![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Numerical analysis
The last few years have witnessed a surge in the development and usage of discretization methods supporting general meshes in geoscience applications. The need for general polyhedral meshes in this context can arise in several situations, including the modelling of petroleum reservoirs and basins, CO2 and nuclear storage sites, etc. In the above and other situations, classical discretization methods are either not viable or require ad hoc modifications that add to the implementation complexity. Discretization methods able to operate on polyhedral meshes and possibly delivering arbitrary-order approximations constitute in this context a veritable technological jump. The goal of this monograph is to establish a state-of-the-art reference on polyhedral methods for geoscience applications by gathering contributions from top-level research groups working on this topic. This book is addressed to graduate students and researchers wishing to deepen their knowledge of advanced numerical methods with a focus on geoscience applications, as well as practitioners of the field.
This volume includes contributions from the 9th Parallel-in-Time (PinT) workshop, an annual gathering devoted to the field of time-parallel methods, aiming to adapt existing computer models to next-generation machines by adding a new dimension of scalability. As the latest supercomputers advance in microprocessing ability, they require new mathematical algorithms in order to fully realize their potential for complex systems. The use of parallel-in-time methods will provide dramatically faster simulations in many important areas, including biomedical (e.g., heart modeling), computational fluid dynamics (e.g., aerodynamics and weather prediction), and machine learning applications. Computational and applied mathematics is crucial to this progress, as it requires advanced methodologies from the theory of partial differential equations in a functional analytic setting, numerical discretization and integration, convergence analyses of iterative methods, and the development and implementation of new parallel algorithms. Therefore, the workshop seeks to bring together an interdisciplinary group of experts across these fields to disseminate cutting-edge research and facilitate discussions on parallel time integration methods.
Customer-Oriented Optimization in Public Transportation develops models, results and algorithms for optimizing public transportation from a customer-oriented point of view. The methods used are based on graph-theoretic approaches and integer programming. The specific topics are all motivated by real-world examples which occurred in practical projects. An appendix summarizes some of the basics of optimization needed to interpret the material in the book. In detail, the topics the book covers in its three parts are as follows: Stop location - Does it make sense to open new stations along existing bus or railway lines? If yes, in which locations? The problem is modeled as a continuous covering problem. To solve it, the author develops a finite dominating set and shows that efficient methods are possible if the special structure of the covering matrix is used; Delay management - Should a train wait for delayed feeder trains or should it depart in time?
Simulating the behavior of a human heart, predicting tomorrow's weather, optimizing the aerodynamics of a sailboat, finding the ideal cooking time for a hamburger: to solve these problems, cardiologists, meteorologists, sportsmen, and engineers can count on math help. This book will lead you to the discovery of a magical world, made up of equations, in which a huge variety of important problems for our life can find useful answers.
This book highlights the synthesis of polarization selection system in the background of passive noise formed by reflections from space-distributed targets. This synthesis is fulfilled as close as possible to its ideal configuration in terms of maximal signal-to-noise ratio for the matched load of radar station antenna system. It presents a new approach to radar system resolution enhancement based on the development of mathematical model for radiometric receivers with mono-pulse antenna systems, as well as creation of a new algorithm that allows increasing angular resolution during the object's search and tracking due to special signal processing.
This edited volume presents state-of-the-art developments in various areas in which Harmonic Analysis is applied. Contributions cover a variety of different topics and problems treated such as structure and optimization in computational harmonic analysis, sampling and approximation in shift invariant subspaces of L2( ), optimal rank one matrix decomposition, the Riemann Hypothesis, large sets avoiding rough patterns, Hardy Littlewood series, Navier-Stokes equations, sleep dynamics exploration and automatic annotation by combining modern harmonic analysis tools, harmonic functions in slabs and half-spaces, Andoni -Krauthgamer -Razenshteyn characterization of sketchable norms fails for sketchable metrics, random matrix theory, multiplicative completion of redundant systems in Hilbert and Banach function spaces. Efforts have been made to ensure that the content of the book constitutes a valuable resource for graduate students as well as senior researchers working on Harmonic Analysis and its various interconnections with related areas.
This book engages in an ongoing topic, such as the implementation of nature-inspired metaheuristic algorithms, with a main concentration on optimization problems in different fields of engineering optimization applications. The chapters of the book provide concise overviews of various nature-inspired metaheuristic algorithms, defining their profits in obtaining the optimal solutions of tiresome engineering design problems that cannot be efficiently resolved via conventional mathematical-based techniques. Thus, the chapters report on advanced studies on the applications of not only the traditional, but also the contemporary certain nature-inspired metaheuristic algorithms to specific engineering optimization problems with single and multi-objectives. Harmony search, artificial bee colony, teaching learning-based optimization, electrostatic discharge, grasshopper, backtracking search, and interactive search are just some of the methods exhibited and consulted step by step in application contexts. The book is a perfect guide for graduate students, researchers, academicians, and professionals willing to use metaheuristic algorithms in engineering optimization applications.
A Theoretical Introduction to Numerical Analysis presents the general methodology and principles of numerical analysis, illustrating these concepts using numerical methods from real analysis, linear algebra, and differential equations. The book focuses on how to efficiently represent mathematical models for computer-based study. An accessible yet rigorous mathematical introduction, this book provides a pedagogical account of the fundamentals of numerical analysis. The authors thoroughly explain basic concepts, such as discretization, error, efficiency, complexity, numerical stability, consistency, and convergence. The text also addresses more complex topics like intrinsic error limits and the effect of smoothness on the accuracy of approximation in the context of Chebyshev interpolation, Gaussian quadratures, and spectral methods for differential equations. Another advanced subject discussed, the method of difference potentials, employs discrete analogues of Calderon's potentials and boundary projection operators. The authors often delineate various techniques through exercises that require further theoretical study or computer implementation. By lucidly presenting the central mathematical concepts of numerical methods, A Theoretical Introduction to Numerical Analysis provides a foundational link to more specialized computational work in fluid dynamics, acoustics, and electromagnetism.
Before the appearance of broadband links and wireless systems, networks have been used to connect people in new ways. Now, the modern world is connected through large-scale, computational networked systems such as the Internet. Because of the ever-advancing technology of networking, efficient algorithms have become increasingly necessary to solve some of the problems developing in this area. "Mathematical Aspects of Network Routing Optimization" focuses on computational issues arisingfrom the process of optimizing network routes, such as quality of the resulting links and their reliability. Algorithms are a cornerstone for the understanding of the protocols underlying multicast routing. The main objectivein the text is to deriveefficient algorithms, with or without guarantee of approximation. Notes have been provided for basic topics such as graph theory and linear programming to assist those who are not fully acquainted with the mathematical topics presented throughout the book. "Mathematical Aspects of Network Routing Optimization" provides a thorough introduction to the subject of algorithms for network routing, and focuses especially on multicast and wireless ad hoc systems. This book is designed for graduate students, researchers, and professionals interested in understanding the algorithmic and mathematical ideas behind routing in computer networks. It is suitable for advanced undergraduate students, graduate students, and researchers in the area of network algorithms."
This monograph offers the first systematic treatment of the theory of minimal surfaces in Euclidean spaces by complex analytic methods, many of which have been developed in recent decades as part of the theory of Oka manifolds (the h-principle in complex analysis). It places particular emphasis on the study of the global theory of minimal surfaces with a given complex structure. Advanced methods of holomorphic approximation, interpolation, and homotopy classification of manifold-valued maps, along with elements of convex integration theory, are implemented for the first time in the theory of minimal surfaces. The text also presents newly developed methods for constructing minimal surfaces in minimally convex domains of Rn, based on the Riemann-Hilbert boundary value problem adapted to minimal surfaces and holomorphic null curves. These methods also provide major advances in the classical Calabi-Yau problem, yielding in particular minimal surfaces with the conformal structure of any given bordered Riemann surface. Offering new directions in the field and several challenging open problems, the primary audience of the book are researchers (including postdocs and PhD students) in differential geometry and complex analysis. Although not primarily intended as a textbook, two introductory chapters surveying background material and the classical theory of minimal surfaces also make it suitable for preparing Masters or PhD level courses.
Based on the "Fourth International Conference on Dynamics of Disasters" (Kalamata, Greece, July 2019), this volume includes contributions from experts who share their latest discoveries on natural and unnatural disasters. Authors provide overviews of the tactical points involved in disaster relief, outlines of hurdles from mitigation and preparedness to response and recovery, and uses for mathematical models to describe natural and man-made disasters. Topics covered include economics, optimization, machine learning, government, management, business, humanities, engineering, medicine, mathematics, computer science, behavioral studies, emergency services, and environmental studies will engage readers from a wide variety of fields and backgrounds.
This contributed volume honors the 80th birthday of Frank Stenger who established new Sinc methods in numerical analysis.The contributions, written independently from each other, show the new developments in numerical analysis in connection with Sinc methods and approximations of solutions for differential equations, boundary value problems, integral equations, integrals, linear transforms, eigenvalue problems, polynomial approximations, computations on polyhedra, and many applications. The approximation methods are exponentially converging compared with standard methods and save resources in computation. They are applicable in many fields of science including mathematics, physics, and engineering.The ideas discussed serve as a starting point in many different directions in numerical analysis research and applications which will lead to new and unprecedented results. This book will appeal to a wide readership, from students to specialized experts.
Quantitative thinking is our inclination to view natural and everyday phenomena through a lens of measurable events, with forecasts, odds, predictions, and likelihood playing a dominant part. The Error of Truth recounts the astonishing and unexpected tale of how quantitative thinking came to be, and its rise to primacy in the nineteenth and early twentieth centuries. Additionally, it considers how seeing the world through a quantitative lens has shaped our perception of the world we live in, and explores the lives of the individuals behind its early establishment. This worldview was unlike anything humankind had before, and it came about because of a momentous human achievement: we had learned how to measure uncertainty. Probability as a science was conceptualised. As a result of probability theory, we now had correlations, reliable predictions, regressions, the bellshaped curve for studying social phenomena, and the psychometrics of educational testing. Significantly, these developments happened during a relatively short period in world history- roughly, the 130-year period from 1790 to 1920, from about the close of the Napoleonic era, through the Enlightenment and the Industrial Revolutions, to the end of World War I. At which time, transportation had advanced rapidly, due to the invention of the steam engine, and literacy rates had increased exponentially. This brief period in time was ready for fresh intellectual activity, and it gave a kind of impetus for the probability inventions. Quantification is now everywhere in our daily lives, such as in the ubiquitous microchip in smartphones, cars, and appliances; in the Bayesian logic of artificial intelligence, as well as applications in business, engineering, medicine, economics, and elsewhere. Probability is the foundation of quantitative thinking. The Error of Truth tells its story- when, why, and how it happened.
This book presents a complete and accurate study of arithmetic and algebraic circuits. The first part offers a review of all important basic concepts: it describes simple circuits for the implementation of some basic arithmetic operations; it introduces theoretical basis for residue number systems; and describes some fundamental circuits for implementing the main modular operations that will be used in the text. Moreover, the book discusses floating-point representation of real numbers and the IEEE 754 standard. The second and core part of the book offers a deep study of arithmetic circuits and specific algorithms for their implementation. It covers the CORDIC algorithm, and optimized arithmetic circuits recently developed by the authors for adders and subtractors, as well as multipliers, dividers and special functions. It describes the implementation of basic algebraic circuits, such as LFSRs and cellular automata. Finally, it offers a complete study of Galois fields, showing some exemplary applications and discussing the advantages in comparison to other methods. This dense, self-contained text provides students, researchers and engineers, with extensive knowledge on and a deep understanding of arithmetic and algebraic circuits and their implementation.
This book presents essential concepts of traditional Flower Pollination Algorithm (FPA) and its recent variants and also its application to find optimal solution for a variety of real-world engineering and medical problems. Swarm intelligence-based meta-heuristic algorithms are extensively implemented to solve a variety of real-world optimization problems due to its adaptability and robustness. FPA is one of the most successful swarm intelligence procedures developed in 2012 and extensively used in various optimization tasks for more than a decade. The mathematical model of FPA is quite straightforward and easy to understand and enhance, compared to other swarm approaches. Hence, FPA has attracted attention of researchers, who are working to find the optimal solutions in variety of domains, such as N-dimensional numerical optimization, constrained/unconstrained optimization, and linear/nonlinear optimization problems. Along with the traditional bat algorithm, the enhanced versions of FPA are also considered to solve a variety of optimization problems in science, engineering, and medical applications.
Fit for students just starting to build a background in mathematics, this textbook provides an introduction to numerical methods for linear algebra problems. Introduction to Numerical Linear Algebra is ideal for a flipped classroom, as it provides detailed explanations that allow students to read on their own and instructors to go beyond lecturing, assumes that the reader has taken a course on linear algebra, but reviews background as needed, and covers several topics not commonly addressed in related introductory books, including diffusion, a toy model of computed tomography, global positioning systems, the use of eigenvalues in analyzing stability of equilibria, a detailed derivation and careful motivation of the QR method for eigenvalues starting from power iteration, a discussion of the use of the SVD for assigning grades, and multigrid methods. This textbook is appropriate for undergraduate and beginning graduate students in mathematics and related fields. It can be used in the following courses: Advanced Numerical Analysis, Special Topics on Numerical Analysis, Topics on Data Science, Topics on Numerical Optimization, and Topics on Approximation Theory
For one or two term undergraduate/graduate-level courses in Numerical Methods in mathematics departments (for numerical analysis courses), CS departments and engineering departments. This student-friendly introduction to the fundamental concepts and techniques of numerical analysis/numerical methods develops concepts and techniques in a clear, concise, easy-to-read manner, followed by fully-worked examples. Application problems drawn from the literature of many different fields prepares students to use the techniques covered to solve a wide variety of practical problems. *Unique topical coverage - Provides extensive coverage of material not typically covered, or only briefly discussed, in other texts - e.g., eigenvalue problem for nonsymmetric matrices; improper integrals (removable singularities, derivative singularities, logarithmic singularities and infinite limits of integration); non-Dirichlet boundary conditions, the handling of artificial singularities and eigenvalue problems for one-dimensional boundary value problems; non-Dirichlet boundary conditions, the multigrid method and irregular domains for elliptic partial differential equations; (source and decay terms, non-Diric
Systems of linear equations are ubiquitous in numerical analysis and scientific computing. and iterative methods are indispensable for the numerical treatment of such systems. This book offers a rigorous introduction to fundamental iterative methods for systems of linear algebraic equations. The book distinguishes itself from other texts on the topic by providing a straightforward yet comprehensive analysis of the Krylov subspace methods, approaching the development and analysis of algorithms from various perspectives, and going beyond the standard description of iterative methods by connecting them in a natural way to the idea of preconditioning. The book supplements standard texts on numerical mathematics for first-year graduate and advanced undergraduate courses and is suitable for advanced graduate classes covering numerical linear algebra and Krylov subspace and multigrid iterative methods. It will be useful to researchers interested in numerical linear algebra and engineers who use iterative methods for solving large algebraic systems.
th This volume contains a selection of 41 refereed papers presented at the 18 International Conference of Domain Decomposition Methods hosted by the School of ComputerScience and Engineering(CSE) of the Hebrew Universityof Jerusalem, Israel, January 12-17, 2008. 1 Background of the Conference Series The International Conference on Domain Decomposition Methods has been held in twelve countries throughout Asia, Europe, the Middle East, and North America, beginning in Paris in 1987. Originally held annually, it is now spaced at roughly 18-month intervals. A complete list of past meetings appears below. The principal technical content of the conference has always been mathematical, but the principal motivation has been to make ef cient use of distributed memory computers for complex applications arising in science and engineering. The leading 15 such computers, at the "petascale" characterized by 10 oating point operations per second of processing power and as many Bytes of application-addressablem- ory, now marshal more than 200,000 independentprocessor cores, and systems with many millions of cores are expected soon. There is essentially no alternative to - main decomposition as a stratagem for parallelization at such scales. Contributions from mathematicians, computerscientists, engineers, and scientists are together n- essary in addressing the challenge of scale, and all are important to this conference.
This book focuses on information-geometric manifolds of structured data and models and related applied mathematics. It features new and fruitful interactions between several branches of science: Advanced Signal/Image/Video Processing, Complex Data Modeling and Analysis, Statistics on Manifolds, Topology/Machine/Deep Learning and Artificial Intelligence. The selection of applications makes the book a substantial information source, not only for academic scientist but it is also highly relevant for industry. The book project was initiated following discussions at the international conference GSI'2019 - Geometric Science of Information that was held at ENAC, Toulouse (France).
The investigation of the role of mechanical and mechano-chemical interactions in cellular processes and tissue development is a rapidly growing research field in the life sciences and in biomedical engineering. Quantitative understanding of this important area in the study of biological systems requires the development of adequate mathematical models for the simulation of the evolution of these systems in space and time. Since expertise in various fields is necessary, this calls for a multidisciplinary approach. This edited volume connects basic physical, biological, and physiological concepts to methods for the mathematical modeling of various materials by pursuing a multiscale approach, from subcellular to organ and system level. Written by active researchers, each chapter provides a detailed introduction to a given field, illustrates various approaches to creating models, and explores recent advances and future research perspectives. Topics covered include molecular dynamics simulations of lipid membranes, phenomenological continuum mechanics of tissue growth, and translational cardiovascular modeling. Modeling Biomaterials will be a valuable resource for both non-specialists and experienced researchers from various domains of science, such as applied mathematics, biophysics, computational physiology, and medicine.
Adapted from a series of lectures given by the authors, this monograph focuses on radial basis functions (RBFs), a powerful numerical methodology for solving PDEs to high accuracy in any number of dimensions. This method applies to problems across a wide range of PDEs arising in fluid mechanics, wave motions, astro- and geosciences, mathematical biology, and other areas and has lately been shown to compete successfully against the very best previous approaches on some large benchmark problems. Using examples and heuristic explanations to create a practical and intuitive perspective, the authors address how, when, and why RBF-based methods work. The authors trace the algorithmic evolution of RBFs, starting with brief introductions to finite difference (FD) and pseudospectral (PS) methods and following a logical progression to global RBFs and then to RBF-generated FD (RBF-FD) methods. The RBF-FD method, conceived in 2000, has proven to be a leading candidate for numerical simulations in an increasingly wide range of applications, including seismic exploration for oil and gas, weather and climate modeling, and electromagnetics, among others. This is the first survey in book format of the RBF-FD methodology and is suitable as the text for a one-semester first-year graduate class.
This proceedings volume gathers a selection of outstanding research papers presented at the third Conference on Isogeometric Analysis and Applications, held in Delft, The Netherlands, in April 2018. This conference series, previously held in Linz, Austria, in 2012 and Annweiler am Trifels, Germany, in 2014, has created an international forum for interaction between scientists and practitioners working in this rapidly developing field. Isogeometric analysis is a groundbreaking computational approach that aims to bridge the gap between numerical analysis and computational geometry modeling by integrating the finite element method and related numerical simulation techniques into the computer-aided design workflow, and vice versa. The methodology has matured over the last decade both in terms of our theoretical understanding, its mathematical foundation and the robustness and efficiency of its practical implementations. This development has enabled scientists and practitioners to tackle challenging new applications at the frontiers of research in science and engineering and attracted early adopters for this his novel computer-aided design and engineering technology in industry. The IGAA 2018 conference brought together experts on isogeometric analysis theory and application, share their insights into challenging industrial applications and to discuss the latest developments as well as the directions of future research and development that are required to make isogeometric analysis an established mainstream technology.
Mathematical models cannot be solved using the traditional analytical methods for dynamic equations on time scales. These models must be dealt with using computational methods. This textbook introduces numerical methods for initial value problems for dynamic equations on time scales. Hands-on examples utilizing MATLAB and practical problems illustrate a wide variety of solution techniques. |
![]() ![]() You may like...
Applications of Artificial Intelligence…
Allam Hamdan, Aboul Ella Hassanien, …
Hardcover
R7,016
Discovery Miles 70 160
Astronomy and Big Data - A Data…
Kieran Jay Edwards, Mohamed Medhat Gaber
Hardcover
R2,873
Discovery Miles 28 730
Linked Data in Linguistics…
Christian Chiarcos, Sebastian Nordhoff, …
Hardcover
R1,534
Discovery Miles 15 340
Computational Intelligence for Network…
Maoguo Gong, Qing Cai, …
Hardcover
R3,609
Discovery Miles 36 090
|