![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Numerical analysis
Sparse grids are a popular tool for the numerical treatment of high-dimensional problems. Where classical numerical discretization schemes fail in more than three or four dimensions, sparse grids, in their different flavors, are frequently the method of choice. This volume of LNCSE presents selected papers from the proceedings of the fourth workshop on sparse grids and applications, and demonstrates once again the importance of this numerical discretization scheme. The articles present recent advances in the numerical analysis of sparse grids in connection with a range of applications including computational chemistry, computational fluid dynamics, and big data analytics, to name but a few.
Current research and applications in nonlinear analysis influenced by Haim Brezis and Louis Nirenberg are presented in this book by leading mathematicians. Each contribution aims to broaden reader's understanding of theories, methods, and techniques utilized to solve significant problems. Topics include: Sobolev Spaces Maximal monotone operators A theorem of Brezis-Nirenberg Operator-norm convergence of the Trotter product formula Elliptic operators with infinitely many variables Pseudo-and quasiconvexities for nonsmooth function Anisotropic surface measures Eulerian and Lagrangian variables Multiple periodic solutions of Lagrangian systems Porous medium equation Nondiscrete Lassonde-Revalski principle Graduate students and researchers in mathematics, physics, engineering, and economics will find this book a useful reference for new techniques and research areas. Haim Brezis and Louis Nirenberg's fundamental research in nonlinear functional analysis and nonlinear partial differential equations along with their years of teaching and training students have had a notable impact in the field.
A computer algebra system such as Mathematica (R) is able to do much more than just numerics: This text shows how to tackle real mathematical problems from basic analysis. The reader learns how Mathematica (R) represents domains, qualifiers and limits to implement actual proofs - a requirement to unlock the huge potential of Mathematica (R) for a variety of applications.
Premature cracking in asphalt pavements and overlays continues to shorten pavement lifecycles and creates significant economic and environmental burden. In response, RILEM Technical Committee TC 241-MCD on Mechanisms of Cracking and Debonding in Asphalt and Composite Pavements has conducted a State-of-the-Art Review (STAR), as detailed in this comprehensive book. Cutting-edge research performed by RILEM members and their international partners is presented, along with summaries of open research questions and recommendations for future research. This book is organized according to the theme areas of TC 241-MCD - i.e., fracture in the asphalt bulk material, interface debonding behaviour, and advanced measurement systems. This STAR is expected to serve as a long term reference for researchers and practitioners, as it contributes to a deeper fundamental understanding of the mechanisms behind cracking and debonding in asphalt concrete and composite pavement systems.
This book presents the refereed proceedings of the Twelfth International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing that was held at Stanford University (California) in August 2016. These biennial conferences are major events for Monte Carlo and quasi-Monte Carlo researchers. The proceedings include articles based on invited lectures as well as carefully selected contributed papers on all theoretical aspects and applications of Monte Carlo and quasi-Monte Carlo methods. Offering information on the latest developments in these very active areas, this book is an excellent reference resource for theoreticians and practitioners interested in solving high-dimensional computational problems, arising in particular, in finance, statistics, computer graphics and the solution of PDEs.
This volume presents the latest developments in the highly active and rapidly growing field of diffusion MRI. The reader will find numerous contributions covering a broad range of topics, from the mathematical foundations of the diffusion process and signal generation, to new computational methods and estimation techniques for the in-vivo recovery of microstructural and connectivity features, as well as frontline applications in neuroscience research and clinical practice. These proceedings contain the papers presented at the 2017 MICCAI Workshop on Computational Diffusion MRI (CDMRI'17) held in Quebec, Canada on September 10, 2017, sharing new perspectives on the most recent research challenges for those currently working in the field, but also offering a valuable starting point for anyone interested in learning computational techniques in diffusion MRI. This book includes rigorous mathematical derivations, a large number of rich, full-colour visualisations and clinically relevant results. As such, it will be of interest to researchers and practitioners in the fields of computer science, MRI physics and applied mathematics.
The book is organized around 4 sections. The first deals with the creativity and its neural basis (responsible editor Emmanuelle Volle). The second section concerns the neurophysiology of aesthetics (responsible editor Zoi Kapoula). It covers a large spectrum of different experimental approaches going from architecture, to process of architectural creation and issues of architectural impact on the gesture of the observer. Neurophysiological aspects such as space navigation, gesture, body posture control are involved in the experiments described as well as questions about terminology and valid methodology. The next chapter contains studies on music, mathematics and brain (responsible editor Moreno Andreatta). The final section deals with evolutionary aesthetics (responsible editor Julien Renoult). Chapter "Composing Music from Neuronal Activity: The Spikiss Project" is available open access under a Creative Commons Attribution-NonCommercial 4.0 International License via link.springer.com.
This book presents basic optimization principles and gradient-based algorithms to a general audience, in a brief and easy-to-read form. It enables professionals to apply optimization theory to engineering, physics, chemistry, or business economics.
This book explores the most significant computational methods and the history of their development. It begins with the earliest mathematical / numerical achievements made by the Babylonians and the Greeks, followed by the period beginning in the 16th century. For several centuries the main scientific challenge concerned the mechanics of planetary dynamics, and the book describes the basic numerical methods of that time. In turn, at the end of the Second World War scientific computing took a giant step forward with the advent of electronic computers, which greatly accelerated the development of numerical methods. As a result, scientific computing became established as a third scientific method in addition to the two traditional branches: theory and experimentation. The book traces numerical methods' journey back to their origins and to the people who invented them, while also briefly examining the development of electronic computers over the years. Featuring 163 references and more than 100 figures, many of them portraits or photos of key historical figures, the book provides a unique historical perspective on the general field of scientific computing - making it a valuable resource for all students and professionals interested in the history of numerical analysis and computing, and for a broader readership alike.
This textbook presents finite element methods using exclusively one-dimensional elements. It presents the complex methodology in an easily understandable but mathematically correct fashion. The approach of one-dimensional elements enables the reader to focus on the understanding of the principles of basic and advanced mechanical problems. The reader will easily understand the assumptions and limitations of mechanical modeling as well as the underlying physics without struggling with complex mathematics. Although the description is easy, it remains scientifically correct. The approach using only one-dimensional elements covers not only standard problems but allows also for advanced topics such as plasticity or the mechanics of composite materials. Many examples illustrate the concepts and problems at the end of every chapter help to familiarize with the topics. Each chapter also includes a few exercise problems, with short answers provided at the end of the book. The second edition appears with a complete revision of all figures. It also presents a complete new chapter special elements and added the thermal conduction into the analysis of rod elements. The principle of virtual work has also been introduced for the derivation of the finite-element principal equation.
This book offers a gentle motivation and introduction to computational thinking, in particular to algorithms and how they can be coded to solve significant, topical problems from domains such as finance, cryptography, Web search, and data compression. The book is suitable for undergraduate students in computer science, engineering, and applied mathematics, university students in other fields, high-school students with an interest in STEM subjects, and professionals who want an insight into algorithmic solutions and the related mindset. While the authors assume only basic mathematical knowledge, they uphold the scientific rigor that is indispensable for transforming general ideas into executable algorithms. A supporting website contains examples and Python code for implementing the algorithms in the book.
This book discusses recent advances and research in applied mathematics, statistics and their applications in computing. It features papers presented at the fourth conference in the series organized at the Indian Institute of Technology (Banaras Hindu University), Varanasi, India, on 9 - 11 January 2018 on areas of current interest, including operations research, soft computing, applied mathematical modelling, cryptology, and security analysis. The conference has emerged as a powerful forum, bringing together leading academic scientists, experts from industry, and researchers and offering a venue to discuss, interact and collaborate to stimulate the advancement of mathematics and its applications in computer science. The education of future consumers, users, producers, developers and researchers of mathematics and its applications is an important challenge in modern society, and as such, mathematics and its application in computer science are of vital significance to all spectrums of the community, as well as to mathematicians and computing professionals across different educational levels and disciplines. With contributions by leading international experts, this book motivates and creates interest among young researchers.
This book is devoted to the mathematical analysis of the numerical solution of boundary integral equations treating boundary value, transmission and contact problems arising in elasticity, acoustic and electromagnetic scattering. It serves as the mathematical foundation of the boundary element methods (BEM) both for static and dynamic problems. The book presents a systematic approach to the variational methods for boundary integral equations including the treatment with variational inequalities for contact problems. It also features adaptive BEM, hp-version BEM, coupling of finite and boundary element methods - efficient computational tools that have become extremely popular in applications. Familiarizing readers with tools like Mellin transformation and pseudodifferential operators as well as convex and nonsmooth analysis for variational inequalities, it concisely presents efficient, state-of-the-art boundary element approximations and points to up-to-date research. The authors are well known for their fundamental work on boundary elements and related topics, and this book is a major contribution to the modern theory of the BEM (especially for error controlled adaptive methods and for unilateral contact and dynamic problems) and is a valuable resource for applied mathematicians, engineers, scientists and graduate students.
This book presents the latest results in the field of dynamic decoupling of robot manipulators obtained in France, Russia, China and Austria. Manipulator dynamics can be highly coupled and nonlinear. The complicated dynamics result from varying inertia, interactions between the different joints, and nonlinear forces such as Coriolis and centrifugal forces. The dynamic decoupling of robot manipulators allows one to obtain a linear system, i.e. single-input and single output system with constant parameters. This simplifies the optimal control and accumulation of energy in manipulators. There are two ways to create the dynamically decoupled manipulators: via optimal mechanical design or control. This work emphasises mechatronic solutions. These will certainly improve the known design concepts permitting the dynamic decoupling of serial manipulators with a relatively small increase in total mass of the moving links taking into account the changing payload. For the first time such an approach has been applied on serial manipulators. Also of great interest is the dynamic decoupling control of parallel manipulators. Firstly, the dynamic model of redundant multi-axial vibration table with load has been established, and, secondly, its dynamic coupling characteristics have been analyzed. The discussed methods and applications of dynamic decoupling of robot manipulators are illustrated via CAD simulations and experimental tests.
This book addresses the current status, challenges and future directions of data-driven materials discovery and design. It presents the analysis and learning from data as a key theme in many science and cyber related applications. The challenging open questions as well as future directions in the application of data science to materials problems are sketched. Computational and experimental facilities today generate vast amounts of data at an unprecedented rate. The book gives guidance to discover new knowledge that enables materials innovation to address grand challenges in energy, environment and security, the clearer link needed between the data from these facilities and the theory and underlying science. The role of inference and optimization methods in distilling the data and constraining predictions using insights and results from theory is key to achieving the desired goals of real time analysis and feedback. Thus, the importance of this book lies in emphasizing that the full value of knowledge driven discovery using data can only be realized by integrating statistical and information sciences with materials science, which is increasingly dependent on high throughput and large scale computational and experimental data gathering efforts. This is especially the case as we enter a new era of big data in materials science with the planning of future experimental facilities such as the Linac Coherent Light Source at Stanford (LCLS-II), the European X-ray Free Electron Laser (EXFEL) and MaRIE (Matter Radiation in Extremes), the signature concept facility from Los Alamos National Laboratory. These facilities are expected to generate hundreds of terabytes to several petabytes of in situ spatially and temporally resolved data per sample. The questions that then arise include how we can learn from the data to accelerate the processing and analysis of reconstructed microstructure, rapidly map spatially resolved properties from high throughput data, devise diagnostics for pattern detection, and guide experiments towards desired targeted properties. The authors are an interdisciplinary group of leading experts who bring the excitement of the nascent and rapidly emerging field of materials informatics to the reader.
This book provides essential lecture notes on solving large linear saddle-point systems, which arise in a wide range of applications and often pose computational challenges in science and engineering. The focus is on discussing the particular properties of such linear systems, and a large selection of algebraic methods for solving them, with an emphasis on iterative methods and preconditioning. The theoretical results presented here are complemented by a case study on potential fluid flow problem in a real world-application. This book is mainly intended for students of applied mathematics and scientific computing, but also of interest for researchers and engineers working on various applications. It is assumed that the reader has completed a basic course on linear algebra and numerical mathematics.
This book focuses on theoretical aspects of dynamical systems in the broadest sense. It highlights novel and relevant results on mathematical and numerical problems that can be found in the fields of applied mathematics, physics, mechanics, engineering and the life sciences. The book consists of contributed research chapters addressing a diverse range of problems. The issues discussed include (among others): numerical-analytical algorithms for nonlinear optimal control problems on a large time interval; gravity waves in a reservoir with an uneven bottom; value distribution and growth of solutions for certain Painleve equations; optimal control of hybrid systems with sliding modes; a mathematical model of the two types of atrioventricular nodal reentrant tachycardia; non-conservative instability of cantilevered nanotubes using the Cell Discretization Method; dynamic analysis of a compliant tensegrity structure for use in a gripper application; and Jeffcott rotor bifurcation behavior using various models of hydrodynamic bearings.
Emilia Grass develops a solution method which can provide fast and near-optimal solutions to realistic large-scale two-stage stochastic problems in disaster management. The author proposes a specialized interior-point method to accelerate the standard L-shaped algorithm. She shows that the newly developed solution method solves two realistic large-scale case studies for the hurricane prone Gulf and Atlantic coast faster than the standard L-shaped method and a commercial solver. The accelerated solution method enables relief organizations to employ appropriate preparation measures even in the case of short-term disaster warnings.About the Author Emilia Grass holds a PhD from the Hamburg University of Technology, Germany. She is currently working as guest researcher on the project cyber security in healthcare at the Centre for Health Policy, Imperial College London, UK. Her scientific focus is on stochastic programming, solution methods, disaster management and healthcare.
Volume III of the Collected Works of V.I. Arnold contains papers written in the years 1972 to 1979. The main theme emerging in Arnold's work of this period is the development of singularity theory of smooth functions and mappings. The volume also contains papers by V.I. Arnold on catastrophe theory and on A.N. Kolmogorov's school, his prefaces to Russian editions of several books related to singularity theory, V. Arnold's lectures on bifurcations of discrete dynamical systems, as well as a review by V.I. Arnold and Ya.B. Zeldovich of V.V. Beletsky's book on celestial mechanics. Vladimir Arnold was one of the great mathematical scientists of our time. He is famous for both the breadth and the depth of his work. At the same time he is one of the most prolific and outstanding mathematical authors.
The book collects and contributes new results on the theory and practice of ill-posed inverse problems. Different notions of ill-posedness in Banach spaces for linear and nonlinear inverse problems are discussed not only in standard settings but also in situations up to now not covered by the literature. Especially, ill-posedness of linear operators with uncomplemented null spaces is examined.Tools for convergence rate analysis of regularization methods are extended to a wider field of applicability. It is shown that the tool known as variational source condition always yields convergence rate results. A theory for nonlinear inverse problems with quadratic structure is developed as well as corresponding regularization methods. The new methods are applied to a difficult inverse problem from laser optics.Sparsity promoting regularization is examined in detail from a Banach space point of view. Extensive convergence analysis reveals new insights into the behavior of Tikhonov-type regularization with sparsity enforcing penalty.
This edited monograph collects research contributions and addresses the advancement of efficient numerical procedures in the area of model order reduction (MOR) for simulation, optimization and control. The topical scope includes, but is not limited to, new out-of-the-box algorithmic solutions for scientific computing, e.g. reduced basis methods for industrial problems and MOR approaches for electrochemical processes. The target audience comprises research experts and practitioners in the field of simulation, optimization and control, but the book may also be beneficial for graduate students alike.
This book focuses on modelling financial information flows and information-based asset pricing framework. After introducing the fundamental properties of the framework, it presents a short information-theoretic perspective with a view to quantifying the information content of financial signals, and links the present framework with the literature on asymmetric information and market microstructure by means of a dynamic, bipartite, heterogeneous agent network. Numerical and explicit analyses shed light on the effects of differential information and information acquisition on the allocation of profit and loss as well as the pace of fundamental price discovery. The dynamic programming method is used to seek an optimal strategy for utilizing superior information. Lastly, the book features an implementation of the present framework using real-world financial data.
This book is comprehensive in its classical mathematical physics presentation, providing the reader with detailed instructions for obtaining Green's functions from scratch. Green's functions is an instrument easily accessible to practitioners who are engaged in design and exploitation of machines and structures in modern engineering practice. To date, there are no books available on the market that are devoted to the Green's function formalism for equations covered in this volume. The reader, with an undergraduate background in applied mathematics, can become an active user of the Green's function approach. For the first time, Green's functions are discussed for a specific class of problems dealing with potential fields induced in thin-wall structures and therefore, the reader will have first-hand access to a novel issue. This Work is accessible to researchers in applied mathematics, mechanics, and relevant disciplines such as engineering, as well as to upper level undergraduates and graduate students.
This book is the second volume of proceedings of the 8th conference on "Finite Volumes for Complex Applications" (Lille, June 2017). It includes reviewed contributions reporting successful applications in the fields of fluid dynamics, computational geosciences, structural analysis, nuclear physics, semiconductor theory and other topics. The finite volume method in its various forms is a space discretization technique for partial differential equations based on the fundamental physical principle of conservation, and recent decades have brought significant advances in the theoretical understanding of the method. Many finite volume methods preserve further qualitative or asymptotic properties, including maximum principles, dissipativity, monotone decay of free energy, and asymptotic stability. Due to these properties, finite volume methods belong to the wider class of compatible discretization methods, which preserve qualitative properties of continuous problems at the discrete l evel. This structural approach to the discretization of partial differential equations becomes particularly important for multiphysics and multiscale applications. The book is useful for researchers, PhD and master's level students in numerical analysis, scientific computing and related fields such as partial differential equations, as well as for engineers working in numerical modeling and simulations.
This book gives a compact exposition of the fundamentals of the theory of locally convex topological vector spaces. Furthermore it contains a survey of the most important results of a more subtle nature, which cannot be regarded as basic, but knowledge which is useful for understanding applications. Finally, the book explores some of such applications connected with differential calculus and measure theory in infinite-dimensional spaces. These applications are a central aspect of the book, which is why it is different from the wide range of existing texts on topological vector spaces. Overall, this book develops differential and integral calculus on infinite-dimensional locally convex spaces by using methods and techniques of the theory of locally convex spaces. The target readership includes mathematicians and physicists whose research is related to infinite-dimensional analysis. |
![]() ![]() You may like...
Geometric Partial Differential Equations…
Andrea Bonito, Ricardo H. Nochetto
Hardcover
Numerical Control: Part A, Volume 23
Emmanuel Trelat, Enrique Zuazua
Hardcover
Nonlinear Functional Analysis and…
Jesus Garcia-Falset, Khalid Latrach
Hardcover
R5,303
Discovery Miles 53 030
Processing, Analyzing and Learning of…
Ron Kimmel, Xue-Cheng Tai
Hardcover
Nature-Inspired Computing for Smart…
Santosh Kumar Das, Thanh-Phong Dao, …
Hardcover
R2,908
Discovery Miles 29 080
Processing, Analyzing and Learning of…
Ron Kimmel, Xue-Cheng Tai
Hardcover
R4,613
Discovery Miles 46 130
Frontiers in Molecular Design and…
Rachelle J. Bienstock, Veerabahu Shanmugasundaram, …
Hardcover
R5,150
Discovery Miles 51 500
|