![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Numerical analysis
The book provides an introduction of very recent results about the tensors and mainly focuses on the authors' work and perspective. A systematic description about how to extend the numerical linear algebra to the numerical multi-linear algebra is also delivered in this book. The authors design the neural network model for the computation of the rank-one approximation of real tensors, a normalization algorithm to convert some nonnegative tensors to plane stochastic tensors and a probabilistic algorithm for locating a positive diagonal in a nonnegative tensors, adaptive randomized algorithms for computing the approximate tensor decompositions, and the QR type method for computing U-eigenpairs of complex tensors. This book could be used for the Graduate course, such as Introduction to Tensor. Researchers may also find it helpful as a reference in tensor research.
Analysis at Large is dedicated to Jean Bourgain whose research has deeply influenced the mathematics discipline, particularly in analysis and its interconnections with other fields. In this volume, the contributions made by renowned experts present both research and surveys on a wide spectrum of subjects, each of which pay tribute to a true mathematical pioneer. Examples of topics discussed in this book include Bourgain's discretized sum-product theorem, his work in nonlinear dispersive equations, the slicing problem by Bourgain, harmonious sets, the joint spectral radius, equidistribution of affine random walks, Cartan covers and doubling Bernstein type inequalities, a weighted Prekopa-Leindler inequality and sumsets with quasicubes, the fractal uncertainty principle for the Walsh-Fourier transform, the continuous formulation of shallow neural networks as Wasserstein-type gradient flows, logarithmic quantum dynamical bounds for arithmetically defined ergodic Schroedinger operators, polynomial equations in subgroups, trace sets of restricted continued fraction semigroups, exponential sums, twisted multiplicativity and moments, the ternary Goldbach problem, as well as the multiplicative group generated by two primes in Z/QZ. It is hoped that this volume will inspire further research in the areas of analysis treated in this book and also provide direction and guidance for upcoming developments in this essential subject of mathematics.
This volume collects longer articles on the analysis and numerics of Maxwell's equations. The topics include functional analytic and Hilbert space methods, compact embeddings, solution theories and asymptotics, electromagnetostatics, time-harmonic Maxwell's equations, time-dependent Maxwell's equations, eddy current approximations, scattering and radiation problems, inverse problems, finite element methods, boundary element methods, and isogeometric analysis.
For courses in Finite Element Analysis, offered in departments of Mechanical or Civil and Environmental Engineering. While many good textbooks cover the theory of finite element modeling, Finite Element Analysis: Theory and Application with ANSYS is the only text available that incorporates ANSYS as an integral part of its content. Moaveni presents the theory of finite element analysis, explores its application as a design/modeling tool, and explains in detail how to use ANSYS intelligently and effectively. Teaching and Learning Experience This program will provide a better teaching and learning experience-for you and your students. It will help: *Present the Theory of Finite Element Analysis: The presentation of theoretical aspects of finite element analysis is carefully designed not to overwhelm students. *Explain How to Use ANSYS Effectively: ANSYS is incorporated as an integral part of the content throughout the book. *Explore How to Use FEA as a Design/Modeling Tool: Open-ended design problems help students apply concepts.
This volume collects papers associated with lectures that were presented at the BAIL 2016 conference, which was held from 14 to 19 August 2016 at Beijing Computational Science Research Center and Tsinghua University in Beijing, China. It showcases the variety and quality of current research into numerical and asymptotic methods for theoretical and practical problems whose solutions involve layer phenomena. The BAIL (Boundary And Interior Layers) conferences, held usually in even-numbered years, bring together mathematicians and engineers/physicists whose research involves layer phenomena, with the aim of promoting interaction between these often-separate disciplines. These layers appear as solutions of singularly perturbed differential equations of various types, and are common in physical problems, most notably in fluid dynamics. This book is of interest for current researchers from mathematics, engineering and physics whose work involves the accurate app roximation of solutions of singularly perturbed differential equations; that is, problems whose solutions exhibit boundary and/or interior layers.
These are the proceedings of the 25th International Conference on Domain Decomposition Methods in Science and Engineering, which was held in St. John's, Newfoundland, Canada in July 2018. Domain decomposition methods are iterative methods for solving the often very large systems of equations that arise when engineering problems are discretized, frequently using finite elements or other modern techniques. These methods are specifically designed to make effective use of massively parallel, high-performance computing systems. The book presents both theoretical and computational advances in this domain, reflecting the state of art in 2018.
This book aims to give an encyclopedic overview of the state-of-the-art of Krylov subspace iterative methods for solving nonsymmetric systems of algebraic linear equations and to study their mathematical properties. Solving systems of algebraic linear equations is among the most frequent problems in scientific computing; it is used in many disciplines such as physics, engineering, chemistry, biology, and several others. Krylov methods have progressively emerged as the iterative methods with the highest efficiency while being very robust for solving large linear systems; they may be expected to remain so, independent of progress in modern computer-related fields such as parallel and high performance computing. The mathematical properties of the methods are described and analyzed along with their behavior in finite precision arithmetic. A number of numerical examples demonstrate the properties and the behavior of the described methods. Also considered are the methods' implementations and coding as Matlab (R)-like functions. Methods which became popular recently are considered in the general framework of Q-OR (quasi-orthogonal )/Q-MR (quasi-minimum) residual methods. This book can be useful for both practitioners and for readers who are more interested in theory. Together with a review of the state-of-the-art, it presents a number of recent theoretical results of the authors, some of them unpublished, as well as a few original algorithms. Some of the derived formulas might be useful for the design of possible new methods or for future analysis. For the more applied user, the book gives an up-to-date overview of the majority of the available Krylov methods for nonsymmetric linear systems, including well-known convergence properties and, as we said above, template codes that can serve as the base for more individualized and elaborate implementations.
This book provides an overview of the experimental characterization of materials and their numerical modeling, as well as the development of new computational methods for virtual design. Its 17 contributions are divided into four main sections: experiments and virtual design, composites, fractures and fatigue, and uncertainty quantification. The first section explores new experimental methods that can be used to more accurately characterize material behavior. Furthermore, it presents a combined experimental and numerical approach to optimizing the properties of a structure, as well as new developments in the field of computational methods for virtual design. In turn, the second section is dedicated to experimental and numerical investigations of composites, with a special focus on the modeling of failure modes and the optimization of these materials. Since fatigue also includes wear due to frictional contact and aging of elastomers, new numerical schemes in the field of crack modeling and fatigue prediction are also discussed. The input parameters of a classical numerical simulation represent mean values of actual observations, though certain deviations arise: to illustrate the uncertainties of parameters used in calculations, the book's final section presents new and efficient approaches to uncertainty quantification.
This monograph is devoted to the theory and approximation by finite volume methods of nonlinear hyperbolic systems of conservation laws in one or two space variables. It follows directly a previous publication on hyperbolic systems of conservation laws by the same authors. Since the earlier work concentrated on the mathematical theory of multidimensional scalar conservation laws, this book will focus on systems and the theoretical aspects which are needed in the applications, such as the solution of the Riemann problem and further insights into more sophisticated problems, with special attention to the system of gas dynamics. This new edition includes more examples such as MHD and shallow water, with an insight on multiphase flows. Additionally, the text includes source terms and well-balanced/asymptotic preserving schemes, introducing relaxation schemes and addressing problems related to resonance and discontinuous fluxes while adding details on the low Mach number situation.
This book presents a panorama about the recent progress of industrial mathematics from the point of view of both industrials and researchers. The chapters correspond to a selection of the contributions presented in the "Industry Day" and in the Minisymposium "EU - MATHS - IN: Success Stories of Applications of Mathematics to Industry" organized in the framework of the International Conference ICIAM 2019 held in Valencia (Spain) on July 15-19, 2019. In the Industry Day, included for the first time in this series of Conferences, representatives of companies from different countries and several sectors presented their view about the benefits regarding the usage of mathematical tools and/or collaboration with mathematicians. The contributions of this special session were addressed to industry people. Minisymposium contributions detailed some collaborations between mathematicians and industrials that led to real benefits in several European companies. All the speakers were affiliated in some of the European National Networks that constitute the European Service Network of Mathematics for Industry and Innovation (EU-MATHS-IN).
Domain decomposition methods are well suited to design algorithms for parallel computers. These allow researchers to tackle large-scale mathematical problems in aerodynamics and other areas of science and engineering. This book discusses the principles of the method in connection with a wide variety of both theoretical and practical problems.
This book contains extended, in-depth presentations of the plenary talks from the 16th French-German-Polish Conference on Optimization, held in Krakow, Poland in 2013. Each chapter in this book exhibits a comprehensive look at new theoretical and/or application-oriented results in mathematical modeling, optimization, and optimal control. Students and researchers involved in image processing, partial differential inclusions, shape optimization, or optimal control theory and its applications to medical and rehabilitation technology, will find this book valuable. The first chapter by Martin Burger provides an overview of recent developments related to Bregman distances, which is an important tool in inverse problems and image processing. The chapter by Piotr Kalita studies the operator version of a first order in time partial differential inclusion and its time discretization. In the chapter by Gunter Leugering, Jan Sokolowski and Antoni Zochowski, nonsmooth shape optimization problems for variational inequalities are considered. The next chapter, by Katja Mombaur is devoted to applications of optimal control and inverse optimal control in the field of medical and rehabilitation technology, in particular in human movement analysis, therapy and improvement by means of medical devices. The final chapter, by Nikolai Osmolovskii and Helmut Maurer provides a survey on no-gap second order optimality conditions in the calculus of variations and optimal control, and a discussion of their further development.
Special numerical techniques are already needed to deal with n x n matrices for large n. Tensor data are of size n x n x...x n=nd, where nd exceeds the computer memory by far. They appear for problems of high spatial dimensions. Since standard methods fail, a particular tensor calculus is needed to treat such problems. This monograph describes the methods by which tensors can be practically treated and shows how numerical operations can be performed. Applications include problems from quantum chemistry, approximation of multivariate functions, solution of partial differential equations, for example with stochastic coefficients, and more. In addition to containing corrections of the unavoidable misprints, this revised second edition includes new parts ranging from single additional statements to new subchapters. The book is mainly addressed to numerical mathematicians and researchers working with high-dimensional data. It also touches problems related to Geometric Algebra.
This book addresses the current status, challenges and future directions of data-driven materials discovery and design. It presents the analysis and learning from data as a key theme in many science and cyber related applications. The challenging open questions as well as future directions in the application of data science to materials problems are sketched. Computational and experimental facilities today generate vast amounts of data at an unprecedented rate. The book gives guidance to discover new knowledge that enables materials innovation to address grand challenges in energy, environment and security, the clearer link needed between the data from these facilities and the theory and underlying science. The role of inference and optimization methods in distilling the data and constraining predictions using insights and results from theory is key to achieving the desired goals of real time analysis and feedback. Thus, the importance of this book lies in emphasizing that the full value of knowledge driven discovery using data can only be realized by integrating statistical and information sciences with materials science, which is increasingly dependent on high throughput and large scale computational and experimental data gathering efforts. This is especially the case as we enter a new era of big data in materials science with the planning of future experimental facilities such as the Linac Coherent Light Source at Stanford (LCLS-II), the European X-ray Free Electron Laser (EXFEL) and MaRIE (Matter Radiation in Extremes), the signature concept facility from Los Alamos National Laboratory. These facilities are expected to generate hundreds of terabytes to several petabytes of in situ spatially and temporally resolved data per sample. The questions that then arise include how we can learn from the data to accelerate the processing and analysis of reconstructed microstructure, rapidly map spatially resolved properties from high throughput data, devise diagnostics for pattern detection, and guide experiments towards desired targeted properties. The authors are an interdisciplinary group of leading experts who bring the excitement of the nascent and rapidly emerging field of materials informatics to the reader.
This book results from the XVIII Spanish-French School 'Jacques Louis Lions' on Numerical Simulation in Physics and Engineering, that took place in Las Palmas de Gran Canaria from 25th to 29th June 2018. These conferences are held biennially since 1984 and sponsored by the Spanish Society of Applied Mathematics (SEMA). They also have the sponsorship of the Societe de Mathematiques Appliquees et Industrielles (SMAI) of France since 2008. Each edition is organized around several main courses and talks delivered by renowned French/Spanish scientists. This volume is highly recommended to graduate students in Engineering or Science who want to focus on numerical simulation, either as a research topic or in the field of industrial applications. It can also benefit senior researchers and technicians working in industry who are interested in the use of state-of-the-art numerical techniques. Moreover, the book can be used as a textbook for master courses in Mathematics, Physics, or Engineering.
Problems facing manufacturing clusters that intersect information technology, process management, and optimization within the Internet of Things (IoT) are examined in this book. Recent advances in information technology have transformed the use of resources and data exchange, often leading to management and optimization problems attributatble to technology limitations and strong market competition. This book discusses several problems and concepts which makes significant connections in the areas of information sharing, organization management, resource operations, and performance assessment. Geared toward practitioners and researchers, this treatment deepens the understanding between resource collaborative management and advanced information technology. Those in manufacturing will utilize the numerous mathematical models and methods offered to solve practical problems related to cutting stock, supply chain scheduling, and inventory management. Academics and students with a basic knowledge of manufacturing, combinatorics, and linear programming will find that this discussion widens the research area of resource collaborative management and unites the fields of information technology, manufacturing management, and optimization.
These are the proceedings of the 19th international conference on domain decomposition methods in science and engineering. Domain decomposition methods are iterative methods for solving the often very large linear or nonlinear systems of algebraic equations that arise in various problems in mathematics, computational science, engineering and industry. They are designed for massively parallel computers and take the memory hierarchy of such systems into account. This is essential for approaching peak floating point performance. There is an increasingly well-developed theory which is having a direct impact on the development and improvement of these algorithms.
This book covers different, current research directions in the context of variational methods for non-linear geometric data. Each chapter is authored by leading experts in the respective discipline and provides an introduction, an overview and a description of the current state of the art. Non-linear geometric data arises in various applications in science and engineering. Examples of nonlinear data spaces are diverse and include, for instance, nonlinear spaces of matrices, spaces of curves, shapes as well as manifolds of probability measures. Applications can be found in biology, medicine, product engineering, geography and computer vision for instance. Variational methods on the other hand have evolved to being amongst the most powerful tools for applied mathematics. They involve techniques from various branches of mathematics such as statistics, modeling, optimization, numerical mathematics and analysis. The vast majority of research on variational methods, however, is focused on data in linear spaces. Variational methods for non-linear data is currently an emerging research topic. As a result, and since such methods involve various branches of mathematics, there is a plethora of different, recent approaches dealing with different aspects of variational methods for nonlinear geometric data. Research results are rather scattered and appear in journals of different mathematical communities. The main purpose of the book is to account for that by providing, for the first time, a comprehensive collection of different research directions and existing approaches in this context. It is organized in a way that leading researchers from the different fields provide an introductory overview of recent research directions in their respective discipline. As such, the book is a unique reference work for both newcomers in the field of variational methods for non-linear geometric data, as well as for established experts that aim at to exploit new research directions or collaborations. Chapter 9 of this book is available open access under a CC BY 4.0 license at link.springer.com.
Providing an introduction to functional analysis, this text treats in detail its application to boundary-value problems and finite elements, and is distinguished by the fact that abstract concepts are motivated and illustrated wherever possible. It is intended for use by senior undergraduates and graduates in mathematics, the physical sciences and engineering, who may not have been exposed to the conventional prerequisites for a course in functional analysis, such as real analysis. Mature researchers wishing to learn the basic ideas of functional analysis will equally find this useful. Offers a good grounding in those aspects of functional analysis which are most relevant to a proper understanding and appreciation of the mathematical aspects of boundary-value problems and the finite element method.
This book discusses email spam detection and its challenges such as text classification and categorization. The book proposes an efficient spam detection technique that is a combination of Character Segmentation and Recognition and Classification (CSRC). The author describes how this can detect whether an email (text and image based) is a spam mail or not. The book presents four solutions: first, to extract the text character from the image by segmentation process which includes a combination of Discrete Wavelet Transform (DWT) and skew detection. Second, text characters are via text recognition and visual feature extraction approach which relies on contour analysis with improved Local Binary Pattern (LBP). Third, extracted text features are classified using improvised K-Nearest Neighbor search (KNN) and Support Vector Machine (SVM). Fourth, the performance of the proposed method is validated by the measure of metric named as sensitivity, specificity, precision, recall, F-measure, accuracy, error rate and correct rate. Presents solutions to email spam detection and discusses its challenges such as text classification and categorization; Analyzes the proposed techniques' performance using precision, F-measure, recall and accuracy; Evaluates the limitations of the proposed research thereby recommending future research.
This book explores various intelligent algorithms including evolutionary algorithms, swarm intelligence-based algorithms for analysis and control of dynamical systems. Both single-input-single-output (SISO) and multi-input-multi-output (MIMO) systems are explored for analysis and control purposes. The applications of intelligent algorithm vary from approximation to optimal control design. The applications of intelligent algorithms not only improve understanding of a dynamical system but also enhance the control efficacy. The intelligent algorithms are now readily applied to all fields of control including linear control, nonlinear control, digital control, optimal control, etc. The book also discusses the main benefits attained due to the application of algorithms to analyze and control.
This book deals with the numerical analysis and efficient numerical treatment of high-dimensional integrals using sparse grids and other dimension-wise integration techniques with applications to finance and insurance. The book focuses on providing insights into the interplay between coordinate transformations, effective dimensions and the convergence behaviour of sparse grid methods. The techniques, derivations and algorithms are illustrated by many examples, figures and code segments. Numerical experiments with applications from finance and insurance show that the approaches presented in this book can be faster and more accurate than (quasi-) Monte Carlo methods, even for integrands with hundreds of dimensions.
This book contains a compendium of 25 papers published since the 1970s dealing with pi and associated topics of mathematics and computer science. The collection begins with a Foreword by Bruce Berndt. Each contribution is preceded by a brief summary of its content as well as a short key word list indicating how the content relates to others in the collection. The volume includes articles on actual computations of pi, articles on mathematical questions related to pi (e.g., "Is pi normal?"), articles presenting new and often amazing techniques for computing digits of pi (e.g., the "BBP" algorithm for pi, which permits one to compute an arbitrary binary digit of pi without needing to compute any of the digits that came before), papers presenting important fundamental mathematical results relating to pi, and papers presenting new, high-tech techniques for analyzing pi (i.e., new graphical techniques that permit one to visually see if pi and other numbers are "normal"). This volume is a companion to Pi: A Source Book whose third edition released in 2004. The present collection begins with 2 papers from 1976, published by Eugene Salamin and Richard Brent, which describe "quadratically convergent" algorithms for pi and other basic mathematical functions, derived from some mathematical work of Gauss. Bailey and Borwein hold that these two papers constitute the beginning of the modern era of computational mathematics. This time period (1970s) also corresponds with the introduction of high-performance computer systems (supercomputers), which since that time have increased relentlessly in power, by approximately a factor of 100,000,000, advancing roughly at the same rate as Moore's Law of semiconductor technology. This book may be of interest to a wide range of mathematical readers; some articles cover more advanced research questions suitable for active researchers in the field, but several are highly accessible to undergraduate mathematics students.
Optimal feedback control arises in different areas such as aerospace engineering, chemical processing, resource economics, etc. In this context, the application of dynamic programming techniques leads to the solution of fully nonlinear Hamilton-Jacobi-Bellman equations. This book presents the state of the art in the numerical approximation of Hamilton-Jacobi-Bellman equations, including post-processing of Galerkin methods, high-order methods, boundary treatment in semi-Lagrangian schemes, reduced basis methods, comparison principles for viscosity solutions, max-plus methods, and the numerical approximation of Monge-Ampere equations. This book also features applications in the simulation of adaptive controllers and the control of nonlinear delay differential equations. Contents From a monotone probabilistic scheme to a probabilistic max-plus algorithm for solving Hamilton-Jacobi-Bellman equations Improving policies for Hamilton-Jacobi-Bellman equations by postprocessing Viability approach to simulation of an adaptive controller Galerkin approximations for the optimal control of nonlinear delay differential equations Efficient higher order time discretization schemes for Hamilton-Jacobi-Bellman equations based on diagonally implicit symplectic Runge-Kutta methods Numerical solution of the simple Monge-Ampere equation with nonconvex Dirichlet data on nonconvex domains On the notion of boundary conditions in comparison principles for viscosity solutions Boundary mesh refinement for semi-Lagrangian schemes A reduced basis method for the Hamilton-Jacobi-Bellman equation within the European Union Emission Trading Scheme
Lectures on Constructive Approximation: Fourier, Spline, and Wavelet Methods on the Real Line, the Sphere, and the Ball focuses on spherical problems as they occur in the geosciences and medical imaging. It comprises the author's lectures on classical approximation methods based on orthogonal polynomials and selected modern tools such as splines and wavelets. Methods for approximating functions on the real line are treated first, as they provide the foundations for the methods on the sphere and the ball and are useful for the analysis of time-dependent (spherical) problems. The author then examines the transfer of these spherical methods to problems on the ball, such as the modeling of the Earth's or the brain's interior. Specific topics covered include: * the advantages and disadvantages of Fourier, spline, and wavelet methods * theory and numerics of orthogonal polynomials on intervals, spheres, and balls * cubic splines and splines based on reproducing kernels * multiresolution analysis using wavelets and scaling functions This textbook is written for students in mathematics, physics, engineering, and the geosciences who have a basic background in analysis and linear algebra. The work may also be suitable as a self-study resource for researchers in the above-mentioned fields. |
You may like...
Numerical Methods for PDEs - State of…
Daniele Antonio Di Pietro, Alexandre Ern, …
Hardcover
R2,690
Discovery Miles 26 900
Constructive Approximation on the Sphere…
W Freeden, T. Gervens, …
Hardcover
R3,855
Discovery Miles 38 550
A Primer on Radial Basis Functions with…
Bengt Fornberg, Natasha Flyer
Paperback
Numerical Control: Part B, Volume 24
Emmanuel Trelat, Enrique Zuazua
Hardcover
R4,968
Discovery Miles 49 680
Processing, Analyzing and Learning of…
Ron Kimmel, Xue-Cheng Tai
Hardcover
R4,342
Discovery Miles 43 420
|