![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Numerical analysis
This book covers different, current research directions in the context of variational methods for non-linear geometric data. Each chapter is authored by leading experts in the respective discipline and provides an introduction, an overview and a description of the current state of the art. Non-linear geometric data arises in various applications in science and engineering. Examples of nonlinear data spaces are diverse and include, for instance, nonlinear spaces of matrices, spaces of curves, shapes as well as manifolds of probability measures. Applications can be found in biology, medicine, product engineering, geography and computer vision for instance. Variational methods on the other hand have evolved to being amongst the most powerful tools for applied mathematics. They involve techniques from various branches of mathematics such as statistics, modeling, optimization, numerical mathematics and analysis. The vast majority of research on variational methods, however, is focused on data in linear spaces. Variational methods for non-linear data is currently an emerging research topic. As a result, and since such methods involve various branches of mathematics, there is a plethora of different, recent approaches dealing with different aspects of variational methods for nonlinear geometric data. Research results are rather scattered and appear in journals of different mathematical communities. The main purpose of the book is to account for that by providing, for the first time, a comprehensive collection of different research directions and existing approaches in this context. It is organized in a way that leading researchers from the different fields provide an introductory overview of recent research directions in their respective discipline. As such, the book is a unique reference work for both newcomers in the field of variational methods for non-linear geometric data, as well as for established experts that aim at to exploit new research directions or collaborations. Chapter 9 of this book is available open access under a CC BY 4.0 license at link.springer.com.
Providing an introduction to functional analysis, this text treats in detail its application to boundary-value problems and finite elements, and is distinguished by the fact that abstract concepts are motivated and illustrated wherever possible. It is intended for use by senior undergraduates and graduates in mathematics, the physical sciences and engineering, who may not have been exposed to the conventional prerequisites for a course in functional analysis, such as real analysis. Mature researchers wishing to learn the basic ideas of functional analysis will equally find this useful. Offers a good grounding in those aspects of functional analysis which are most relevant to a proper understanding and appreciation of the mathematical aspects of boundary-value problems and the finite element method.
This book addresses the current status, challenges and future directions of data-driven materials discovery and design. It presents the analysis and learning from data as a key theme in many science and cyber related applications. The challenging open questions as well as future directions in the application of data science to materials problems are sketched. Computational and experimental facilities today generate vast amounts of data at an unprecedented rate. The book gives guidance to discover new knowledge that enables materials innovation to address grand challenges in energy, environment and security, the clearer link needed between the data from these facilities and the theory and underlying science. The role of inference and optimization methods in distilling the data and constraining predictions using insights and results from theory is key to achieving the desired goals of real time analysis and feedback. Thus, the importance of this book lies in emphasizing that the full value of knowledge driven discovery using data can only be realized by integrating statistical and information sciences with materials science, which is increasingly dependent on high throughput and large scale computational and experimental data gathering efforts. This is especially the case as we enter a new era of big data in materials science with the planning of future experimental facilities such as the Linac Coherent Light Source at Stanford (LCLS-II), the European X-ray Free Electron Laser (EXFEL) and MaRIE (Matter Radiation in Extremes), the signature concept facility from Los Alamos National Laboratory. These facilities are expected to generate hundreds of terabytes to several petabytes of in situ spatially and temporally resolved data per sample. The questions that then arise include how we can learn from the data to accelerate the processing and analysis of reconstructed microstructure, rapidly map spatially resolved properties from high throughput data, devise diagnostics for pattern detection, and guide experiments towards desired targeted properties. The authors are an interdisciplinary group of leading experts who bring the excitement of the nascent and rapidly emerging field of materials informatics to the reader.
This book explores various intelligent algorithms including evolutionary algorithms, swarm intelligence-based algorithms for analysis and control of dynamical systems. Both single-input-single-output (SISO) and multi-input-multi-output (MIMO) systems are explored for analysis and control purposes. The applications of intelligent algorithm vary from approximation to optimal control design. The applications of intelligent algorithms not only improve understanding of a dynamical system but also enhance the control efficacy. The intelligent algorithms are now readily applied to all fields of control including linear control, nonlinear control, digital control, optimal control, etc. The book also discusses the main benefits attained due to the application of algorithms to analyze and control.
This book deals with the numerical analysis and efficient numerical treatment of high-dimensional integrals using sparse grids and other dimension-wise integration techniques with applications to finance and insurance. The book focuses on providing insights into the interplay between coordinate transformations, effective dimensions and the convergence behaviour of sparse grid methods. The techniques, derivations and algorithms are illustrated by many examples, figures and code segments. Numerical experiments with applications from finance and insurance show that the approaches presented in this book can be faster and more accurate than (quasi-) Monte Carlo methods, even for integrands with hundreds of dimensions.
This book contains a compendium of 25 papers published since the 1970s dealing with pi and associated topics of mathematics and computer science. The collection begins with a Foreword by Bruce Berndt. Each contribution is preceded by a brief summary of its content as well as a short key word list indicating how the content relates to others in the collection. The volume includes articles on actual computations of pi, articles on mathematical questions related to pi (e.g., "Is pi normal?"), articles presenting new and often amazing techniques for computing digits of pi (e.g., the "BBP" algorithm for pi, which permits one to compute an arbitrary binary digit of pi without needing to compute any of the digits that came before), papers presenting important fundamental mathematical results relating to pi, and papers presenting new, high-tech techniques for analyzing pi (i.e., new graphical techniques that permit one to visually see if pi and other numbers are "normal"). This volume is a companion to Pi: A Source Book whose third edition released in 2004. The present collection begins with 2 papers from 1976, published by Eugene Salamin and Richard Brent, which describe "quadratically convergent" algorithms for pi and other basic mathematical functions, derived from some mathematical work of Gauss. Bailey and Borwein hold that these two papers constitute the beginning of the modern era of computational mathematics. This time period (1970s) also corresponds with the introduction of high-performance computer systems (supercomputers), which since that time have increased relentlessly in power, by approximately a factor of 100,000,000, advancing roughly at the same rate as Moore's Law of semiconductor technology. This book may be of interest to a wide range of mathematical readers; some articles cover more advanced research questions suitable for active researchers in the field, but several are highly accessible to undergraduate mathematics students.
Optimal feedback control arises in different areas such as aerospace engineering, chemical processing, resource economics, etc. In this context, the application of dynamic programming techniques leads to the solution of fully nonlinear Hamilton-Jacobi-Bellman equations. This book presents the state of the art in the numerical approximation of Hamilton-Jacobi-Bellman equations, including post-processing of Galerkin methods, high-order methods, boundary treatment in semi-Lagrangian schemes, reduced basis methods, comparison principles for viscosity solutions, max-plus methods, and the numerical approximation of Monge-Ampere equations. This book also features applications in the simulation of adaptive controllers and the control of nonlinear delay differential equations. Contents From a monotone probabilistic scheme to a probabilistic max-plus algorithm for solving Hamilton-Jacobi-Bellman equations Improving policies for Hamilton-Jacobi-Bellman equations by postprocessing Viability approach to simulation of an adaptive controller Galerkin approximations for the optimal control of nonlinear delay differential equations Efficient higher order time discretization schemes for Hamilton-Jacobi-Bellman equations based on diagonally implicit symplectic Runge-Kutta methods Numerical solution of the simple Monge-Ampere equation with nonconvex Dirichlet data on nonconvex domains On the notion of boundary conditions in comparison principles for viscosity solutions Boundary mesh refinement for semi-Lagrangian schemes A reduced basis method for the Hamilton-Jacobi-Bellman equation within the European Union Emission Trading Scheme
Lectures on Constructive Approximation: Fourier, Spline, and Wavelet Methods on the Real Line, the Sphere, and the Ball focuses on spherical problems as they occur in the geosciences and medical imaging. It comprises the author's lectures on classical approximation methods based on orthogonal polynomials and selected modern tools such as splines and wavelets. Methods for approximating functions on the real line are treated first, as they provide the foundations for the methods on the sphere and the ball and are useful for the analysis of time-dependent (spherical) problems. The author then examines the transfer of these spherical methods to problems on the ball, such as the modeling of the Earth's or the brain's interior. Specific topics covered include: * the advantages and disadvantages of Fourier, spline, and wavelet methods * theory and numerics of orthogonal polynomials on intervals, spheres, and balls * cubic splines and splines based on reproducing kernels * multiresolution analysis using wavelets and scaling functions This textbook is written for students in mathematics, physics, engineering, and the geosciences who have a basic background in analysis and linear algebra. The work may also be suitable as a self-study resource for researchers in the above-mentioned fields.
This open access book features a selection of high-quality papers from the presentations at the International Conference on Spectral and High-Order Methods 2018, offering an overview of the depth and breadth of the activities within this important research area. The carefully reviewed papers provide a snapshot of the state of the art, while the extensive bibliography helps initiate new research directions.
Acta Numerica is an annual publication containing invited survey papers by leading researchers in numerical mathematics and scientific computing. The papers present overviews of recent developments in their area and provide 'state of the art' techniques and analysis. This volume was originally published in 2010.
Handbook on Numerical Methods for Hyperbolic Problems: Applied and Modern Issues details the large amount of literature in the design, analysis, and application of various numerical algorithms for solving hyperbolic equations that has been produced in the last several decades. This volume provides concise summaries from experts in different types of algorithms, so that readers can find a variety of algorithms under different situations and become familiar with their relative advantages and limitations.
This work presents recent mathematical methods in the area of optimal control with a particular emphasis on the computational aspects and applications. Optimal control theory concerns the determination of control strategies for complex dynamical systems, in order to optimize some measure of their performance. Started in the 60's under the pressure of the "space race" between the US and the former USSR, the field now has a far wider scope, and embraces a variety of areas ranging from process control to traffic flow optimization, renewable resources exploitation and management of financial markets. These emerging applications require more and more efficient numerical methods for their solution, a very difficult task due the huge number of variables. The chapters of this volume give an up-to-date presentation of several recent methods in this area including fast dynamic programming algorithms, model predictive control and max-plus techniques. This book is addressed to researchers, graduate students and applied scientists working in the area of control problems, differential games and their applications.
This book discusses email spam detection and its challenges such as text classification and categorization. The book proposes an efficient spam detection technique that is a combination of Character Segmentation and Recognition and Classification (CSRC). The author describes how this can detect whether an email (text and image based) is a spam mail or not. The book presents four solutions: first, to extract the text character from the image by segmentation process which includes a combination of Discrete Wavelet Transform (DWT) and skew detection. Second, text characters are via text recognition and visual feature extraction approach which relies on contour analysis with improved Local Binary Pattern (LBP). Third, extracted text features are classified using improvised K-Nearest Neighbor search (KNN) and Support Vector Machine (SVM). Fourth, the performance of the proposed method is validated by the measure of metric named as sensitivity, specificity, precision, recall, F-measure, accuracy, error rate and correct rate. Presents solutions to email spam detection and discusses its challenges such as text classification and categorization; Analyzes the proposed techniques' performance using precision, F-measure, recall and accuracy; Evaluates the limitations of the proposed research thereby recommending future research.
An increasing complexity of models used to predict real-world systems leads to the need for algorithms to replace complex models with far simpler ones, while preserving the accuracy of the predictions. This three-volume handbook covers methods as well as applications. This third volume focuses on applications in engineering, biomedical engineering, computational physics and computer science.
This book gathers contributions on various aspects of the theory and applications of linear and nonlinear waves and associated phenomena, as well as approaches developed in a global partnership of researchers with the national Centre of Excellence in Nonlinear Studies (CENS) at the Department of Cybernetics of Tallinn University of Technology in Estonia. The papers chiefly focus on the role of mathematics in the analysis of wave phenomena. They highlight the complexity of related topics concerning wave generation, propagation, transformation and impact in solids, gases, fluids and human tissues, while also sharing insights into selected mathematical methods for the analytical and numerical treatment of complex phenomena. In addition, the contributions derive advanced mathematical models, share innovative ideas on computing, and present novel applications for a number of research fields where both linear and nonlinear wave problems play an important role. The papers are written in a tutorial style, intended for non-specialist researchers and students. The authors first describe the basics of a problem that is currently of interest in the scientific community, discuss the state of the art in related research, and then share their own experiences in tackling the problem. Each chapter highlights the importance of applied mathematics for central issues in the study of waves and associated complex phenomena in different media. The topics range from basic principles of wave mechanics up to the mathematics of Planet Earth in the broadest sense, including contemporary challenges in the mathematics of society. In turn, the areas of application range from classic ocean wave mathematics to material science, and to human nerves and tissues. All contributions describe the approaches in a straightforward manner, making them ideal material for educational purposes, e.g. for courses, master class lectures, or seminar presentations.
From fabrication to testing and modeling this monograph covers all aspects on the materials class of magneto active polymers. The focus is on computational modeling of manufacturing processes and material parameters. As other smart materials, these elastomers have the ability to change electrical and mechanical properties upon application of magnetic fields. This allows for novel applications ranging from biomedical engineering to mechatronics.
This book collects papers based on the XXXVI Bialowieza Workshop on Geometric Methods in Physics, 2017. The Workshop, which attracts a community of experts active at the crossroads of mathematics and physics, represents a major annual event in the field. Based on presentations given at the Workshop, the papers gathered here are previously unpublished, at the cutting edge of current research, and primarily grounded in geometry and analysis, with applications to classical and quantum physics. In addition, a Special Session was dedicated to S. Twareque Ali, a distinguished mathematical physicist at Concordia University, Montreal, who passed away in January 2016. For the past six years, the Bialowieza Workshops have been complemented by a School on Geometry and Physics, comprising a series of advanced lectures for graduate students and early-career researchers. The extended abstracts of this year's lecture series are also included here. The unique character of the Workshop-and-School series is due in part to the venue: a famous historical, cultural and environmental site in the Bialowieza forest, a UNESCO World Heritage Centre in eastern Poland. Lectures are given in the Nature and Forest Museum, and local traditions are interwoven with the scientific activities.
Discusses effluent discharges into various ambient waters and predictive tools for design and regulatory purposes. Emphasis placed on numerical modeling and simulations, rather than general examples. Provides real technical solutions and tools for minimizing the impact on coasts and other water bodies. Covers the fundamentals in predicting the mixing of effluents resulting from desalination plants. Includes an introduction to OpenFOAM and its applications.
This series of volumes covers all the major aspects of numerical analysis, serving as the basic reference work on the subject. Each volume concentrates on one to three particular topics. Each article, written by an expert, is an in-depth survey, reflecting up-to-date trends in the field, and is essentially self-contained. The handbook will cover the basic methods of numerical analysis, under the following general headings: solution of equations in Rn; finite difference methods; finite element methods; techniques of scientific computing; optimization theory; and systems science. It will also cover the numerical solution of actual problems of contemporary interest in applied mathematics, under the following headings: numerical methods for fluids; numerical methods for solids; and specific applications - including meteorology, seismology, petroleum mechanics and celestial mechanics.
This book combines theory, applications, and numerical methods, and covers each of these fields with the same weight. In order to make the book accessible to mathematicians, physicists, and engineers alike, the author has made it as self-contained as possible, requiring only a solid foundation in differential and integral calculus. The functional analysis which is necessary for an adequate treatment of the theory and the numerical solution of integral equations is developed within the book itself. Problems are included at the end of each chapter. For this third edition in order to make the introduction to the basic functional analytic tools more complete the Hahn Banach extension theorem and the Banach open mapping theorem are now included in the text. The treatment of boundary value problems in potential theory has been extended by a more complete discussion of integral equations of the first kind in the classical Holder space setting and of both integral equations of the first and second kind in the contemporary Sobolev space setting. In the numerical solution part of the book, the author included a new collocation method for two-dimensional hypersingular boundary integral equations and a collocation method for the three-dimensional Lippmann-Schwinger equation. The final chapter of the book on inverse boundary value problems for the Laplace equation has been largely rewritten with special attention to the trilogy of decomposition, iterative and sampling methods Reviews of earlier editions: "This book is an excellent introductory text for students, scientists, and engineers who want to learn the basic theory of linear integral equations and their numerical solution." (Math. Reviews, 2000) "This is a good introductory text book on linear integral equations. It contains almost all the topics necessary for a student. The presentation of the subject matter is lucid, clear and in the proper modern framework without being too abstract." (ZbMath, 1999)"
The book contains a consistent and sufficiently comprehensive theory of smooth functions and maps insofar as it is connected with differential calculus. The scope of notions includes, among others, Lagrange inequality, Taylor's formula, finding absolute and relative extrema, theorems on smoothness of the inverse map and on conditions of local invertibility, implicit function theorem, dependence and independence of functions, classification of smooth functions up to diffeomorphism. The concluding chapter deals with a more specific issue of critical values of smooth mappings. In several chapters, a relatively new technical approach is used that allows the authors to clarify and simplify some of the technically difficult proofs while maintaining full integrity. Besides, the book includes complete proofs of some important results which until now have only been published in scholarly literature or scientific journals (remainder estimates of Taylor's formula in a nonconvex area (Chapter I, 8), Whitney's extension theorem for smooth function (Chapter I, 11) and some of its corollaries, global diffeomorphism theorem (Chapter II, 5), results on sets of critical values of smooth mappings and the related Whitney example (Chapter IV). The text features multiple examples illustrating the results obtained and demonstrating their accuracy. Moreover, the book contains over 150 problems and 19 illustrations. Perusal of the book equips the reader to further explore any literature basing upon multivariable calculus.
This book provides an up-to-date presentation of homogeneous pseudo-Riemannian structures, an essential tool in the study of pseudo-Riemannian homogeneous spaces. Benefiting from large symmetry groups, these spaces are of high interest in Geometry and Theoretical Physics. Since the seminal book by Tricerri and Vanhecke, the theory of homogeneous structures has been considerably developed and many applications have been found. The present work covers a gap in the literature of more than 35 years, presenting the latest contributions to the field in a modern geometric approach, with special focus on manifolds equipped with pseudo-Riemannian metrics. This unique reference on the topic will be of interest to researchers working in areas of mathematics where homogeneous spaces play an important role, such as Differential Geometry, Global Analysis, General Relativity, and Particle Physics.
This book introduces readers to scattering from a practical/numerical point of view. The focus is on basic aspects like single scattering, multiple scattering, and whether inhomogeneous boundary conditions or inhomogeneous scatterers have to be taken into account. The powerful T-matrix approach is explained in detail and used throughout the book, and iterative solution methods are discussed. In addition, the book addresses appropriate criteria for estimating the accuracy of numerical results, as well as their importance for practical applications. Python code is provided with each chapter, and can be freely used and modified by readers. Moreover, numerous scattering results for different configurations are provided for benchmarking purposes. The book will be particularly valuable for those readers who plan to develop their own scattering code, and wish to test the correct numerical implementation of the underlying mathematics.
In the recent decade, there has been a growing interest in the numerical treatment of high-dimensional problems. It is well known that classical numerical discretization schemes fail in more than three or four dimensions due to the curse of dimensionality. The technique of sparse grids helps overcome this problem to some extent under suitable regularity assumptions. This discretization approach is obtained from a multi-scale basis by a tensor product construction and subsequent truncation of the resulting multiresolution series expansion. This volume of LNCSE is a collection of the papers from the proceedings of the workshop on sparse grids and its applications held in Bonn in May 2011. The selected articles present recent advances in the mathematical understanding and analysis of sparse grid discretization. Aspects arising from applications are given particular attention.
This book provides a thorough conversation on the underpinnings of Covid-19 spread modelling by using stochastics nonlocal differential and integral operators with singular and non-singular kernels. The book presents the dynamic of Covid-19 spread behaviour worldwide. It is noticed that the spread dynamic followed process with nonlocal behaviours which resemble power law, fading memory, crossover and stochastic behaviours. Fractional stochastic differential equations are therefore used to model spread behaviours in different parts of the worlds. The content coverage includes brief history of Covid-19 spread worldwide from December 2019 to September 2021, followed by statistical analysis of collected data for infected, death and recovery classes. |
You may like...
Handbook of Numerical Analysis, Volume 7
Philippe G. Ciarlet
Hardcover
R3,524
Discovery Miles 35 240
Frontiers in Molecular Design and…
Rachelle J. Bienstock, Veerabahu Shanmugasundaram, …
Hardcover
R4,846
Discovery Miles 48 460
Geometric Partial Differential Equations…
Andrea Bonito, Ricardo H. Nochetto
Hardcover
R4,993
Discovery Miles 49 930
Finite Elements and Fast Iterative…
Howard Elman, David Silvester, …
Hardcover
R4,317
Discovery Miles 43 170
Numerical Control: Part B, Volume 24
Emmanuel Trelat, Enrique Zuazua
Hardcover
R4,968
Discovery Miles 49 680
|