![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Numerical analysis
'Et moi, ..., si j'avait su comment en reveru.r, One service mathematics has rendered the je n'y scrais point aIle.' human race. It has put common sense back Jules Verne where it belongs, on the topmost shelf next to the dusty canister labelled 'discarded non The series is divergent; therefore we may be sense'. Eric T. Bell able to do something with it. o. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series."
The purpose of the volume is to bring forward recent trends of research in hypercomplex analysis. The list of contributors includes first rate mathematicians and young researchers working on several different aspects in quaternionic and Clifford analysis. Besides original research papers, there are papers providing the state-of-the-art of a specific topic, sometimes containing interdisciplinary fields. The intended audience includes researchers, PhD students, postgraduate students who are interested in the field and in possible connection between hypercomplex analysis and other disciplines, including mathematical analysis, mathematical physics, algebra.
Topics in Matroid Theory provides a brief introduction to matroid theory with an emphasis on algorithmic consequences.Matroid theory is at the heart of combinatorial optimization and has attracted various pioneers such as Edmonds, Tutte, Cunningham and Lawler among others. Matroid theory encompasses matrices, graphs and other combinatorial entities under a common, solid algebraicframework, thereby providing the analytical tools to solve related difficult algorithmic problems. The monograph contains a rigorousaxiomatic definition of matroids along with other necessary concepts such as duality, minors, connectivity and representability asdemonstrated in matrices, graphs and transversals. The author also presents a deep decomposition result in matroid theory that providesa structural characterization of graphic matroids, and show how this can be extended to signed-graphic matroids, as well as the immediatealgorithmic consequences. "
This book constitutes thoroughly revised selected papers of the 5th International Conference on Numerical Analysis and ItsApplications, NAA 2012, held in Lozenetz, Bulgaria, in June 2012. The 65 revised papers presented were carefully reviewed and selected from various submissions. The papers cover a broad area of topics of interest such as numerical approximation and computational geometry; numerical linear algebra and numerical solution of transcendental equation; numerical methods for differential equations; numerical stochastics, numerical modeling; and high performance scientific computing."
This book constitutes the refereed proceedings of the 7th International Workshop on Algorithms and Computation, WALCOM 2013, held in Kharagpur, India, in February 2013. The 29 full papers presented were carefully reviewed and selected from 86 submissions. The papers are organized in topical sections on computational geometry, approximation and randomized algorithms, parallel and distributed computing, graph algorithms, complexity and bounds, and graph drawing.
Approximation theory and numerical analysis are central to the creation of accurate computer simulations and mathematical models. Research in these areas can influence the computational techniques used in a variety of mathematical and computational sciences. This collection of contributed chapters, dedicated to renowned mathematician Gradimir V. Milovanovi, represent the recent work of experts in the fields of approximation theory and numerical analysis. These invited contributions describe new trends in these important areas of research including theoretic developments, new computational algorithms, and multidisciplinary applications. Special features of this volume: - Presents results and approximation methods in various computational settings including: polynomial and orthogonal systems, analytic functions, and differential equations. - Provides a historical overview of approximation theory and many of its subdisciplines; - Contains new results from diverse areas of research spanning mathematics, engineering, and the computational sciences. "Approximation and Computation" is intended for mathematicians and researchers focusing on approximation theory and numerical analysis, but can also be a valuable resource to students and researchers in the computational and applied sciences."
This book deals with the numerical analysis and efficient numerical treatment of high-dimensional integrals using sparse grids and other dimension-wise integration techniques with applications to finance and insurance. The book focuses on providing insights into the interplay between coordinate transformations, effective dimensions and the convergence behaviour of sparse grid methods. The techniques, derivations and algorithms are illustrated by many examples, figures and code segments. Numerical experiments with applications from finance and insurance show that the approaches presented in this book can be faster and more accurate than (quasi-) Monte Carlo methods, even for integrands with hundreds of dimensions.
Readers of this book will learn how to solve a wide range of
optimal investment problems arising in finance and economics.
The book contains a selection of high quality papers, chosen among the best presentations during the International Conference on Spectral and High-Order Methods (2009), and provides an overview of the depth and breadth of the activities within this important research area. The carefully reviewed selection of the papers will provide the reader with a snapshot of state-of-the-art and help initiate new research directions through the extensive bibliography.
In recent years there has been an increasing interest in problems involving closed form evaluations of (and representations of the Riemann Zeta function at positive integer arguments as) various families of series associated with the Riemann Zeta function ((s), the Hurwitz Zeta function ((s, a), and their such extensions and generalizations as (for example) Lerch's transcendent (or the Hurwitz-Lerch Zeta function) iI>(z, s, a). Some of these developments have apparently stemmed from an over two-century-old theorem of Christian Goldbach (1690-1764), which was stated in a letter dated 1729 from Goldbach to Daniel Bernoulli (1700-1782), from recent rediscoveries of a fairly rapidly convergent series representation for ((3), which is actually contained in a 1772 paper by Leonhard Euler (1707-1783), and from another known series representation for ((3), which was used by Roger Apery (1916-1994) in 1978 in his celebrated proof of the irrationality of ((3). This book is motivated essentially by the fact that the theories and applications of the various methods and techniques used in dealing with many different families of series associated with the Riemann Zeta function and its aforementioned relatives are to be found so far only"in widely scattered journal articles. Thus our systematic (and unified) presentation of these results on the evaluation and representation of the Zeta and related functions is expected to fill a conspicuous gap in the existing books dealing exclusively with these Zeta functions."
Arguably, many industrial optimization problems are of the
multiobjective type. The present work, after providing a survey of
the state of the art in multiobjective optimization, gives new
insight into this important mathematical field by consequently
taking up the viewpoint of differential geometry. This approach,
unprecedented in the literature, very naturally results in a
generalized homotopy method for multiobjective optimization which
is theoretically well-founded and numerically efficient. The power
of the new method is demonstrated by solving two real-life problems
of industrial optimization.
Discrete Event Systems: Diagnosis and Diagnosability addresses the problem of fault diagnosis of Discrete Event Systems (DESs). This book provides the basic techniques and approaches necessary for the design of an efficient fault diagnosis system for a wide range of modern engineering applications. This book classifies the different techniques and approaches according to several criteria such as: modeling tools (Automata, Petri nets, Templates) that is used to construct the model; the information (qualitative based on events occurrences and/or states outputs, quantitative based on signal processing, data analysis) that is needed to analyze and achieve the diagnosis; the decision structure (centralized, decentralized) that is required to achieve the diagnosis; as well as the complexity (polynomial, exponential) of the algorithm that is used to determine the set of faults that the proposed approach is able to diagnose as well as the delay time required for this diagnosis. The goal of this classification is to select the efficient method to achieve the fault diagnosis according to the application constraints. This book will include illustrated examples of the presented methods and techniques as well as a discussion on the application of these methods on several real-world problems.
This book illustrates how models of complex systems are built up and provides indispensable mathematical tools for studying their dynamics. This second edition includes more recent research results and many new and improved worked out examples and exercises.
This volume contains the Proceedings of the International Workshop Variational Methods For Discontinuous Structures, which was jointly organized by the Dipar timento di Matematica Francesco Brioschi of Milano Politecnico and the Interna tional School for Advanced Studies (SISSA) of Trieste. The Conference took place at Villa Erba Antica (Cernobbio) on the Lago di Como on July 4- 6, 2001. In past years the calculus of variations faced mainly the study of continuous structures, say particularly problems with smooth solutions. One of the deepest and more delicate problems was the regularity of weak solutions. More recently, new sophisticated tools have been introduced in order to study discontinuities: in many variational problems solutions develop singularities, and sometimes the most interesting part of a solution is the singularity itself. The conference intended to focus on recent developments in this direction. Some of the talks were devoted to differential or variational modelling of image segmentation, occlusion and textures synthesizing in image analysis, varia tional description of micro-magnetic materials, dimension reduction and structured deformations in elasticity and plasticity, phase transitions, irrigation and drainage, evolution of crystalline shapes; in most cases theoretical and numerical analysis of these models were provided. viii Preface Other talks were dedicated to specific problems of the calculus of variations: variational theory of weak or lower-dimensional structures, optimal transport prob lems with free Dirichlet regions, higher order variational problems, symmetrization in the BV framework."
This scholarly text provides an introduction to the numerical methods used to model partial differential equations, with focus on atmospheric and oceanic flows. The book covers both the essentials of building a numerical model and the more sophisticated techniques that are now available. Finite difference methods, spectral methods, finite element method, flux-corrected methods and TVC schemes are all discussed. Throughout, the author keeps to a middle ground between the theorem-proof formalism of a mathematical text and the highly empirical approach found in some engineering publications. The book establishes a concrete link between theory and practice using an extensive range of test problems to illustrate the theoretically derived properties of various methods. From the reviews: "...the books unquestionable advantage is the clarity and simplicity in presenting virtually all basic ideas and methods of numerical analysis currently actively used in geophysical fluid dynamics." Physics of Atmosphere and Ocean
Mathematics is playing an ever more important role in the physical and biological sciences, provoking a blurring of boundaries between scientific dis ciplines and a resurgence of interest in the modern as well as the classical techniques of applied mathematics. This renewal of interest, both in research and teaching, has led to the establishment of the series: Texts in Applied Mathe matics (TAM). The development of new courses is a natural consequence of a high level of excitement on the research frontier as newer techniques, such as numerical and symbolic computer systems, dynamical systems, and chaos, mix with and reinforce the traditional methods of applied mathematics. Thus, the purpose of this textbook series is to meet the current and future needs of these advances and encourage the teaching of new courses. TAM will publish textbooks suitable for use in advanced undergraduate and beginning graduate courses, and will complement the Applied Mathematical Sciences (AMS) series, which will focus on advanced textbooks and research level monographs. Preface A successful concurrent numerical simulation requires physics and math ematics to develop and analyze the model, numerical analysis to develop solution methods, and computer science to develop a concurrent implemen tation. No single course can or should cover all these disciplines. Instead, this course on concurrent scientific computing focuses on a topic that is not covered or is insufficiently covered by other disciplines: the algorith mic structure of numerical methods.
This book gives a systematic account of the facts concerning complexes of differential operators on differentiable manifolds. The central place is occupied by the study of general complexes of differential operators between sections of vector bundles. Although the global situation often contains nothing new as compared with the local one (that is, complexes of partial differential operators on an open subset of ]Rn), the invariant language allows one to simplify the notation and to distinguish better the algebraic nature of some questions. In the last 2 decades within the general theory of complexes of differential operators, the following directions were delineated: 1) the formal theory; 2) the existence theory; 3) the problem of global solvability; 4) overdetermined boundary problems; 5) the generalized Lefschetz theory of fixed points, and 6) the qualitative theory of solutions of overdetermined systems. All of these problems are reflected in this book to some degree. It is superfluous to say that different directions sometimes whimsically intersect. Considerable attention is given to connections and parallels with the theory of functions of several complex variables. One of the reproaches avowed beforehand by the author consists of the shortage of examples. The framework of the book has not permitted their number to be increased significantly. Certain parts of the book consist of results obtained by the author in 1977-1986. They have been presented in seminars in Krasnoyarsk, Moscow, Ekaterinburg, and N ovosi birsk.
'Et moi, ..., si j'avait su comment en revenir, One service mathematics has rendered the je n'y se.rais point aile.' human race. It has put common sense back Jules Verne where it belongs, on be topmost shelf next to the dusty canister labelled 'disc: arded non sense'. The series is divergent; therefore we may be able to do something with it. Eric T. Bell O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series."
This monograph is a slightly revised version of my PhD thesis [86], com pleted in the Department of Computer Science at the University of Edin burgh in June 1988, with an additional chapter summarising more recent developments. Some of the material has appeared in the form of papers [50,88]. The underlying theme of the monograph is the study of two classical problems: counting the elements of a finite set of combinatorial structures, and generating them uniformly at random. In their exact form, these prob lems appear to be intractable for many important structures, so interest has focused on finding efficient randomised algorithms that solve them ap proxim~ly, with a small probability of error. For most natural structures the two problems are intimately connected at this level of approximation, so it is natural to study them together. At the heart of the monograph is a single algorithmic paradigm: sim ulate a Markov chain whose states are combinatorial structures and which converges to a known probability distribution over them. This technique has applications not only in combinatorial counting and generation, but also in several other areas such as statistical physics and combinatorial optimi sation. The efficiency of the technique in any application depends crucially on the rate of convergence of the Markov chain.
This book is devoted to the relation between two different concepts of integrability: the complete integrability of complex analytical Hamiltonian systems and the integrability of complex analytical linear differential equations. For linear differential equations, integrability is made precise within the framework of differential Galois theory. The connection of these two integrability notions is given by the variational equation (i.e. linearized equation) along a particular integral curve of the Hamiltonian system. The underlying heuristic idea, which motivated the main results presented in this monograph, is that a necessary condition for the integrability of a Hamiltonian system is the integrability of the variational equation along any of its particular integral curves. This idea led to the algebraic non-integrability criteria for Hamiltonian systems. These criteria can be considered as generalizations of classical non-integrability results by Poincare and Lyapunov, as well as more recent results by Ziglin and Yoshida. Thus, by means of the differential Galois theory it is not only possible to understand all these approaches in a unified way but also to improve them. Several important applications are also included: homogeneous potentials, Bianchi IX cosmological model, three-body problem, Henon-Heiles system, etc. The book is based on the original joint research of the author with J.M. Peris, J.P. Ramis and C. Simo, but an effort was made to present these achievements in their logical order rather than their historical one. The necessary background on differential Galois theory and Hamiltonian systems is included, and several new problems and conjectures which open new lines of research are proposed. - - - The book is an excellent introduction to non-integrability methods in Hamiltonian mechanics and brings the reader to the forefront of research in the area. The inclusion of a large number of worked-out examples, many of wide applied interest, is commendable. There are many historical references, and an extensive bibliography. (Mathematical Reviews) For readers already prepared in the two prerequisite subjects [differential Galois theory and Hamiltonian dynamical systems], the author has provided a logically accessible account of a remarkable interaction between differential algebra and dynamics. (Zentralblatt MATH)
Looking back at the years that have passed since the realization of the very first electronic, multi-purpose computers, one observes a tremendous growth in hardware and software performance. Today, researchers and engi neers have access to computing power and software that can solve numerical problems which are not fully understood in terms of existing mathemati cal theory. Thus, computational sciences must in many respects be viewed as experimental disciplines. As a consequence, there is a demand for high quality, flexible software that allows, and even encourages, experimentation with alternative numerical strategies and mathematical models. Extensibil ity is then a key issue; the software must provide an efficient environment for incorporation of new methods and models that will be required in fu ture problem scenarios. The development of such kind of flexible software is a challenging and expensive task. One way to achieve these goals is to in vest much work in the design and implementation of generic software tools which can be used in a wide range of application fields. In order to provide a forum where researchers could present and discuss their contributions to the described development, an International Work shop on Modern Software Tools for Scientific Computing was arranged in Oslo, Norway, September 16-18, 1996. This workshop, informally referred to as Sci Tools '96, was a collaboration between SINTEF Applied Mathe matics and the Departments of Informatics and Mathematics at the Uni versity of Oslo."
OO It is a matter of general consensus that in the last decade the H _ optimization for robust control has dominated the research effort in control systems theory. Much attention has been paid equally to the mathematical instrumentation and the computational aspects. There are several excellent monographs that cover the standard topics in the area. Among the recent issues we have to cite here Linear Robust Control authored by Green and Limebeer (Prentice Hall 1995), Robust Controller Design Using Normalized Coprime Factor Plant Descriptions - by McFarlane and Glover (Springer Verlag 1989), Robust and Optimal Control - by Zhou, Doyle and Glover (Prentice Hall 1996). Thus, when the authors of the present monograph decided to start the work they were confronted with a very rich literature on the subject. However two reasons motivated their initiative. The first concerns the theory in which the whole development of the book was embedded. As is well known, there are several ways of approach oo ing H and robust control theory. Here we mention three relevant direc tions chronologically ordered: a) the first makes use of a generalization of the Beurling-Lax theorem to Krein spaces; b) the second makes use of a generalization of Nevanlinna-Pick interpolation theory and commutant lifting theorem; c) the third, and probably the most attractive from an el evate engineering viewpoint, is the two Riccati equations based approach which offers a complete solution in state space form."
With this proceedings volume a new series of publications is started which will present the results of interdisciplinary research activities in the fields of materials science, coupling of biological and electronic systems and commu nication ergonomy. It will contain the contributions of the participants of the caesarium, a conference caesar will organize annually. The 1 st caesarium was held in Bonn on November 17-19, 1999 concentrating on Smart Materials. With the caesarium the recently founded research center caesar (center of advanced european studies and research) creates a forum for discussion of new developments in its fields of activities. caesar is an international research center, focusing on applied, interdisciplinary research projects in the areas of science and engineering. It was established as an independent foundation under private law as part of the compensatory actions under the Berlin/Bonn law of April 26, 1994 to support the structural change in the region of Bonn, when the German Government moved from Bonn to Berlin. The main donors of caesar are the Federal Republic of Germany and the State of North Rhine-Westphalia. A Board consisting of state and federal leg islators, members from the research community and industry and a Scientific Advisory Council assist caesar in all decisions concerning administration and research.
Typing plays an important role in software development. Types can be consid ered as weak specifications of programs and checking that a program is of a certain type provides a verification that a program satisfies such a weak speci fication. By translating a problem specification into a proposition in constructive logic, one can go one step further: the effectiveness and unifonnity of a con structive proof allows us to extract a program from a proof of this proposition. Thus by the "proposition-as-types" paradigm one obtains types whose elements are considered as proofs. Each of these proofs contains a program correct w.r.t. the given problem specification. This opens the way for a coherent approach to the derivation of provably correct programs. These features have led to a "typeful" programming style where the classi cal typing concepts such as records or (static) arrays are enhanced by polymor phic and dependent types in such a way that the types themselves get a complex mathematical structure. Systems such as Coquand and Huet's Calculus of Con structions are calculi for computing within extended type systems and provide a basis for a deduction oriented mathematical foundation of programming. On the other hand, the computational power and the expressive (impred icativity !) of these systems makes it difficult to define appropriate semantics.
Given a function x(t) E c{n) [a, bj, points a = al < a2 < ...< ar = b and subsets aj of {0,1,"',n -1} with L:j=lcard(aj) = n, the classical interpolation problem is to find a polynomial P - (t) of degree at most (n - 1) n l such that P~~l(aj) = x{i)(aj) for i E aj, j = 1,2," r. In the first four chapters of this monograph we shall consider respectively the cases: the Lidstone interpolation (a = 0, b = 1, n = 2m, r = 2, al = a2 = {a, 2", 2m - 2}), the Hermite interpolation (aj = {a, 1,' ", kj - I}), the Abel - Gontscharoff interpolation (r = n, ai ~ ai+l, aj = {j - I}), and the several particular cases of the Birkhoff interpolation. For each of these problems we shall offer: (1) explicit representations of the interpolating polynomial; (2) explicit representations of the associated error function e(t) = x(t) - Pn-l(t); and (3) explicit optimal/sharp constants Cn,k so that the inequalities k I e{k)(t) I < C k(b -at- max I x{n)(t) I, 0 n - 1 n -, a$t$b - are satisfied. In addition, for the Hermite interpolation we shall provide explicit opti- mal/sharp constants C(n,p, v) so that the inequality II e(t) lip:::; C(n,p, v) II x{n)(t) 1111, p, v ~ 1 holds. |
You may like...
Fundamentals of Relational Database…
S. Sumathi, S. Esakkirajan
Hardcover
R5,309
Discovery Miles 53 090
Facts in Mesmerism - With Reasons for a…
Chauncy Hare Townshend
Paperback
R573
Discovery Miles 5 730
Communications and Multimedia Security…
Ralf Steinmetz, Jana Dittmann, …
Hardcover
R5,380
Discovery Miles 53 800
Proceedings of the 2nd Workshop on…
Marco Baldi, Stefano Tomasin, …
Hardcover
|