![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Numerical analysis
Numerical and Analytical Methods with MATLAB? presents extensive coverage of the MATLAB programming language for engineers. It demonstrates how the built-in functions of MATLAB can be used to solve systems of linear equations, ODEs, roots of transcendental equations, statistical problems, optimization problems, control systems problems, and stress analysis problems. These built-in functions are essentially black boxes to students. By combining MATLAB with basic numerical and analytical techniques, the mystery of what these black boxes might contain is somewhat alleviated. This classroom-tested text first reviews the essentials involved in writing computer programs as well as fundamental aspects of MATLAB. It next explains how matrices can solve problems of linear equations, how to obtain the roots of algebraic and transcendental equations, how to evaluate integrals, and how to solve various ODEs. After exploring the features of Simulink, the book discusses curve fitting, optimization problems, and PDE problems, such as the vibrating string, unsteady heat conduction, and sound waves. The focus then shifts to the solution of engineering problems via iteration procedures, differential equations via Laplace transforms, and stress analysis problems via the finite element method. The final chapter examines control systems theory, including the design of single-input single-output (SISO) systems. Two Courses in One Textbook
The papers in this volume are based on lectures given at the IMA Workshop on Grid Generation and Adaptive Algorithms held during April 28 - May 2, 1997. Grid generation is a common feature of many computational tasks which require the discretization and representation of space and surfaces. The papers in this volume discuss how the geometric complexity of the physical object or the non-uniform nature of the solution variable make it impossible to use a uniform grid. Since an efficient grid requires knowledge of the computed solution, many of the papers in this volume treat how to construct grids that are adaptively computed with the solution. This volume will be of interest to computational scientists and mathematicians working in a broad variety of applications including fluid mechanics, solid mechanics, materials science, chemistry, and physics. Papers treat residual-based error estimation and adaptivity, repartitioning and load balancing for adaptive meshes, data structures and local refinement methods for conservation laws, adaptivity for hp-finite element methods, the resolution of boundary layers in high Reynolds number flow, adaptive methods for elastostatic contact problems, the full domain partition approach to parallel adaptive refinement, the adaptive solution of phase change problems, and quality indicators for triangular meshes.
Many problems in science and engineering have their mathematical formulation as an operator equation Tx=y, where T is a linear or nonlinear operator between certain function spaces. In practice, such equations are solved approximately using numerical methods, as their exact solution may not often be possible or may not be worth looking for due to physical constraints. In such situations, it is desirable to know how the so-called approximate solution approximates the exact solution, and what the error involved in such procedures would be. This book is concerned with the investigation of the above theoretical issues related to approximately solving linear operator equations. The main tools used for this purpose are basic results from functional analysis and some rudimentary ideas from numerical analysis. To make this book more accessible to readers, no in-depth knowledge on these disciplines is assumed for reading this book.
Nonlinearity plays a major role in the understanding of most physical, chemical, biological, and engineering sciences. Nonlinear problems fascinate scientists and engineers, but often elude exact treatment. However elusive they may be, the solutions do exist-if only one perseveres in seeking them out. Self-Similarity and Beyond presents a myriad of approaches to finding exact solutions for a diversity of nonlinear problems. These include group-theoretic methods, the direct method of Clarkson and Kruskal, traveling waves, hodograph methods, balancing arguments, embedding special solutions into a more general class, and the infinite series approach. The author's approach is entirely constructive. Numerical solutions either motivate the analysis or confirm it, therefore they are treated alongside the analysis whenever possible. Many examples drawn from real physical situations-primarily fluid mechanics and nonlinear diffusion-illustrate and emphasize the central points presented. Accessible to a broad base of readers, Self-Similarity and Beyond illuminates a variety of productive methods for meeting the challenges of nonlinearity. Researchers and graduate students in nonlinearity, partial differential equations, and fluid mechanics, along with mathematical physicists and numerical analysts, will re-discover the importance of exact solutions and find valuable additions to their mathematical toolkits.
A systematic introduction to partial differential
The ISAAC (International Society for Analysis, its Applications and Computation) Congress, which has been held every second year since 1997, covers the major progress in analysis, applications and computation in recent years. In this proceedings volume, plenary lectures highlight the recent research results, while 17 sessions organized by well-known specialists reflect the state of the art of important subfields. This volume concentrates on partial differential equations, function spaces, operator theory, integral transforms and equations, potential theory, complex analysis and generalizations, inverse problems, functional differential and difference equations and integrable systems.
This important textbook provides an introduction to the concepts of
the newly developed extended finite element method (XFEM) for
fracture analysis of structures, as well as for other related
engineering applications.
This book pioneers a nonlinear Fredholm theory in a general class of spaces called polyfolds. The theory generalizes certain aspects of nonlinear analysis and differential geometry, and combines them with a pinch of category theory to incorporate local symmetries. On the differential geometrical side, the book introduces a large class of `smooth' spaces and bundles which can have locally varying dimensions (finite or infinite-dimensional). These bundles come with an important class of sections, which display properties reminiscent of classical nonlinear Fredholm theory and allow for implicit function theorems. Within this nonlinear analysis framework, a versatile transversality and perturbation theory is developed to also cover equivariant settings. The theory presented in this book was initiated by the authors between 2007-2010, motivated by nonlinear moduli problems in symplectic geometry. Such problems are usually described locally as nonlinear elliptic systems, and they have to be studied up to a notion of isomorphism. This introduces symmetries, since such a system can be isomorphic to itself in different ways. Bubbling-off phenomena are common and have to be completely understood to produce algebraic invariants. This requires a transversality theory for bubbling-off phenomena in the presence of symmetries. Very often, even in concrete applications, geometric perturbations are not general enough to achieve transversality, and abstract perturbations have to be considered. The theory is already being successfully applied to its intended applications in symplectic geometry, and should find applications to many other areas where partial differential equations, geometry and functional analysis meet. Written by its originators, Polyfold and Fredholm Theory is an authoritative and comprehensive treatise of polyfold theory. It will prove invaluable for researchers studying nonlinear elliptic problems arising in geometric contexts.
Various general techniques have been developed for control and systems problems, many of which involve indirect methods. Because these indirect methods are not always effective, alternative approaches using direct methods are of particular interest and relevance given the advances of computing in recent years.The focus of this book, unique in the literature, is on direct methods, which are concerned with finding actual solutions to problems in control and systems, often algorithmic in nature. Throughout the work, deterministic and stochastic problems are examined from a unified perspective and with considerable rigor. Emphasis is placed on the theoretical basis of the methods and their potential utility in a broad range of control and systems problems.The book is an excellent reference for graduate students, researchers, applied mathematicians, and control engineers and may be used as a textbook for a graduate course or seminar on direct methods in control.
This book illustrates several aspects of the current research activity in operator theory, operator algebras and applications in various areas of mathematics and mathematical physics. It is addressed to specialists but also to graduate students in several fields including global analysis, Schur analysis, complex analysis, C*-algebras, noncommutative geometry, operator algebras, operator theory and their applications. Contributors: F. Arici, S. Bernstein, V. Bolotnikov, J. Bourgain, P. Cerejeiras, F. Cipriani, F. Colombo, F. D'Andrea, G. Dell'Antonio, M. Elin, U. Franz, D. Guido, T. Isola, A. Kula, L.E. Labuschagne, G. Landi, W.A. Majewski, I. Sabadini, J.-L. Sauvageot, D. Shoikhet, A. Skalski, H. de Snoo, D. C. Struppa, N. Vieira, D.V. Voiculescu, and H. Woracek.
Explore a Unified Treatment of the Finite Element Method The finite element method has matured to the point that it can accurately and reliably be used, by a careful analyst, for an amazingly wide range of applications. With expanded coverage and an increase in fully solved examples, the second edition of Finite Element Analysis: Thermomechanics of Solids presents a unified treatment of the finite element method in theremomechanics, from the basics to advanced concepts. An Integrated Presentation of Critical Technology As in the first edition, the author presents and explicates topics in a way that demonstrates the highly unified structure of the finite element method. The presentation integrates continuum mechanics and relevant mathematics with persistent reliance on variational and incremental-variational foundations. The author exploits matrix-vector formalisms and Kronecker product algebra to provide transparent and consistent notation throughout the text. Nearly twice as long as the first edition, this second edition features: Greater integration and balance between introductory and advanced material Increased number of fully solved examples Selected developments in numerical methods, detailing accelerating computations in eigenstructure extraction, time integration, and stiffness matrix triangularization More extensive coverage of the arc length method for nonlinear problems Expanded and enhanced treatment of rotating bodies and buckling Provides Sophisticated Understanding of Capabilities and Limitations This new edition of a popular text includes significant illustrative examples and applications, modeling strategies, and explores a range
Thirty years ago mathematical, as opposed to applied numerical, computation was difficult to perform and so relatively little used. Three threads changed that: the emergence of the personal computer; the discovery of fiber-optics and the consequent development of the modern internet; and the building of the Three M s Maple, Mathematica and Matlab. We intend to persuade that Maple and other like tools are worth knowing assuming only that one wishes to be a mathematician, a mathematics educator, a computer scientist, an engineer or scientist, or anyone else who wishes/needs to use mathematics better. We also hope to explain how to become an experimental mathematician' while learning to be better at proving things. To accomplish this our material is divided into three main chapters followed by a postscript. These cover elementary number theory, calculus of one and several variables, introductory linear algebra, and visualization and interactive geometric computation."
This book addresses the modelling of mechanical waves by asking the right questions about them and trying to find suitable answers. The questions follow the analytical sequence from elementary understandings to complicated cases, following a step-by-step path towards increased knowledge. The focus is on waves in elastic solids, although some examples also concern non-conservative cases for the sake of completeness. Special attention is paid to the understanding of the influence of microstructure, nonlinearity and internal variables in continua. With the help of many mathematical models for describing waves, physical phenomena concerning wave dispersion, nonlinear effects, emergence of solitary waves, scales and hierarchies of waves as well as the governing physical parameters are analysed. Also, the energy balance in waves and non-conservative models with energy influx are discussed. Finally, all answers are interwoven into the canvas of complexity.
This is the second of three volumes that form the Encyclopedia of Special Functions, an extensive update of the Bateman Manuscript Project. Volume 2 covers multivariable special functions. When the Bateman project appeared, study of these was in an early stage, but revolutionary developments began to be made in the 1980s and have continued ever since. World-renowned experts survey these over the course of 12 chapters, each containing an extensive bibliography. The reader encounters different perspectives on a wide range of topics, from Dunkl theory, to Macdonald theory, to the various deep generalizations of classical hypergeometric functions to the several variables case, including the elliptic level. Particular attention is paid to the close relation of the subject with Lie theory, geometry, mathematical physics and combinatorics.
Domain decomposition methods are widely used for numerical simulations on parallel machines from tens to hundreds of thousands of cores. Contrary to direct methods, domain decomposition methods are naturally parallel. This book provides a detailed overview of the most popular domain decomposition methods for partial differential equations (PDEs), focusing on parallel linear solvers. The authors present all popular algorithms, both at the PDE level and the discrete level in terms of matrices, along with systematic scripts for sequential implementation in a free open-source finite element package as well as some parallel scripts. Also included is a new coarse space construction (two-level method) that adapts to highly heterogeneous problems. This book is beneficial to those working in domain decomposition methods, parallel computing and iterative methods, particularly those who need to implement parallel solvers for PDEs, as well as to mechanical, civil and aeronautical engineers, environmental scientists, and physicists.
A comprehensive treatment of the theory and practice of equilibrium finite element analysis in the context of solid and structural mechanics Equilibrium Finite Element Formulations is an up to date exposition on hybrid equilibrium finite elements, which are based on the direct approximation of the stress fields. The focus is on their derivation and on the advantages that strong forms of equilibrium can have, either when used independently or together with the more conventional displacement based elements. These elements solve two important problems of concern to computational structural mechanics: a rational basis for error estimation, which leads to bounds on quantities of interest that are vital for verification of the output and provision of outputs immediately useful to the engineer for structural design and assessment. Key features: * Unique in its coverage of equilibrium an essential reference work for those seeking solutions that are strongly equilibrated. The approach is not widely known, and should be of benefit to structural design and assessment. * Thorough explanations of the formulations for: 2D and 3D continua, thick and thin bending of plates and potential problems; covering mainly linear aspects of behaviour, but also with some excursions into non-linearity. * Highly relevant to the verification of numerical solutions, the basis for obtaining bounds of the errors is explained in detail. * Simple illustrative examples are given, together with their physical interpretations. * The most relevant issues regarding the computational implementation of this approach are presented. When strong equilibrium and finite elements are to be combined, the book is a must-have reference for postgraduate students, researchers in software development or numerical analysis, and industrial practitioners who want to keep up to date with progress in simulation tools.
This book provides an introduction to dynamical systems with multiple time scales. The approach it takes is to provide an overview of key areas, particularly topics that are less available in the introductory form. The broad range of topics included makes it accessible for students and researchers new to the field to gain a quick and thorough overview. The first of its kind, this book merges a wide variety of different mathematical techniques into a more unified framework. The book is highly illustrated with many examples and exercises and an extensive bibliography. The target audience of this book are senior undergraduates, graduate students as well as researchers interested in using the multiple time scale dynamics theory in nonlinear science, either from a theoretical or a mathematical modeling perspective.
Adopting the view common in the finite element analysis, the authors of Separation of Variables for Partial Differential Equations: An Eigenfunction Approach introduce a computable separation of variables solution as an analytic approximate solution. At the heart of the text, they consider a general partial differential equation in two independent variables with a source term and subject to boundary and initial conditions. They give an algorithm for approximating and solving the problem and illustrate the application of this approach to the heat, wave, and potential equations. They illustrate the power of the technique by solving a variety of practical problems, many of which go well beyond the usual textbook examples. Written at the advanced undergraduate level, the book will serve equally well as a text for students and as a reference for instructors and users of separation of variables. It requires a background in engineering mathematics, but no prior exposure to separation of variables. The abundant worked examples provide guidance for deciding whether and how to apply the method to any given problem, help in interpreting computed solutions, and give insight into cases in which formal answers may be useless.
This book describes the development of a constitutive modeling platform for soil testing, which is one of the key components in geomechanics and geotechnics. It discusses the fundamentals of the constitutive modeling of soils and illustrates the use of these models to simulate various laboratory tests. To help readers understand the fundamentals and modeling of soil behaviors, it first introduces the general stress-strain relationship of soils and the principles and modeling approaches of various laboratory tests, before examining the ideas and formulations of constitutive models of soils. Moving on to the application of constitutive models, it presents a modeling platform with a practical, simple interface, which includes various kinds of tests and constitutive models ranging from clay to sand, that is used for simulating most kinds of laboratory tests. The book is intended for undergraduate and graduate-level teaching in soil mechanics and geotechnical engineering and other related engineering specialties. Thanks to the inclusion of real-world applications, it is also of use to industry practitioners, opening the door to advanced courses on modeling within the industrial engineering and operations research fields.
"Blind Source Separation" intends to report the new results of the efforts on the study of Blind Source Separation (BSS). The book collects novel research ideas and some training in BSS, independent component analysis (ICA), artificial intelligence and signal processing applications. Furthermore, the research results previously scattered in many journals and conferences worldwide are methodically edited and presented in a unified form. The book is likely to be of interest to university researchers, R&D engineers and graduate students in computer science and electronics who wish to learn the core principles, methods, algorithms and applications of BSS. Dr. Ganesh R. Naik works at University of Technology, Sydney, Australia; Dr. Wenwu Wang works at University of Surrey, UK.
This book provides an elementary introduction to one-dimensional fluid flow problems involving shock waves in air. The differential equations of fluid flow are approximated by finite difference equations and these in turn are numerically integrated in a stepwise manner, with artificial viscosity introduced into the numerical calculations in order to deal with shocks. This treatment of the subject is focused on the finite-difference approach to solve the coupled differential equations of fluid flow and presents the results arising from the numerical solution using Mathcad programming. Both plane and spherical shock waves are discussed with particular emphasis on very strong explosive shocks in air. This expanded second edition features substantial new material on sound wave parameters, Riemann's method for numerical integration of the equations of motion, approximate analytical expressions for weak shock waves, short duration piston motion, numerical results for shock wave interactions, and new appendices on the piston withdrawal problem and numerical results for a closed shock tube. This text will appeal to students, researchers, and professionals in shock wave research and related fields. Students in particular will appreciate the benefits of numerical methods in fluid mechanics and the level of presentation.
"If mathematical modeling is the process of turning real phenomena into mathematical abstractions, then numerical computation is largely about the transformation from abstract mathematics to concrete reality. Many science and engineering disciplines have long benefited from the tremendous value of the correspondence between quantitative information and mathematical manipulation." -from the Preface Fundamentals of Numerical Computation is an advanced undergraduate-level introduction to the mathematics and use of algorithms for the fundamental problems of numerical computation: linear algebra, finding roots, approximating data and functions, and solving differential equations. The book is organized with simpler methods in the first half and more advanced methods in the second half, allowing use for either a single course or a sequence of two courses. The authors take readers from basic to advanced methods, illustrating them with over 200 self-contained MATLAB functions and examples designed for those with no prior MATLAB experience. Although the text provides many examples, exercises, and illustrations, the aim of the authors is not to provide a cookbook per se, but rather an exploration of the principles of cooking. Professors Driscoll and Braun have developed an online resource that includes well-tested materials related to every chapter. Among these materials are lecture-related slides and videos, ideas for student projects, laboratory exercises, computational examples and scripts, and all the functions presented in the book.
This is the third of three volumes providing a comprehensive presentation of the fundamentals of scientific computing. This volume discusses topics that depend more on calculus than linear algebra, in order to prepare the reader for solving differential equations. This book and its companions show how to determine the quality of computational results, and how to measure the relative efficiency of competing methods. Readers learn how to determine the maximum attainable accuracy of algorithms, and how to select the best method for computing problems. This book also discusses programming in several languages, including C++, Fortran and MATLAB. There are 90 examples, 200 exercises, 36 algorithms, 40 interactive JavaScript programs, 91 references to software programs and 1 case study. Topics are introduced with goals, literature references and links to public software. There are descriptions of the current algorithms in GSLIB and MATLAB. This book could be used for a second course in numerical methods, for either upper level undergraduates or first year graduate students. Parts of the text could be used for specialized courses, such as nonlinear optimization or iterative linear algebra.
This volume on some recent aspects of finite element methods and their applications is dedicated to Ulrich Langer and Arnd Meyer on the occasion of their 60th birthdays in 2012. Their work combines the numerical analysis of finite element algorithms, their efficient implementation on state of the art hardware architectures, and the collaboration with engineers and practitioners. In this spirit, this volume contains contributions of former students and collaborators indicating the broad range of their interests in the theory and application of finite element methods. Topics cover the analysis of domain decomposition and multilevel methods, including hp finite elements, hybrid discontinuous Galerkin methods, and the coupling of finite and boundary element methods; the efficient solution of eigenvalue problems related to partial differential equations with applications in electrical engineering and optics; and the solution of direct and inverse field problems in solid mechanics.
The object of homogenization theory is the description of the macroscopic properties of structures with fine microstructure, covering a wide range of applications that run from the study of properties of composites to optimal design. The structures under consideration may model cellular elastic materials, fibred materials, stratified or porous media, or materials with many holes or cracks. In mathematical terms, this study can be translated in the asymptotic analysis of fast-oscillating differential equations or integral functionals. The book presents an introduction to the mathematical theory of homogenization of nonlinear integral functionals, with particular regard to those general results that do not rely on smoothness or convexity assumptions. Homogenization results and appropriate descriptive formulas are given for periodic and almost- periodic functionals. The applications include the asymptotic behaviour of oscillating energies describing cellular hyperelastic materials, porous media, materials with stiff and soft inclusions, fibered media, homogenization of HamiltonJacobi equations and Riemannian metrics, materials with multiple scales of microstructure and with multi-dimensional structure. The book includes a specifically designed, self-contained and up-to-date introduction to the relevant results of the direct methods of Gamma-convergence and of the theory of weak lower semicontinuous integral functionals depending on vector-valued functions. The book is based on various courses taught at the advanced graduate level. Prerequisites are a basic knowledge of Sobolev spaces, standard functional analysis and measure theory. The presentation is completed by several examples and exercises. |
You may like...
Fatigue Crack Growth Under Variable…
J. Petit, D.L. Davidson, …
Hardcover
R5,364
Discovery Miles 53 640
Dynamic and Seamless Integration of…
Eberhard Abele, Manfred Boltze, …
Hardcover
|