![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Numerical analysis
This book surveys recent developments in numerical techniques for global atmospheric models. It is based upon a collection of lectures prepared by leading experts in the field. The chapters reveal the multitude of steps that determine the global atmospheric model design. They encompass the choice of the equation set, computational grids on the sphere, horizontal and vertical discretizations, time integration methods, filtering and diffusion mechanisms, conservation properties, tracer transport, and considerations for designing models for massively parallel computers. A reader interested in applied numerical methods but also the many facets of atmospheric modeling should find this book of particular relevance.
This brief provides guidance for the application of cohesive models to determine damage and fracture in materials and structural components. This can be done for configurations with or without a pre-existing crack. Although the brief addresses structural behaviour, the methods described herein may also be applied to any deformation induced material damage and failure, e.g. those occurring during manufacturing processes. The methods described are applicable to the behaviour of ductile metallic materials and structural components made thereof. Hints are also given for applying the cohesive model to other materials.
Of the many different approaches to solving partial differential
equations numerically, this book studies difference methods.
Written for the beginning graduate student in applied mathematics
and engineering, this text offers a means of coming out of a course
with a large number of methods that provide both theoretical
knowledge and numerical experience. The reader will learn that
numerical experimentation is a part of the subject of numerical
solution of partial differential equations, and will be shown some
uses and taught some techniques of numerical experimentation.
In the recent decade, there has been a growing interest in the numerical treatment of high-dimensional problems. It is well known that classical numerical discretization schemes fail in more than three or four dimensions due to the curse of dimensionality. The technique of sparse grids helps overcome this problem to some extent under suitable regularity assumptions. This discretization approach is obtained from a multi-scale basis by a tensor product construction and subsequent truncation of the resulting multiresolution series expansion. This volume of LNCSE is a collection of the papers from the proceedings of the workshop on sparse grids and its applications held in Bonn in May 2011. The selected articles present recent advances in the mathematical understanding and analysis of sparse grid discretization. Aspects arising from applications are given particular attention.
This book constitutes the thoroughly refereed post-conference proceedings of the 20th International Colloquium on Structural Information and Communication Complexity, SIROCCO 2013, held in Ischia, Italy, in July 2013. The 28 revised full papers presented were carefully reviewed and selected from 67 submissions. SIROCCO is devoted to the study of communication and knowledge in distributed systems. Special emphasis is given to innovative approaches and fundamental understanding, in addition to efforts to optimize current designs. The typical areas include distributed computing, communication networks, game theory, parallel computing, social networks, mobile computing (including autonomous robots), peer to peer systems, communication complexity, fault tolerant graph theories and randomized/probabilistic issues in networks.
This book constitutes the thoroughly refereed post-conference proceedings of the Second International Symposium on Combinatorial Optimization, ISCO 2012, held in Athens, Greece, in April 2012. The 37 revised full papers presented together with 4 invited talks were carefully reviewed and selected from 94 regular and 30 short submissions. They present original research on all aspects of combinatorial optimization, ranging from mathematical foundations and theory of algorithms to computational studies and practical applications.
The author, who died in 1984, is well-known both as a person and through his research in mathematical logic and theoretical computer science. In the first part of the book he presents the new classical theory of finite automata as unary algebras which he himself invented about 30 years ago. Many results, like his work on structure lattices or his characterization of regular sets by generalized regular rules, are unknown to a wider audience. In the second part of the book he extends the theory to general (non-unary, many-sorted) algebras, term rewriting systems, tree automata, and pushdown automata. Essentially Buchi worked independent of other rersearch, following a novel and stimulating approach. He aimed for a mathematical theory of terms, but could not finish the book. Many of the results are known by now, but to work further along this line presents a challenging research program on the borderline between universal algebra, term rewriting systems, and automata theory. For the whole book and again within each chapter the author starts at an elementary level, giving careful explanations and numerous examples and exercises, and then leads up to the research level. In this way he covers the basic theory as well as many nonstandard subjects. Thus the book serves as a textbook for both the beginner and the advances student, and also as a rich source for the expert.
This volume contains contributions to the BRITE-EURAM 3rd Framework Programme ETMA and extended articles of the TMA-Workshop. It focusses on turbulence modelling techniques suitable to use in typical flow configurations, with emphasis on compressibility effects and inherent unsteadiness. These methodologies are applied to the Navier-Stokes equations, involving various turbulence modelling levels from algebraic to RSM. Basic turbulent flows in aeronautics are considered; mixing layers, wall-flows (flat-plate, backward-facing step, ramp, bump), and more complex configurations (bump, aerofoil). A critical assessment of the turbulence modelling performances is offered, based on previous results and on the experimental data-base of this research programme. The ETMA results figure in the data-base constituted by all partners and organized by INRIA
A recent development in SDC-related problems is the establishment of intelligent SDC models and the intensive use of LMI-based convex optimization methods. Within this theoretical framework, control parameter determination can be designed and stability and robustness of closed-loop systems can be analyzed. This book describes the new framework of SDC system design and provides a comprehensive description of the modelling of controller design tools and their real-time implementation. It starts with a review of current research on SDC and moves on to some basic techniques for modelling and controller design of SDC systems. This is followed by a description of controller design for fixed-control-structure SDC systems, PDF control for general input- and output-represented systems, filtering designs, and fault detection and diagnosis (FDD) for SDC systems. Many new LMI techniques being developed for SDC systems are shown to have independent theoretical significance for robust control and FDD problems.
This book constitutes the refereed proceedings of the 19th International Colloquium on Structural Information and Communication Complexity, SIROCCO 2012, held in Reykjavik, Iceland for 3 days starting June 30, 2012. The 28 revised full papers presented were carefully reviewed and selected from 54 submissions. SIROCCO is devoted to the study of communication and knowledge in distributed systems. Special emphasis is given to innovative approaches and fundamental understanding, in addition to efforts to optimize current designs. The typical areas include distributed computing, communication networks, game theory, parallel computing, social networks, mobile computing (including autonomous robots), peer to peer systems, communication complexity, fault tolerant graph theories, and randomized/probabilistic issues in networks.
In the wake of the computer revolution, a large number of apparently uncon nected computational techniques have emerged. Also, particular methods have assumed prominent positions in certain areas of application. Finite element methods, for example, are used almost exclusively for solving structural problems; spectral methods are becoming the preferred approach to global atmospheric modelling and weather prediction; and the use of finite difference methods is nearly universal in predicting the flow around aircraft wings and fuselages. These apparently unrelated techniques are firmly entrenched in computer codes used every day by practicing scientists and engineers. Many of these scientists and engineers have been drawn into the computational area without the benefit offormal computational training. Often the formal computational training we do provide reinforces the arbitrary divisions between the various computational methods available. One of the purposes of this monograph is to show that many computational techniques are, indeed, closely related. The Galerkin formulation, which is being used in many subject areas, provides the connection. Within the Galerkin frame-work we can generate finite element, finite difference, and spectral methods."
This volume contains eighteen contributions of work, conducted since 2000 in the French - German Research Programme "Numerical Flow Simulation," which was initiated in 1996 by the Centre National de la Recherche Scientifique (CNRS) and the Deutsche Forschungsgemeinschaft (DFG). The main purpose of this third publication on the research programme is again to give an overview over recent progress, and to make the obtained results available to the public. The reports are grouped, like those in the first and the second publi cation (NNFM 66, 1998, and NNFM 75, 2001), under the four headings "Devel opment of Solution Techniques," "Crystal Growth and Melts," "Flows of React ing Gases, Sound Generation" and "Turbulent Flows." All contributions to this publication were reviewed by a board consisting of T. Alziary de Roquefort (Poi tiers, France), H. W. Buggisch (Karlsruhe, Germany), S. Candel (Paris, France), U. Ehrenstein (Nice, France), Th. Gallouet (Marseille, France), W. Kordulla (Gottingen, Germany), A. Lerat (Paris, France), 1. Piquet (Nantes, France), R. Rannacher (Heidelberg, Germany), G. Warnecke (Magdeburg, Germany), and the editor. The responsibility for the contents of the reports nevertheless lies with the contributors."
R. V. M. Zahar* The sixty-fifth birthday of Walter Gautschi provided an opportune moment for an international symposium in his honor, to recognize his many contributions to mathematics and computer sciences. Conceived by John Rice and sponsored by Purdue University, the conference took place in West Lafayette from December 2 to 5, 1993, and was organized around the four main themes representing Professor Gautschi's principal research interests: Approximation, Orthogonal Polynomials, Quadrature and Special Functions. Thirty-eight speakers - colleagues, co-authors, research collaborators or doctoral students of Professor Gautschi - were invited to present articles at the conference, their lectures providing an approximately equal representation of the four disciplines. Five invited speakers, Germund Dahlquist, Philip Davis, Luigi Gatteschi, Werner Rheinboldt and Stephan Ruscheweyh, were unable to present their talks because of illness or other commitments, although Professors Dahlquist, Gatteschi and Ruscheweyh subsequently contributed arti cles to these proceedings. Thus, the final program contained thirty-three technical lectures, ten of which were plenary sessions. Approximately eighty scientists attended the conference, and for some ses sions - in particular, Walter's presentation of his entertaining and informative Reflections and Recollections - that number was complemented by many visitors and friends, as well as the family of the honoree. A surprise visit by Paul Erdos provided one of the highlights of the conference week. The ambiance at the sym posium was extremely collegial, due no doubt to the common academic interests and the personal friendships shared by the participants.
Optimization Approaches for Solving String Selection Problems provides an overview of optimization methods for a wide class of genomics-related problems in relation to the string selection problems. This class of problems addresses the recognition of similar characteristics or differences within biological sequences. Specifically, this book considers a large class of problems, ranging from the closest string and substring problems, to the farthest string and substring problems, to the far from most string problem. Each problem includes a detailed description, highlighting both biological and mathematical features, and presents state-of-the-art approaches. This Brief provides a quick introduction of optimization methods for string selection problems for young scientists and a detailed description of the mathematical and computational methods developed for experts in the field of optimization who want to deepen their understanding of the string selection problems. Researchers, practitioners and graduate students in the field of Computer Science, Operation Research, Mathematics, Computational Biology and Biomedicine will find this book useful.
What is the role of exercise in maintaining good health and preventing metabolic disease, hypertension, cardiorespiratory disease, cancer, and obesity? What is the optimal exercise level to prevent such common diseases and conditions? These important questions were addressed and discussed by researchers, therapists, and physicians at the international symposium "Optimal Exercise for Preventing Common Diseases," held in Fukuoka, Japan, in July 1998, in conjunction with the Fukuoka University Research Center. This book compiles the papers presented at the symposium, giving state-of-the-art information that will be especially valuable to exercise physiologists, physical therapists, and those working in the field of sports medicine.
The NATO Advanced Research Workshop (ARW) "Algorithms and Model Formulations in Mathematical Programming" was held at Chr. Michelsen Institute in Bergen, Norway, from June 15 to June 19, 1987. The ARW was organized on behalf of the Committee on Algorithms (COAL) of the Mathematical Programming Society (MPS). Co-directors were Jan Telgen (Van Dien+Co Organisatie, Utrecht, The Netherlands) and Roger J-B Wets (The University of California at Davis, USA). 43 participants from 11 countries attended the ARW. The workshop was organized such that each day started with a - minute keynote presentation, followed by a 45-minute plenary discussion. The first part of this book contains the contributions of the five keynote speakers. The plenary discussions were taped, and the transcripts given to the keynote speakers. They have treated the transcripts differently, some by working the discussions into their papers, others by adding a section which sums up the discussions. The plenary discussions were very interesting and stimulating due to active participation of the audience. The five keynote speakers were asked to view the topic of the workshop, the interaction between algorithms and model formulations, from different perspectives. On the first day of the workshop Professor Alexander H.G. Rinnooy Kan (Erasmus University, Rotterdam, The Netherlands) put the theme into a larger context by his talk "Mathematical programming as an intellectual activity." This is an article of importance to any mathematical programmer who is interested in his field's history and present state.
This book contains thirty-six papers from among the forty-five papers presented at the Third International Conference on Fibonacci Numbers and Their Applications which was held in Pisa, Italy from July 25 to July 29, 1988 in honor of Leonardo de Pisa. These papers have been selected after a careful review by well known referees in the field, and they range from elementary number theory to probability and statistics. The Fibonacci numbers are their unifying bond. It is anticipated that this book, like its two predecessors, will be useful to research workers and graduate students interested in the Fibonacci numbers and their applications. August 1989 The Editors Gerald E. Bergum South Dakota State University Brookings, South Dakota, U. S. A. Andreas N. Philippou Ministry of Education Nicosia, Cyprus Alwyn F. Horadam University of New England Armidale N. S. W. , Australia xv THE ORGANIZING COMMITTEES LOCAL COMMITTEE INTERNATIONAL COMMITTEE Dvornicich, Roberto, Chairman Horadam, A. F. (Australia), Co-chairman Filipponi, Piero Philippou, A. N. (Cyprus), Co-chairman Perelli, Alberto Ando, S. (Japan) Viola, Carlo Bergum, G. E. (U. S. A. ) Zannier, Umberto Johnson, M. B. (U. S. A. ) Kiss, P. (Hungary) Tijdeman, Robert (The Netherlands) Tognetti, K. (Australia) XVII LIST OF CONTRIBUTORS TO THE CONFERENCE' ADLER, I. , RR 1, Box 532, North Bennington, VT 05257-9748. "Separating the Biological from the Mathematical Aspects of Phyllotaxis. " *AKRITAS, A. G. , (coauthor P. G. Bradford). "The Role of the Fibonacci Sequence in the Isolation of the Real Roots of Polynomial Equations.
Thework described in this has somewhat erratically, over monograph grown, of than a more interest inthe was firstaroused period thirty My subject years. thebeautiful and inBroucke.'sthesis also by see computations drawings (1963; Broucke where familiesof orbits in the restricted three 1968), periodic body for the Earth Moon ratio = were mass problem investigated (/.I 0.012155). These that natural for the existence ofthe a explanation drawingssuggested observed familiesand for the found the of orbits could be shapes perhaps by to the limit ] 0. a recourse y As first it a to as as step, appeared catalog completely possible necessary the orbits obtained in this limit. orbits of the first generaiing Generating hadbeen studied andother authors. Poincar6 specZes by (1892) Surprisingly, the two other had been Orbits ofthe however, species apparently neglected. second orbits with or consecutive a species, collisions, present comparatively the ofthe simple problem, only two body problem; no using equations yet had been done.An ofthe systematic ever constituent arcs study inventory was inH6non presented (1968). Also little work had been done on farmlies of orbits of the third very to Hill's A numerical species, was corresponding problem. investigation pub lished inR6non (1969).
The current form of modern approximation theory is shaped by many new de velopments which are the subject of this series of conferences. The International Meetings on Approximation Theory attempt to keep track in particular of fun damental advances in the theory of function approximation, for example by (or thogonal) polynomials, (weighted) interpolation, multivariate quasi-interpolation, splines, radial basis functions and several others. This includes both approxima tion order and error estimates, as well as constructions of function systems for approximation of functions on Euclidean spaces and spheres. It is a piece of very good fortune that at all of the IDoMAT meetings, col leagues and friends from all over Europe, and indeed some count ries outside Europe and as far away as China, New Zealand, South Africa and U.S.A. came and dis cussed mathematics at IDoMAT conference facility in Witten-Bommerholz. The conference was, as always, held in a friendly and congenial atmosphere. After each meeting, the delegat es were invited to contribute to the proceed ing's volume, the previous one being published in the same Birkhauser series as this one. The editors were pleased about the quality of the contributions which could be solicited for the book. They are refereed and we should mention our gratitude to the referees and their work."
For well over a decade, the numerical approach to field computation has been gaining progressively greater importance. Analytical methods of field compu tation are, at best, unable to accommodate the very wide variety of configura tions in which fields must be computed. On the other hand, numerical methods can accommodate many practical configurations that analytical methods cannot. With the advent of high-speed digital computers, numerical field computations have finally become practical. However, in order to implement numerical methods of field computation, we need algorithms, numerical methods, and mathematical tools that are largely quite different from those that have been traditionally used with analytical methods. Many of these algorithms have, in fact, been presented in the large number of papers that have been published on this subject in the last two decades. And to some of those who are already experienced in the art of numerical field computations, these papers, in addition to their own original work, are enough to give them the knowledge that they need to perform practical numerical field computations."
Since the appearance of computers, numerical methods for discontinuous solutions of quasi-linear hyperbolic systems of partial differential equations have been among the most important research subjects in numerical analysis. The authors have developed a new difference method (named the singularity-separating method) for quasi-linear hyperbolic systems of partial differential equations. Its most important feature is that it possesses a high accuracy even for problems with singularities such as schocks, contact discontinuities, rarefaction waves and detonations. Besides the thorough description of the method itself, its mathematical foundation (stability-convergence theory of difference schemes for initial-boundary-value hyperbolic problems) and its application to supersonic flow around bodies are discussed. Further, the method of lines and its application to blunt body problems and conical flow problems are described in detail. This book should soon be an important working basis for both graduate students and researchers in the field of partial differential equations as well as in mathematical physics.
This volume includes contributions from diverse disciplines including electrical engineering, biomedical engineering, industrial engineering, and medicine, bridging a vital gap between the mathematical sciences and neuroscience research. Covering a wide range of research topics, this volume demonstrates how various methods from data mining, signal processing, optimization and cutting-edge medical techniques can be used to tackle the most challenging problems in modern neuroscience.
This volume contains the description of an EC-sponsered program to
study all relevant aspects of shock/ boundary-layer interaction
control, the latter designed to improve aircraft performance at
design (cruise) and off-design conditions. The work being presented
includes a discussion of basic control experiments and the
corresponding physical modeling, to account for shock control and a
discussion of the airfoil experiments conducted for code validation
and control assessment, in conjunction with the basic experiments
and computations. The contents is comprised of a section giving a
broad overview of the research carried out here and more detailed
individual contributions by the participants in the research.
Most real-world spectrum analysis problems involve the computation of the real-data discrete Fourier transform (DFT), a unitary transform that maps elements N of the linear space of real-valued N-tuples, R , to elements of its complex-valued N counterpart, C , and when carried out in hardware it is conventionally achieved via a real-from-complex strategy using a complex-data version of the fast Fourier transform (FFT), the generic name given to the class of fast algorithms used for the ef?cient computation of the DFT. Such algorithms are typically derived by explo- ing the property of symmetry, whether it exists just in the transform kernel or, in certain circumstances, in the input data and/or output data as well. In order to make effective use of a complex-data FFT, however, via the chosen real-from-complex N strategy, the input data to the DFT must ?rst be converted from elements of R to N elements of C . The reason for choosing the computational domain of real-data problems such N N as this to be C , rather than R , is due in part to the fact that computing equ- ment manufacturers have invested so heavily in producing digital signal processing (DSP) devices built around the design of the complex-data fast multiplier and accumulator (MAC), an arithmetic unit ideally suited to the implementation of the complex-data radix-2 butter?y, the computational unit used by the familiar class of recursive radix-2 FFT algorithms. |
You may like...
Progress in Industrial Mathematics at…
Peregrina Quintela, Patricia Barral, …
Hardcover
R5,308
Discovery Miles 53 080
Constructive Approximation on the Sphere…
W Freeden, T. Gervens, …
Hardcover
R3,855
Discovery Miles 38 550
A Primer on Radial Basis Functions with…
Bengt Fornberg, Natasha Flyer
Paperback
Handbook of Numerical Analysis, Volume 7
Philippe G. Ciarlet
Hardcover
R3,524
Discovery Miles 35 240
Numerical Analysis
Annette M Burden, Richard Burden, …
Hardcover
|