mathematical rigor with practical applications.
Combining theoretical and practical aspects of topology, this book provides a comprehensive and self-contained introduction to topological methods for the analysis and visualization of scientific data. Theoretical concepts are presented in a painstaking but intuitive manner, with numerous high-quality color illustrations. Key algorithms for the computation and simplification of topological data representations are described in detail, and their application is carefully demonstrated in a chapter dedicated to concrete use cases. With its fine balance between theory and practice, "Topological Data Analysis for Scientific Visualization" constitutes an appealing introduction to the increasingly important topic of topological data analysis for lecturers, students and researchers.
This book extends the conventional two-dimensional (2D) magnet arrangement into 3D pattern for permanent magnet linear machines for the first time, and proposes a novel dual Halbach array. It can not only effectively increase the radial component of magnetic flux density and output force of tubular linear machines, but also significantly reduce the axial flux density, radial force and thus system vibrations and noises. The book is also the first to address the fundamentals and provide a summary of conventional arrays, as well as novel concepts for PM pole design in electric linear machines. It covers theoretical study, numerical simulation, design optimization and experimental works systematically. The design concept and analytical approaches can be implemented to other linear and rotary machines with similar structures. The book will be of interest to academics, researchers, R&D engineers and graduate students in electronic engineering and mechanical engineering who wish to learn the core principles, methods, and applications of linear and rotary machines.
This "Selecta" contains approximately two thirds of the papers my father wrote from 1932 to 1994. These papers are divided into four fields. The first volume contains the papers on 1) Summability and Number Theory and 2) Interpolation. The second volume contains the fields 3) Real and Functional Analysis and 4) Approximation Theory. Each of these four groups of papers is introduced by a review of the contents and significance, respectively of the impact of these papers. The first volume contains, in addition, an autobiography, a complete list of publications, a list of doctoral students and four unpublished essays on mathematics in general: a) A report on the University of Leningrad b) On the work of the mathematical mind c) Proofs in Mathematics d) About Mathematical books. The report on the University of Leningrad, written in the late '40's, is a unique historical document which is still of current interest for several reasons. It is of interest for professional reasons since it contains a com plete description of a mathematics majors' curriculum through his entire course of studies. From it one can see both the changes and invariants of course material as well as the students' course load. Then one can also see the consequences of admittedly extreme political intervention in uni versity affairs. Today we use the term "politically correct," but in those times being politically correct was a matter of life and death. Finally, this is a tragedy of human beings caught in the siege of Leningrad." |
You may like...
Nonlinear Functional Analysis and…
Jesus Garcia-Falset, Khalid Latrach
Hardcover
R4,936
Discovery Miles 49 360
Evolutionary Data Clustering: Algorithms…
Ibrahim Aljarah, Hossam Faris, …
Hardcover
R4,905
Discovery Miles 49 050
Nature-Inspired Computing for Smart…
Santosh Kumar Das, Thanh-Phong Dao, …
Hardcover
R2,823
Discovery Miles 28 230
Frontiers in Molecular Design and…
Rachelle J. Bienstock, Veerabahu Shanmugasundaram, …
Hardcover
R4,794
Discovery Miles 47 940
Numerical Geometry, Grid Generation and…
Vladimir A. Garanzha, Lennard Kamenski, …
Hardcover
R6,220
Discovery Miles 62 200
Numerical Simulation of Incompressible…
Roland Glowinski, Tsorng-Whay Pan
Hardcover
R4,614
Discovery Miles 46 140
Computational and Experimental…
Satya N Atluri, Igor Vusanovic
Hardcover
R4,263
Discovery Miles 42 630
|