![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Numerical analysis
Algorithms for the numerical computation of definite integrals have been proposed for more than 300 years, but practical considerations have led to problems of ever-increasing complexity, so that, even with current computing speeds, numerical integration may be a difficult task. High dimension and complicated structure of the region of integration and singularities of the integrand are the main sources of difficulties.
This book offers a mathematical update of the state of the art of the research in the field of mathematical and numerical models of the circulatory system. It is structured into different chapters, written by outstanding experts in the field. Many fundamental issues are considered, such as: the mathematical representation of vascular geometries extracted from medical images, modelling blood rheology and the complex multilayer structure of the vascular tissue, and its possible pathologies, the mechanical and chemical interaction between blood and vascular walls, and the different scales coupling local and systemic dynamics. All of these topics introduce challenging mathematical and numerical problems, demanding for advanced analysis and efficient simulation techniques, and pay constant attention to applications of relevant clinical interest. This book is addressed to graduate students and researchers in the field of bioengineering, applied mathematics and medicine, wishing to engage themselves in the fascinating task of modeling the cardiovascular system or, more broadly, physiological flows.
In the spectrum of mathematics, graph theory which studies a mathe matical structure on a set of elements with a binary relation, as a recognized discipline, is a relative newcomer. In recent three decades the exciting and rapidly growing area of the subject abounds with new mathematical devel opments and significant applications to real-world problems. More and more colleges and universities have made it a required course for the senior or the beginning postgraduate students who are majoring in mathematics, computer science, electronics, scientific management and others. This book provides an introduction to graph theory for these students. The richness of theory and the wideness of applications make it impossi ble to include all topics in graph theory in a textbook for one semester. All materials presented in this book, however, I believe, are the most classical, fundamental, interesting and important. The method we deal with the mate rials is to particularly lay stress on digraphs, regarding undirected graphs as their special cases. My own experience from teaching out of the subject more than ten years at University of Science and Technology of China (USTC) shows that this treatment makes hardly the course di: fficult, but much more accords with the essence and the development trend of the subject."
The focus from most Virtual Reality (VR) systems lies mainly on the visual immersion of the user. But the emphasis only on the visual perception is insufficient for some applications as the user is limited in his interactions within the VR. Therefore the textbook presents the principles and theoretical background to develop a VR system that is able to create a link between physical simulations and haptic rendering which requires update rates of 1\, kHz for the force feedback. Special attention is given to the modeling and computation of contact forces in a two-finger grasp of textiles. Addressing further the perception of small scale surface properties like roughness, novel algorithms are presented that are not only able to consider the highly dynamic behaviour of textiles but also capable of computing the small forces needed for the tactile rendering at the contact point. Final analysis of the entire VR system is being made showing the problems and the solutions found in the work
'Et moi, ..., si j'avait su comment en revenir, One service mathematics has rendered the je n'y serais point aile.' human race. It has put common sense back Jules Verne where it belongs, on the topmost shelf next to the dusty canister labelled 'discarded n- sense'. The series is divergent; therefore we may be able to do something with it. Eric T. Bell O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non- linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics ...'; 'One service logic has rendered com- puter science ...'; 'One service category theory has rendered mathematics ...'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series.
At first sight discrete and fractional programming techniques appear to be two com pletely unrelated fields in operations research. We will show how techniques in both fields can be applied separately and in a combined form to particular models in location analysis. Location analysis deals with the problem of deciding where to locate facilities, con sidering the clients to be served, in such a way that a certain criterion is optimized. The term "facilities" immediately suggests factories, warehouses, schools, etc., while the term "clients" refers to depots, retail units, students, etc. Three basic classes can be identified in location analysis: continuous location, network location and dis crete location. The differences between these fields arise from the structure of the set of possible locations for the facilities. Hence, locating facilities in the plane or in another continuous space corresponds to a continuous location model while finding optimal facility locations on the edges or vertices of a network corresponds to a net work location model. Finally, if the possible set of locations is a finite set of points we have a discrete location model. Each of these fields has been actively studied, arousing intense discussion on the advantages and disadvantages of each of them. The usual requirement that every point in the plane or on the network must be a candidate location point, is one of the mostly used arguments "against" continuous and network location models."
Everything should be made as simple as possible, but not simpler. (Albert Einstein, Readers Digest, 1977) The modern practice of creating technical systems and technological processes of high effi.ciency besides the employment of new principles, new materials, new physical effects and other new solutions ( which is very traditional and plays the key role in the selection of the general structure of the object to be designed) also includes the choice of the best combination for the set of parameters (geometrical sizes, electrical and strength characteristics, etc.) concretizing this general structure, because the Variation of these parameters ( with the structure or linkage being already set defined) can essentially affect the objective performance indexes. The mathematical tools for choosing these best combinations are exactly what is this book about. With the advent of computers and the computer-aided design the pro bations of the selected variants are usually performed not for the real examples ( this may require some very expensive building of sample op tions and of the special installations to test them ), but by the analysis of the corresponding mathematical models. The sophistication of the mathematical models for the objects to be designed, which is the natu ral consequence of the raising complexity of these objects, greatly com plicates the objective performance analysis. Today, the main (and very often the only) available instrument for such an analysis is computer aided simulation of an object's behavior, based on numerical experiments with its mathematical model.
This book is a thoroughly revised result, updated to mid-1995, of the NATO Advanced Research Workshop on "Intelligent Learning Environments: the case of geometry", held in Grenoble, France, November 13-16, 1989. The main aim of the workshop was to foster exchanges among researchers who were concerned with the design of intelligent learning environments for geometry. The problem of student modelling was chosen as a central theme of the workshop, insofar as geometry cannot be reduced to procedural knowledge and because the significance of its complexity makes it of interest for intelligent tutoring system (ITS) development. The workshop centred around the following themes: modelling the knowledge domain, modelling student knowledge, design ing "didactic interaction", and learner control. This book contains revised versions of the papers presented at the workshop. All of the chapters that follow have been written by participants at the workshop. Each formed the basis for a scheduled presentation and discussion. Many are suggestive of research directions that will be carried out in the future. There are four main issues running through the papers presented in this book: * knowledge about geometry is not knowledge about the real world, and materialization of geometrical objects implies a reification of geometry which is amplified in the case of its implementation in a computer, since objects can be manipulated directly and relations are the results of actions (Laborde, Schumann). This aspect is well exemplified by research projects focusing on the design of geometric microworlds (Guin, Laborde).
hereafter calledvolume the of In a volume study previous (H6non 1997, I), the restricted initiated. families in problem (We generating three body was recallthat families defined asthe limits offamilies of are periodic generating determinationof orbitsfor Themain wasfoundto lieinthe 4 problem p 0.) bifurcation wheretwo the betweenthebranches ata ormore orbit, junctions A solutionto this was familiesof orbits intersect. partial problem generating and sidesof theuseofinvariants: Manysimple symmetries passage. givenby In the evolution of the bifurcations can be solved in this way. particular, orbits be described almost nine natural families of can completely. periodic become i.e.when thenumber of asthe bifurcations morecomplex, However, fails. the bifurcation orbit themethod families increases, passingthrough of This volume describes another to the a approach problem, consisting in of bifurcation ofthe families the a analysis vicinity detailed, quantitative used in Vol. I. orbit. This moreworkthan the requires qualitativeapproach in at to deter it has the of least, However, advantage allowing us, principle branches Infact it morethanthat: minein allcaseshowthe are joined. gives almost all the first order we will see in asymptotic approxima that, cases, the families in the ofthe bifurcation can be derived. tion of neighbourhood found in with This a comparison numerically allows, particular, quantitative families. and The 11 dealswiththerelevant definitions Chapter generalequations. of describedin 12 16.The ofbifurcations 1 is Chaps. study type quantitative it is described in 17 23. 3 of 2 ismore Chaps. Type analysis type involved; its hadnot been at thetime of isevenmore completed complex; analysis yet writing.
This book constitutes thoroughly revised selected papers of the 5th International Conference on Numerical Analysis and ItsApplications, NAA 2012, held in Lozenetz, Bulgaria, in June 2012. The 65 revised papers presented were carefully reviewed and selected from various submissions. The papers cover a broad area of topics of interest such as numerical approximation and computational geometry; numerical linear algebra and numerical solution of transcendental equation; numerical methods for differential equations; numerical stochastics, numerical modeling; and high performance scientific computing."
Thework described in this has somewhat erratically, over monograph grown, of than a more interest inthe was firstaroused period thirty My subject years. thebeautiful and inBroucke.'sthesis also by see computations drawings (1963; Broucke where familiesof orbits in the restricted three 1968), periodic body for the Earth Moon ratio = were mass problem investigated (/.I 0.012155). These that natural for the existence ofthe a explanation drawingssuggested observed familiesand for the found the of orbits could be shapes perhaps by to the limit ] 0. a recourse y As first it a to as as step, appeared catalog completely possible necessary the orbits obtained in this limit. orbits of the first generaiing Generating hadbeen studied andother authors. Poincar6 specZes by (1892) Surprisingly, the two other had been Orbits ofthe however, species apparently neglected. second orbits with or consecutive a species, collisions, present comparatively the ofthe simple problem, only two body problem; no using equations yet had been done.An ofthe systematic ever constituent arcs study inventory was inH6non presented (1968). Also little work had been done on farmlies of orbits of the third very to Hill's A numerical species, was corresponding problem. investigation pub lished inR6non (1969).
Everybody is current in a world surrounded by computer. Computers determine our professional activity and penetrate increasingly deeper into our everyday life. Therein we also need increasingly refined c- puter technology. Sometimes we think that the next generation of c- puter will satisfy all our dreams, giving us hope that most of our urgent problems will be solved very soon. However, the future comes and il- sions dissipate. This phenomenon occurs and vanishes sporadically, and, possibly, is a fundamental law of our life. Experience shows that indeed 'systematically remaining' problems are mainly of a complex tech- logical nature (the creation of new generation of especially perfect - croschemes, elements of memory, etc. ). But let us note that amongst these problems there are always ones solved by our purely intellectual efforts alone. Progress in this direction does not require the invention of any 'superchip' or other similar elements. It is important to note that the results obtained in this way very often turn out to be more significant than the 'fruits' of relevant technological progress. The hierarchical asymptotic analytical-numerical methods can be - garded as results of such 'purely intellectual efforts'. Their application allows us to simplify essentially computer calculational procedures and, consequently, to reduce the calculational time required. It is obvious that this circumstance is very attractive to any computer user.
Real Analysis is a discipline of intensive study in many institutions of higher education, because it contains useful concepts and fundamental results in the study of mathematics and physics, of the technical disciplines and geometry. This book is the first one of its kind that solves mathematical analysis problems with all four related main software Matlab, Mathcad, Mathematica and Maple. Besides the fundamental theoretical notions, the book contains many exercises, solved both mathematically and by computer, using: Matlab 7.9, Mathcad 14, Mathematica 8 or Maple 15 programming languages. The book is divided into nine chapters, which illustrate the application of the mathematical concepts using the computer. Each chapter presents the fundamental concepts and the elements required to solve the problems contained in that chapter and finishes with some problems left to be solved by the readers. The calculations can be verified by using a specific software such as Matlab, Mathcad, Mathematica or Maple.
Verena Puchner evaluates and compares statistical matching and selected SAE methods. Due to the fact that poverty estimation at regional level based on EU-SILC samples is not of adequate accuracy, the quality of the estimations should be improved by additionally incorporating micro census data. The aim is to find the best method for the estimation of poverty in terms of small bias and small variance with the aid of a simulated artificial "close-to-reality" population. Variables of interest are imputed into the micro census data sets with the help of the EU-SILC samples through regression models including selected unit-level small area methods and statistical matching methods. Poverty indicators are then estimated. The author evaluates and compares the bias and variance for the direct estimator and the various methods. The variance is desired to be reduced by the larger sample size of the micro census.
Providing an up-to-date overview of the geometry of manifolds with non-negative sectional curvature, this volume gives a detailed account of the most recent research in the area. The lectures cover a wide range of topics such as general isometric group actions, circle actions on positively curved four manifolds, cohomogeneity one actions on Alexandrov spaces, isometric torus actions on Riemannian manifolds of maximal symmetry rank, n-Sasakian manifolds, isoparametric hypersurfaces in spheres, contact CR and CR submanifolds, Riemannian submersions and the Hopf conjecture with symmetry. Also included is an introduction to the theory of exterior differential systems.
Primary Audience for the Book * Specialists in numerical computations who are interested in algorithms with automatic result verification. * Engineers, scientists, and practitioners who desire results with automatic verification and who would therefore benefit from the experience of suc cessful applications. * Students in applied mathematics and computer science who want to learn these methods. Goal Of the Book This book contains surveys of applications of interval computations, i. e. , appli cations of numerical methods with automatic result verification, that were pre sented at an international workshop on the subject in EI Paso, Texas, February 23-25, 1995. The purpose of this book is to disseminate detailed and surveyed information about existing and potential applications of this new growing field. Brief Description of the Papers At the most fundamental level, interval arithmetic operations work with sets: The result of a single arithmetic operation is the set of all possible results as the operands range over the domain. For example, [0. 9,1. 1] + [2. 9,3. 1] = [3. 8,4. 2], where [3. 8,4. 2] = {x + ylx E [0. 9,1. 1] and y E [3. 8,4. 2]}. The power of interval arithmetic comes from the fact that (i) the elementary operations and standard functions can be computed for intervals with formulas and subroutines; and (ii) directed roundings can be used, so that the images of these operations (e. g.
The finite element method (FEM) has been understood, at least in principle, for more than 50 years. The integral formulation on which it is based has been known for a longer time (thanks to the work of Galerkin, Ritz, Courant and Hilbert,1.4 to mention the most important). However, the method could not be applied in a practical way since it involved the solution of a large number of linear or non-linear algebraic equations. Today it is quite common, with the aid of computers, to solve non-linear algebraic problems of several thousand equations. The necessary numerical methods and programming techniques are now an integral part of the teaching curriculum in most engineering schools. Mechanical engineers, confronted with very complicated structural problems, were the first to take advantage of advanced computational methods and high level languages (FORTRAN) to transform the mechanical models into algebraic equations (1956). In recent times (1960), the FEM has been studied by applied mathematicians and, having received rigorous treatment, has become a part of the more general study of partial differential equations, gradually replacing the finite difference method which had been considered the universal tool to solve these types of problems.
Optimization Approaches for Solving String Selection Problems provides an overview of optimization methods for a wide class of genomics-related problems in relation to the string selection problems. This class of problems addresses the recognition of similar characteristics or differences within biological sequences. Specifically, this book considers a large class of problems, ranging from the closest string and substring problems, to the farthest string and substring problems, to the far from most string problem. Each problem includes a detailed description, highlighting both biological and mathematical features, and presents state-of-the-art approaches. This Brief provides a quick introduction of optimization methods for string selection problems for young scientists and a detailed description of the mathematical and computational methods developed for experts in the field of optimization who want to deepen their understanding of the string selection problems. Researchers, practitioners and graduate students in the field of Computer Science, Operation Research, Mathematics, Computational Biology and Biomedicine will find this book useful.
In this volume, designed for computational scientists and engineers working on applications requiring the memories and processing rates of large-scale parallelism, leading algorithmicists survey their own field-defining contributions, together with enough historical and bibliographical perspective to permit working one's way to the frontiers. This book is distinguished from earlier surveys in parallel numerical algorithms by its extension of coverage beyond core linear algebraic methods into tools more directly associated with partial differential and integral equations - though still with an appealing generality - and by its focus on practical medium-granularity parallelism, approachable through traditional programming languages. Several of the authors used their invitation to participate as a chance to stand back and create a unified overview, which nonspecialists will appreciate.
This book contains thirty-six papers from among the forty-five papers presented at the Third International Conference on Fibonacci Numbers and Their Applications which was held in Pisa, Italy from July 25 to July 29, 1988 in honor of Leonardo de Pisa. These papers have been selected after a careful review by well known referees in the field, and they range from elementary number theory to probability and statistics. The Fibonacci numbers are their unifying bond. It is anticipated that this book, like its two predecessors, will be useful to research workers and graduate students interested in the Fibonacci numbers and their applications. August 1989 The Editors Gerald E. Bergum South Dakota State University Brookings, South Dakota, U. S. A. Andreas N. Philippou Ministry of Education Nicosia, Cyprus Alwyn F. Horadam University of New England Armidale N. S. W. , Australia xv THE ORGANIZING COMMITTEES LOCAL COMMITTEE INTERNATIONAL COMMITTEE Dvornicich, Roberto, Chairman Horadam, A. F. (Australia), Co-chairman Filipponi, Piero Philippou, A. N. (Cyprus), Co-chairman Perelli, Alberto Ando, S. (Japan) Viola, Carlo Bergum, G. E. (U. S. A. ) Zannier, Umberto Johnson, M. B. (U. S. A. ) Kiss, P. (Hungary) Tijdeman, Robert (The Netherlands) Tognetti, K. (Australia) XVII LIST OF CONTRIBUTORS TO THE CONFERENCE' ADLER, I. , RR 1, Box 532, North Bennington, VT 05257-9748. "Separating the Biological from the Mathematical Aspects of Phyllotaxis. " *AKRITAS, A. G. , (coauthor P. G. Bradford). "The Role of the Fibonacci Sequence in the Isolation of the Real Roots of Polynomial Equations.
Elasticity theory is a classical discipline. The mathematical theory of elasticity in mechanics, especially the linearized theory, is quite mature, and is one of the foundations of several engineering sciences. In the last twenty years, there has been significant progress in several areas closely related to this classical field, this applies in particular to the following two areas. First, progress has been made in numerical methods, especially the development of the finite element method. The finite element method, which was independently created and developed in different ways by sci entists both in China and in the West, is a kind of systematic and modern numerical method for solving partial differential equations, especially el liptic equations. Experience has shown that the finite element method is efficient enough to solve problems in an extremely wide range of applica tions of elastic mechanics. In particular, the finite element method is very suitable for highly complicated problems. One of the authors (Feng) of this book had the good fortune to participate in the work of creating and establishing the theoretical basis of the finite element method. He thought in the early sixties that the method could be used to solve computational problems of solid mechanics by computers. Later practice justified and still continues to justify this point of view. The authors believe that it is now time to include the finite element method as an important part of the content of a textbook of modern elastic mechanics."
The rapid development of numerical analysis as a subject in its own right, as well as its increasing applicability to mathematical modeling in sciences and engineering, have led to a plethora of journals in its various subdisciplines, ranging from Computational Fluid Dynamics to Linear Algebra. These journals obviously represent the frontiers of research in their area. However, each specialization of numerical analysis is intricately linked and a broad knowledge of the subject is necessary for the solution of any "real" problem. Such an overview cannot be successfully achieved through either a single volume or a journal since the subject is constantly evolving and researchers need to be kept continuously informed of recent developments in a wide range of topics. Acta Numerica is an annual publication containing invited survey papers by leading researchers in a number of areas of applied mathematics. The papers included present overviews of recent developments in their area and provide "state of the art" techniques and analysis. Volume 1 aptly represents the flavor of the series and includes papers on such diverse topics as wavelets, optimization, and dynamical systems.
This book gives a detailed and self-contained introduction into the theory of spectral functions, with an emphasis on their applications to quantum field theory. All methods are illustrated with applications to specific physical problems from the forefront of current research, such as finite-temperature field theory, D-branes, quantum solitons and noncommutativity. In the first part of the book, necessary background information on differential geometry and quantization, including less standard material, is collected. The second part of the book contains a detailed description of main spectral functions and methods of their calculation. In the third part, the theory is applied to several examples (D-branes, quantum solitons, anomalies, noncommutativity). This book addresses advanced graduate students and researchers in mathematical physics with basic knowledge of quantum field theory and differential geometry. The aim is to prepare readers to use spectral functions in their own research, in particular in relation to heat kernels and zeta functions. |
You may like...
Power Maths 2nd Edition Practice Book 6C
Tony Staneff, Josh Lury
Paperback
Beginning Ubuntu Linux - Natty Narwhal…
Emilio Raggi, Keir Thomas, …
Paperback
Unix / Linux FAQ - (With Tips to Face…
N B Venkateswarlu
Hardcover
|