![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Numerical analysis
This book is an introduction to the theory, practice, and implementation of the Lattice Boltzmann (LB) method, a powerful computational fluid dynamics method that is steadily gaining attention due to its simplicity, scalability, extensibility, and simple handling of complex geometries. The book contains chapters on the method's background, fundamental theory, advanced extensions, and implementation. To aid beginners, the most essential paragraphs in each chapter are highlighted, and the introductory chapters on various LB topics are front-loaded with special "in a nutshell" sections that condense the chapter's most important practical results. Together, these sections can be used to quickly get up and running with the method. Exercises are integrated throughout the text, and frequently asked questions about the method are dealt with in a special section at the beginning. In the book itself and through its web page, readers can find example codes showing how the LB method can be implemented efficiently on a variety of hardware platforms, including multi-core processors, clusters, and graphics processing units. Students and scientists learning and using the LB method will appreciate the wealth of clearly presented and structured information in this volume.
In various scientific and industrial fields, stochastic
simulations are taking on a new importance. This is due to the
increasing power of computers and practitioners aim to simulate
more and more complex systems, and thus use random parameters as
well as random noises to model the parametric uncertainties and the
lack of knowledge on the physics of these systems. The error
analysis of these computations is a highly complex mathematical
undertaking. Approaching these issues, the authors present
stochastic numerical methods and prove accurate convergence rate
estimates in terms of their numerical parameters (number of
simulations, time discretization steps). As a result, the book is a
self-contained and rigorous study of the numerical methods within a
theoretical framework. After briefly reviewing the basics, the
authors first introduce fundamental notions in stochastic calculus
and continuous-time martingale theory, then develop the analysis of
pure-jump Markov processes, Poisson processes, and stochastic
differential equations. In particular, they review the essential
properties of Ito integrals and prove fundamental results on the
probabilistic analysis of parabolic partial differential equations.
These results in turn provide the basis for developing stochastic
numerical methods, both from an algorithmic and theoretical point
of view.
Computational Methods for Numerical Analysis with R is an overview of traditional numerical analysis topics presented using R. This guide shows how common functions from linear algebra, interpolation, numerical integration, optimization, and differential equations can be implemented in pure R code. Every algorithm described is given with a complete function implementation in R, along with examples to demonstrate the function and its use. Computational Methods for Numerical Analysis with R is intended for those who already know R, but are interested in learning more about how the underlying algorithms work. As such, it is suitable for statisticians, economists, and engineers, and others with a computational and numerical background.
This book develops a systematic and rigorous mathematical theory
of finite difference methods for linear elliptic, parabolic and
hyperbolic partial differential equations with nonsmooth
solutions.
This book covers an interdisciplinary approach for understanding mathematical modeling by offering a collection of models, solved problems related to the models, the methodologies employed, and the results using projects and case studies with insight into the operation of substantial real-time systems. The book covers a broad scope in the areas of statistical science, probability, stochastic processes, fluid dynamics, supply chain, optimization, and applications. It discusses advanced topics and the latest research findings, uses an interdisciplinary approach for real-time systems, offers a platform for integrated research, and identifies the gaps in the field for further research. The book is for researchers, students, and teachers that share a goal of learning advanced topics and the latest research in mathematical modeling.
The topics faced in this book cover a large spectrum of current trends in mathematics, such as Shimura varieties and the Lang lands program, zonotopal combinatorics, non linear potential theory, variational methods in imaging, Riemann holonomy and algebraic geometry, mathematical problems arising in kinetic theory, Boltzmann systems, Pell's equations in polynomials, deformation theory in non commutative algebras. This work contains a selection of contributions written by international leading mathematicians who were speakers at the "INdAM Day", an initiative born in 2004 to present the most recent developments in contemporary mathematics.
This textbook is intended to introduce advanced undergraduate and early-career graduate students to the field of numerical analysis. This field pertains to the design, analysis, and implementation of algorithms for the approximate solution of mathematical problems that arise in applications spanning science and engineering, and are not practical to solve using analytical techniques such as those taught in courses in calculus, linear algebra or differential equations.Topics covered include computer arithmetic, error analysis, solution of systems of linear equations, least squares problems, eigenvalue problems, nonlinear equations, optimization, polynomial interpolation and approximation, numerical differentiation and integration, ordinary differential equations, and partial differential equations. For each problem considered, the presentation includes the derivation of solution techniques, analysis of their efficiency, accuracy and robustness, and details of their implementation, illustrated through the Python programming language.This text is suitable for a year-long sequence in numerical analysis, and can also be used for a one-semester course in numerical linear algebra.
Knowledge management is far-reaching. It can dramatically reduce costs such as costs of office work repetition, human resource retirement, information reuse, etc. Rather than "reinventing the wheel" and having it be a costly and inefficient activity, systematic reuse of knowledge can show substantial cost benefits immediately. This book shows how to develop process-oriented methodologies, covers both interorganizational and enterprises models, discusses how knowledge management can dramatically reduce costs and increase speed of response, presents a wide range of quantitative methods applied to various knowledge engineering problems, and offers several graphical presentations of models and processes. Academicians and practitioners in the area of knowledge management and engineering, especially managers in industries will fine this book useful. The material might also be useful in knowledge management graduate studies.
Prolate Spheroidal Wave Functions (PSWFs) are the eigenfunctions of the bandlimited operator in one dimension. As such, they play an important role in signal processing, Fourier analysis, and approximation theory. While historically the numerical evaluation of PSWFs presented serious difficulties, the developments of the last fifteen years or so made them as computationally tractable as any other class of special functions. As a result, PSWFs have been becoming a popular computational tool. The present book serves as a complete, self-contained resource for both theory and computation. It will be of interest to a wide range of scientists and engineers, from mathematicians interested in PSWFs as an analytical tool to electrical engineers designing filters and antennas.
Despite significant advances in technology and equipment for rolled steel, the computerization of production processes and the steady increase in production of sheet steel, recent scientific and technological achievements have not been compiled in the special literature and revealed to a wide range of specialists. This book details new approaches, computational techniques, and reliable calculation methods of leaf-rolling modes, forecasting and optimization of the technologies, increasing productivity of the mill and a radical improvement in the quality of steel products.
The discussions and plans on all scienti?c, advisory, and political levels to realize an even larger "European Supercomputer" in Germany, where the hardware costs alone will be hundreds of millions Euro - much more than in the past - are getting closer to realization. As part of the strategy, the three national supercomputing centres HLRS (Stuttgart), NIC/JSC (Julic h) and LRZ (Munich) have formed the Gauss Centre for Supercomputing (GCS) as a new virtual organization enabled by an agreement between the Federal Ministry of Education and Research (BMBF) and the state ministries for research of Baden-Wurttem berg, Bayern, and Nordrhein-Westfalen. Already today, the GCS provides the most powerful high-performance computing - frastructure in Europe. Through GCS, HLRS participates in the European project PRACE (Partnership for Advances Computing in Europe) and - tends its reach to all European member countries. These activities aligns well with the activities of HLRS in the European HPC infrastructure project DEISA (Distributed European Infrastructure for Supercomputing Appli- tions) and in the European HPC support project HPC-Europa. Beyond that, HLRS and its partners in the GCS have agreed on a common strategy for the installation of the next generation of leading edge HPC hardware over the next ?ve years. The University of Stuttgart and the University of Karlsruhe have furth- more agreed to bundle their competences and resources.
This book gathers twenty-two papers presented at the second NLAGA-BIRS Symposium, which was held at Cap Skirring and at the Assane Seck University in Ziguinchor, Senegal, on January 25-30, 2022. The five-day symposium brought together African experts on nonlinear analysis and geometry and their applications, as well as their international partners, to present and discuss mathematical results in various areas. The main goal of the NLAGA project is to advance and consolidate the development of these mathematical fields in West and Central Africa with a focus on solving real-world problems such as coastal erosion, pollution, and urban network and population dynamics problems. The book addresses a range of topics related to partial differential equations, geometric analysis, geometric structures, dynamics, optimization, inverse problems, complex analysis, algebra, algebraic geometry, control theory, stochastic approximations, and modelling.
Quantitative Methods in Supply Chain Management presents some of the most important methods and tools available for modeling and solving problems arising in the context of supply chain management. In the context of this book, "solving problems" usually means designing efficient algorithms for obtaining high-quality solutions. The first chapter is an extensive optimization review covering continuous unconstrained and constrained linear and nonlinear optimization algorithms, as well as dynamic programming and discrete optimization exact methods and heuristics. The second chapter presents time-series forecasting methods together with prediction market techniques for demand forecasting of new products and services. The third chapter details models and algorithms for planning and scheduling with an emphasis on production planning and personnel scheduling. The fourth chapter presents deterministic and stochastic models for inventory control with a detailed analysis on periodic review systems and algorithmic development for optimal control of such systems. The fifth chapter discusses models and algorithms for location/allocation problems arising in supply chain management, and transportation problems arising in distribution management in particular, such as the vehicle routing problem and others. The sixth and final chapter presents a short list of new trends in supply chain management with a discussion of the related challenges that each new trend might bring along in the immediate to near future. Overall, Quantitative Methods in Supply Chain Management may be of particular interest to students and researchers in the fields of supply chain management, operations management, operations research, industrial engineering, and computer science.
This second edition of Nonstandard Finite Difference Models of Differential Equations provides an update on the progress made in both the theory and application of the NSFD methodology during the past two and a half decades. In addition to discussing details related to the determination of the denominator functions and the nonlocal discrete representations of functions of dependent variables, we include many examples illustrating just how this should be done.Of real value to the reader is the inclusion of a chapter listing many exact difference schemes, and a chapter giving NSFD schemes from the research literature. The book emphasizes the critical roles played by the 'principle of dynamic consistency' and the use of sub-equations for the construction of valid NSFD discretizations of differential equations.
This volume presents significant advances in a number of theories and problems of Mathematical Analysis and its applications in disciplines such as Analytic Inequalities, Operator Theory, Functional Analysis, Approximation Theory, Functional Equations, Differential Equations, Wavelets, Discrete Mathematics and Mechanics. The contributions focus on recent developments and are written by eminent scientists from the international mathematical community. Special emphasis is given to new results that have been obtained in the above mentioned disciplines in which Nonlinear Analysis plays a central role. Some review papers published in this volume will be particularly useful for a broader readership in Mathematical Analysis, as well as for graduate students. An attempt is given to present all subjects in this volume in a unified and self-contained manner, to be particularly useful to the mathematical community.
Acta Numerica is an annual publication containing invited survey papers by leading researchers in numerical mathematics and scientific computing. The papers present overviews of recent developments in their area and provide 'state of the art' techniques and analysis.
This book gathers selected contributions on emerging research work presented at the International Conference eXtended Discretization MethodS (X-DMS), held in Ferrara in September 2015. It highlights the most relevant advances made at the international level in the context of expanding classical discretization methods, like finite elements, to the numerical analysis of a variety of physical problems. The improvements are intended to achieve higher computational efficiency and to account for special features of the solution directly in the approximation space and/or in the discretization procedure. The methods described include, among others, partition of unity methods (meshfree, XFEM, GFEM), virtual element methods, fictitious domain methods, and special techniques for static and evolving interfaces. The uniting feature of all contributions is the direct link between computational methodologies and their application to different engineering areas.
This volume presents the latest developments in the highly active and rapidly growing field of diffusion MRI. The reader will find numerous contributions covering a broad range of topics, from the mathematical foundations of the diffusion process and signal generation, to new computational methods and estimation techniques for the in-vivo recovery of microstructural and connectivity features, as well as frontline applications in neuroscience research and clinical practice. These proceedings contain the papers presented at the 2017 MICCAI Workshop on Computational Diffusion MRI (CDMRI'17) held in Quebec, Canada on September 10, 2017, sharing new perspectives on the most recent research challenges for those currently working in the field, but also offering a valuable starting point for anyone interested in learning computational techniques in diffusion MRI. This book includes rigorous mathematical derivations, a large number of rich, full-colour visualisations and clinically relevant results. As such, it will be of interest to researchers and practitioners in the fields of computer science, MRI physics and applied mathematics.
This book presents an original combination of three well-known methodological approaches for nonlinear data analysis: recurrence, networks, and fuzzy logic. After basic concepts of these three approaches are introduced, this book presents recently developed methods known as fuzzy recurrence plots and fuzzy recurrence networks. Computer programs written in MATLAB, which implement the basic algorithms, are included to facilitate the understanding of the developed ideas. Several applications of these techniques to biomedical problems, ranging from cancer and neurodegenerative disease to depression, are illustrated to show the potential of fuzzy recurrence methods. This book opens a new door to theorists in complex systems science as well as specialists in medicine, biology, engineering, physics, computer science, geosciences, and social economics to address issues in experimental nonlinear signal and data processing.
Published in honor of his 70th birthday, this volume explores and celebrates the work of G.W. (Pete) Stewart, a world-renowned expert in computational linear algebra. This volume includes: forty-four of Stewart's most influential research papers in two subject areas: matrix algorithms, and rounding and perturbation theory; a biography of Stewart; a complete list of his publications, students, and honors; selected photographs; and commentaries on his works in collaboration with leading experts in the field. G.W. Stewart: Selected Works with Commentaries will appeal to graduate students, practitioners, and researchers in computational linear algebra and the history of mathematics.
This 4-th edition of the leading reference volume on distance metrics is characterized by updated and rewritten sections on some items suggested by experts and readers, as well a general streamlining of content and the addition of essential new topics. Though the structure remains unchanged, the new edition also explores recent advances in the use of distances and metrics for e.g. generalized distances, probability theory, graph theory, coding theory, data analysis. New topics in the purely mathematical sections include e.g. the Vitanyi multiset-metric, algebraic point-conic distance, triangular ratio metric, Rossi-Hamming metric, Taneja distance, spectral semimetric between graphs, channel metrization, and Maryland bridge distance. The multidisciplinary sections have also been supplemented with new topics, including: dynamic time wrapping distance, memory distance, allometry, atmospheric depth, elliptic orbit distance, VLBI distance measurements, the astronomical system of units, and walkability distance. Leaving aside the practical questions that arise during the selection of a 'good' distance function, this work focuses on providing the research community with an invaluable comprehensive listing of the main available distances. As well as providing standalone introductions and definitions, the encyclopedia facilitates swift cross-referencing with easily navigable bold-faced textual links to core entries. In addition to distances themselves, the authors have collated numerous fascinating curiosities in their Who's Who of metrics, including distance-related notions and paradigms that enable applied mathematicians in other sectors to deploy research tools that non-specialists justly view as arcane. In expanding access to these techniques, and in many cases enriching the context of distances themselves, this peerless volume is certain to stimulate fresh research.
Spotlighting the field of Multidisciplinary Design Optimization (MDO), this book illustrates and implements state-of-the-art methodologies within the complex process of aerospace system design under uncertainties. The book provides approaches to integrating a multitude of components and constraints with the ultimate goal of reducing design cycles. Insights on a vast assortment of problems are provided, including discipline modeling, sensitivity analysis, uncertainty propagation, reliability analysis, and global multidisciplinary optimization. The extensive range of topics covered include areas of current open research. This Work is destined to become a fundamental reference for aerospace systems engineers, researchers, as well as for practitioners and engineers working in areas of optimization and uncertainty. Part I is largely comprised of fundamentals. Part II presents methodologies for single discipline problems with a review of existing uncertainty propagation, reliability analysis, and optimization techniques. Part III is dedicated to the uncertainty-based MDO and related issues. Part IV deals with three MDO related issues: the multifidelity, the multi-objective optimization and the mixed continuous/discrete optimization and Part V is devoted to test cases for aerospace vehicle design.
This collection of articles and surveys is devoted to Harmonic Analysis, related Partial Differential Equations and Applications and in particular to the fields of research to which Richard L. Wheeden made profound contributions. The papers deal with Weighted Norm inequalities for classical operators like Singular integrals, fractional integrals and maximal functions that arise in Harmonic Analysis. Other papers deal with applications of Harmonic Analysis to Degenerate Elliptic equations, variational problems, Several Complex variables, Potential theory, free boundaries and boundary behavior of functions.
Current and historical research methods in approximation theory are presented in this book beginning with the 1800s and following the evolution of approximation theory via the refinement and extension of classical methods and ending with recent techniques and methodologies. Graduate students, postdocs, and researchers in mathematics, specifically those working in the theory of functions, approximation theory, geometric function theory, and optimization will find new insights as well as a guide to advanced topics. The chapters in this book are grouped into four themes; the first, polynomials (Chapters 1 -8), includes inequalities for polynomials and rational functions, orthogonal polynomials, and location of zeros. The second, inequalities and extremal problems are discussed in Chapters 9 -13. The third, approximation of functions, involves the approximants being polynomials, rational functions, and other types of functions and are covered in Chapters 14 -19. The last theme, quadrature, cubature and applications, comprises the final three chapters and includes an article coauthored by Rahman. This volume serves as a memorial volume to commemorate the distinguished career of Qazi Ibadur Rahman (1934-2013) of the Universite de Montreal. Rahman was considered by his peers as one of the prominent experts in analytic theory of polynomials and entire functions. The novelty of his work lies in his profound abilities and skills in applying techniques from other areas of mathematics, such as optimization theory and variational principles, to obtain final answers to countless open problems.
This book offers a thorough and self-contained exposition of the mathematics of time-domain boundary integral equations associated to the wave equation, including applications to scattering of acoustic and elastic waves. The book offers two different approaches for the analysis of these integral equations, including a systematic treatment of their numerical discretization using Galerkin (Boundary Element) methods in the space variables and Convolution Quadrature in the time variable. The first approach follows classical work started in the late eighties, based on Laplace transforms estimates. This approach has been refined and made more accessible by tailoring the necessary mathematical tools, avoiding an excess of generality. A second approach contains a novel point of view that the author and some of his collaborators have been developing in recent years, using the semigroup theory of evolution equations to obtain improved results. The extension to electromagnetic waves is explained in one of the appendices. |
You may like...
Processing, Analyzing and Learning of…
Ron Kimmel, Xue-Cheng Tai
Hardcover
R4,342
Discovery Miles 43 420
Numerical Analysis
Annette M Burden, Richard Burden, …
Hardcover
Modern Umbral Calculus - An Elementary…
Francesco Aldo Costabile
Hardcover
R3,769
Discovery Miles 37 690
Frontiers in Molecular Design and…
Rachelle J. Bienstock, Veerabahu Shanmugasundaram, …
Hardcover
R4,846
Discovery Miles 48 460
Handbook of Numerical Analysis, Volume 7
Philippe G. Ciarlet
Hardcover
R3,524
Discovery Miles 35 240
Constructive Approximation on the Sphere…
W Freeden, T. Gervens, …
Hardcover
R3,855
Discovery Miles 38 550
|