![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Numerical analysis
The proceedings represent the state of knowledge in the area of algorithmic differentiation (AD). The 31 contributed papers presented at the AD2012 conference cover the application of AD to many areas in science and engineering as well as aspects of AD theory and its implementation in tools. For all papers the referees, selected from the program committee and the greater community, as well as the editors have emphasized accessibility of the presented ideas also to non-AD experts. In the AD tools arena new implementations are introduced covering, for example, Java and graphical modeling environments or join the set of existing tools for Fortran. New developments in AD algorithms target the efficiency of matrix-operation derivatives, detection and exploitation of sparsity, partial separability, the treatment of nonsmooth functions, and other high-level mathematical aspects of the numerical computations to be differentiated. Applications stem from the Earth sciences, nuclear engineering, fluid dynamics, and chemistry, to name just a few. In many cases the applications in a given area of science or engineering share characteristics that require specific approaches to enable AD capabilities or provide an opportunity for efficiency gains in the derivative computation. The description of these characteristics and of the techniques for successfully using AD should make the proceedings a valuable source of information for users of AD tools.
This volume developed from a Workshop on Natural Locomotion in Fluids and on Surfaces: Swimming, Flying, and Sliding which was held at the Institute for Mathematics and its Applications (IMA) at the University of Minnesota, from June 1-5, 2010. The subject matter ranged widely from observational data to theoretical mechanics, and reflected the broad scope of the workshop. In both the prepared presentations and in the informal discussions, the workshop engaged exchanges across disciplines and invited a lively interaction between modelers and observers. The articles in this volume were invited and fully refereed. They provide a representative if necessarily incomplete account of the field of natural locomotion during a period of rapid growth and expansion. The papers presented at the workshop, and the contributions to the present volume, can be roughly divided into those pertaining to swimming on the scale of marine organisms, swimming of microorganisms at low Reynolds numbers, animal flight, and sliding and other related examples of locomotion.
Water supply- and drainage systems and mixed water channel systems are networks whose high dynamic is determined and/or affected by consumer habits on drinking water on the one hand and by climate conditions, in particular rainfall, on the other hand. According to their size, water networks consist of hundreds or thousands of system elements. Moreover, different types of decisions (continuous and discrete) have to be taken in the water management. The networks have to be optimized in terms of topology and operation by targeting a variety of criteria. Criteria may for example be economic, social or ecological ones and may compete with each other. The development of complex model systems and their use for deriving optimal decisions in water management is taking place at a rapid pace. Simulation and optimization methods originating in Operations Research have been used for several decades; usually with very limited direct cooperation with applied mathematics. The research presented here aims at bridging this gap, thereby opening up space for synergies and innovation. It is directly applicable for relevant practical problems and has been carried out in cooperation with utility and dumping companies, infrastructure providers and planning offices. A close and direct connection to the practice of water management has been established by involving application-oriented know-how from the field of civil engineering. On the mathematical side all necessary disciplines were involved, including mixed-integer optimization, multi-objective and facility location optimization, numerics for cross-linked dynamic transportation systems and optimization as well as control of hybrid systems. Most of the presented research has been supported by the joint project "Discret-continuous optimization of dynamic water systems" of the federal ministry of education and research (BMBF).
This book constitutes the refereed proceedings of the 14th International Scandinavian Symposium and Workshops on Algorithm Theory, SWAT 2014, held in Copenhagen, Denmark, in July 2014. The 33 papers were carefully reviewed and selected from a total of 134 submissions. The papers present original research and cover a wide range of topics in the field of design and analysis of algorithms and data structures including but not limited to approximation algorithms, parameterized algorithms, computational biology, computational geometry and topology, distributed algorithms, external-memory algorithms, exponential algorithms, graph algorithms, online algorithms, optimization algorithms, randomized algorithms, streaming algorithms, string algorithms, sublinear algorithms and algorithmic game theory.
This book, addressing both researchers and graduate students, reviews equivariant localization techniques for the evaluation of Feynman path integrals. The author gives the relevant mathematical background in some detail, showing at the same time how localization ideas are related to classical integrability. The text explores the symmetries inherent in localizable models for assessing the applicability of localization formulae. Various applications from physics and mathematics are presented.
This book offers readers a primer on the theory and applications of Ordinary Differential Equations. The style used is simple, yet thorough and rigorous. Each chapter ends with a broad set of exercises that range from the routine to the more challenging and thought-provoking. Solutions to selected exercises can be found at the end of the book. The book contains many interesting examples on topics such as electric circuits, the pendulum equation, the logistic equation, the Lotka-Volterra system, the Laplace Transform, etc., which introduce students to a number of interesting aspects of the theory and applications. The work is mainly intended for students of Mathematics, Physics, Engineering, Computer Science and other areas of the natural and social sciences that use ordinary differential equations, and who have a firm grasp of Calculus and a minimal understanding of the basic concepts used in Linear Algebra. It also studies a few more advanced topics, such as Stability Theory and Boundary Value Problems, which may be suitable for more advanced undergraduate or first-year graduate students. The second edition has been revised to correct minor errata, and features a number of carefully selected new exercises, together with more detailed explanations of some of the topics. A complete Solutions Manual, containing solutions to all the exercises published in the book, is available. Instructors who wish to adopt the book may request the manual by writing directly to one of the authors.
This book constitutes the refereed proceedings of the 13th International Symposium on Experimental Algorithms, SEA 2014, held in Copenhagen, Denmark, in June/July 2014. The 36 revised full papers presented together with 3 invited presentations were carefully reviewed and selected from 81 submissions. The papers are organized in topical sections on combinatorial optimization, data structures, graph drawing, shortest path, strings, graph algorithms and suffix structures.
This book constitutes the thoroughly refereed workshop proceedings of the 11th International Workshop on Approximation and Online Algorithms, WAOA 2013, held in Sophia Antipolis, France, in September 2013 as part of the ALGO 2013 conference event. The 14 revised full papers presented were carefully reviewed and selected from 33 submissions. They focus on the design and analysis of algorithms for online and computationally hard problems, for example in algorithmic game theory, algorithmic trading, coloring and partitioning, competitive analysis, computational advertising, computational finance, cuts and connectivity, geometric problems, graph algorithms, inapproximability results, mechanism design, natural algorithms, network design, packing and covering, paradigms for the design and analysis of approximation and online algorithms, parameterized complexity, real-world applications, scheduling problems.
This book constitutes the thoroughly refereed post-conference proceedings of the Third International Symposium on Combinatorial Optimization, ISCO 2014, held in Lisbon, Portugal, in March 2014. The 37 revised full papers presented together with 64 short papers were carefully reviewed and selected from 97 submissions. They present original research on all aspects of combinatorial optimization, such as algorithms and complexity; mathematical programming; operations research; stochastic optimization; graphs and combinatorics.
Inequalities arise as an essential component in various mathematical areas. Besides forming a highly important collection of tools, e.g. for proving analytic or stochastic theorems or for deriving error estimates in numerical mathematics, they constitute a challenging research field of their own. Inequalities also appear directly in mathematical models for applications in science, engineering, and economics. This edited volume covers divers aspects of this fascinating field. It addresses classical inequalities related to means or to convexity as well as inequalities arising in the field of ordinary and partial differential equations, like Sobolev or Hardy-type inequalities, and inequalities occurring in geometrical contexts. Within the last five decades, the late Wolfgang Walter has made great contributions to the field of inequalities. His book on differential and integral inequalities was a real breakthrough in the 1970's and has generated a vast variety of further research in this field. He also organized six of the seven "General Inequalities" Conferences held at Oberwolfach between 1976 and 1995, and co-edited their proceedings. He participated as an honorary member of the Scientific Committee in the "General Inequalities 8" conference in Hungary. As a recognition of his great achievements, this volume is dedicated to Wolfgang Walter's memory. The "General Inequalities" meetings found their continuation in the "Conferences on Inequalities and Applications" which, so far, have been held twice in Hungary. This volume contains selected contributions of participants of the second conference which took place in Hajduszoboszlo in September 2010, as well as additional articles written upon invitation. These contributions reflect many theoretical and practical aspects in the field of inequalities, and will be useful for researchers and lecturers, as well as for students who want to familiarize themselves with the area.
This book constitutes the refereed proceedings of the 21st International Colloquium on Structural Information and Communication Complexity, SIROCCO 2014, held in Takayama, Japan, in July 2014. The 24 full papers presented together with 5 invited talks were carefully reviewed and selected from 51 submissions. The focus of the colloquium is on following subjects Shared Memory and Multiparty Communication, Network Optimization, CONGEST Algorithms and Lower Bounds, Wireless networks, Aggregation and Creation Games in Networks, Patrolling and Barrier Coverage, Exploration, Rendevous and Mobile Agents.
Metric and Differential Geometry grew out of a similarly named conference held at Chern Institute of Mathematics, Tianjin and Capital Normal University, Beijing. The various contributions to this volume cover a broad range of topics in metric and differential geometry, including metric spaces, Ricci flow, Einstein manifolds, Kahler geometry, index theory, hypoelliptic Laplacian and analytic torsion. It offers the most recent advances as well as surveys the new developments. Contributors: M.T. Anderson J.-M. Bismut X. Chen X. Dai R. Harvey P. Koskela B. Lawson X. Ma R. Melrose W. Muller A. Naor J. Simons C. Sormani D. Sullivan S. Sun G. Tian K. Wildrick W. Zhang
DUNE, the Distributed and Unified
The papers in this volume were selected for presentation at the 15th International Meshing Roundtable, held September 17-20, 2006 in Birmingham, Alabama, U.S.A.. The conference was started by Sandia National Laboratories in 1992 as a small meeting of organizations striving to establish a common focus for research and development in the field of mesh generation. Now after 15 consecutive years, the International Meshing Roundtable has become recognized as an international focal point annually attended by researchers and developers from dozens of countries around the world. The 15th International Meshing Roundtable consists of technical presentations from contributed papers, keynote and invited talks, short course presentations, and a poster session and competition. The Program Committee would like to express its appreciation to all who participate to make the IMR a successful and enriching experience. The papers in these proceedings were selected from among 42 submissions by the Program Committee. Based on input from peer reviews, the committee selected these papers for their perceived quality, originality, and appropriateness to the theme of the International Meshing Roundtable. The Program Committee would like to thank all who submitted papers. We would also like to thank the colleagues who provided reviews of the submitted papers. The names of the reviewers are acknowledged in the following pages. As Program Chair, I would like to extend special thanks to the Program Committee and to the Conference Coordinators for their time and effort to make the 15th IMR another outstanding conference.
When researchers gather around lunch tables, at conferences, or in bars, there are some topics that are more or less compulsory. The discussions are about the ho- less management of the university or the lab where they are working, the lack of funding for important research, politicians' inability to grasp the potential of a p- ticularly promising ?eld, and the endless series of committees that seem to produce very little progress. It is common to meet excellent researchers claiming that they have almost no time to do research because writing applications, lecturing, and - tending to committee work seem to take most of their time. Very few ever come into a position to do something about it. With Simula we have this chance. We were handed a considerable annual grant and more or less left to ourselves to do whatever we thought would produce the best possible results. We wanted to create a place where researchers could have the time and conditions necessary to re?ect over dif?cult problems, uninterrupted by mundane dif?culties; where doctoral students could be properly supervised and learn the craft of research in a well-organized and professional manner; and where entrepreneurs could ?nd professional support in developing their research-based - plications and innovations.
This book presents the state-of-the-art in simulation on supercomputers. Leading researchers present results achieved on systems of the Gauss-Allianz, the association of High-Performance Computing centers in Germany. The reports cover all fields of computational science and engineering, ranging from CFD to Computational Physics and Biology to Computer Science, with a special emphasis on industrially relevant applications. Presenting results for large-scale parallel microprocessor-based systems and GPU and FPGA-supported systems, the book makes it possible to compare the performance levels and usability of various architectures. Its outstanding results in achieving the highest performance for production codes are of particular interest for both scientists and engineers. The book includes a wealth of color illustrations and tables.
Mathematics majors at Michigan State University take a "Capstone" course near the end of their undergraduate careers. The content of this course varies with each offering. Its purpose is to bring together different topics from the undergraduate curriculum and introduce students to a developing area in mathematics. This text was originally written for a Capstone course. Basic wavelet theory is a natural topic for such a course. By name, wavelets date back only to the 1980s. On the boundary between mathematics and engineering, wavelet theory shows students that mathematics research is still thriving, with important applications in areas such as image compression and the numerical solution of differential equations. The author believes that the essentials of wavelet theory are sufficiently elementary to be taught successfully to advanced undergraduates. This text is intended for undergraduates, so only a basic background in linear algebra and analysis is assumed. We do not require familiarity with complex numbers and the roots of unity.
This book provides a complete and comprehensive reference/guide to Pyomo (Python Optimization Modeling Objects) for both beginning and advanced modelers, including students at the undergraduate and graduate levels, academic researchers, and practitioners. The text illustrates the breadth of the modeling and analysis capabilities that are supported by the software and support of complex real-world applications. Pyomo is an open source software package for formulating and solving large-scale optimization and operations research problems. The text begins with a tutorial on simple linear and integer programming models. A detailed reference of Pyomo's modeling components is illustrated with extensive examples, including a discussion of how to load data from data sources like spreadsheets and databases. Chapters describing advanced modeling capabilities for nonlinear and stochastic optimization are also included. The Pyomo software provides familiar modeling features within Python, a powerful dynamic programming language that has a very clear, readable syntax and intuitive object orientation. Pyomo includes Python classes for defining sparse sets, parameters, and variables, which can be used to formulate algebraic expressions that define objectives and constraints. Moreover, Pyomo can be used from a command-line interface and within Python's interactive command environment, which makes it easy to create Pyomo models, apply a variety of optimizers, and examine solutions. The software supports a different modeling approach than commercial AML (Algebraic Modeling Languages) tools, and is designed for flexibility, extensibility, portability, and maintainability but also maintains the central ideas in modern AMLs.
For long-span bridges, wind action is a dominant factor in their safety and serviceability. A large number of long-span bridges have been built in Japan over the past 30 years, and tremendous amounts of research and technical development have been accomplished in wind-resistant design." "This book is a compilation of the results of active research and development. Wind-resistant design standards generated in Japan are described in the first few chapters. Then comes information such as design wind speed, structural damping, wind tunnel tests, and analyses, which provide the basis of the designstandards. Wind-induced vibrations and their control of girders, towers, cables, and other features are explained with examples of field measurements. Comprehensive listings of Japanese experience in vibration control are also presented. Because achieving particularly dynamic safety against wind is still not an easy task, these data and information will be valuable assets for the wind-engineering and bridge-engineering communities."
The fourth international conference on Scientific Computing in Electrical En- gineering (SCEE) was held at the Eindhoven University of Technology, from 23rd to 28th June, 2002. It was sponsored by Philips Research Laborato- ries Eindhoven, the Eindhoven University of Technology, Computer Simula- tion Technology (CST) from Darmstadt, ABB Corporate Research, Thales Netherlands,the European Consortium for Mathematics in Industry (ECMI), the University of Rostock (organiser of SCEE-2000), the European network for Mathematics, Computing and Simulation for Industry (MACSI-net), the Royal Netherlands Academy of Arts and Sciences (KNAW), and the Scien- tific Computing Group of the Eindhoven University of Technology. The Program Committee consisted of: Dr. Alain Bossavit, Electricite de France, Clamart, France. Dr. Uwe Feldmann, Infineon Technologies A.G., Munich, Germany. Prof.Dr. Leszek Demkowicz, University of Texas at Austin, USA. Dr. Michael Gunther, Universitat Karlsruhe, Germany. Prof.Dr. Ulrich Langer, Johannes Kepler Universitat, Linz, Austria. Dr. Jan ter Maten,Philips Research Laboratories Eindhoven, The Nether- lands. Prof.Dr. Ursula van Rienen, Universitat Rostock, Germany. Prof.Dr. Jaijeet Roychowdhury, University of Minnesota, USA. - Prof.Dr. Wil Schilders, Technische Universiteit Eindhoven and Philips Research Laboratories Eindhoven, The Netherlands. - Prof.Dr. Thomas Weiland, Technische Universitat Darmstadt, Germany.
About 80 participants from 16 countries attended the Conference on Numerical Methods for Free Boundary Problems, held at the University of Jyviiskylii, Finland, July 23-27, 1990. The main purpose of this conference was to provide up-to-date information on important directions of research in the field of free boundary problems and their numerical solutions. The contributions contained in this volume cover the lectures given in the conference. The invited lectures were given by H.W. Alt, V. Barbu, K-H. Hoffmann, H. Mittelmann and V. Rivkind. In his lecture H.W. Alt considered a mathematical model and existence theory for non-isothermal phase separations in binary systems. The lecture of V. Barbu was on the approximate solvability of the inverse one phase Stefan problem. K-H. Hoff mann gave an up-to-date survey of several directions in free boundary problems and listed several applications, but the material of his lecture is not included in this proceedings. H.D. Mittelmann handled the stability of thermo capillary convection in float-zone crystal growth. V. Rivkind considered numerical methods for solving coupled Navier-Stokes and Stefan equations. Besides of those invited lectures mentioned above there were 37 contributed papers presented. We shall briefly outline the topics of the contributed papers: Stefan like problems. Modelling, existence and uniqueness."
One of the most challenging problems of contemporary theoretical physics is the mathematically rigorous construction of a theory which describes gravitation and the other fundamental physical interactions within a common framework. The physical ideas which grew from attempts to develop such a theory require highly advanced mathematical methods and radically new physical concepts. This book presents different approaches to a rigorous unified description of quantum fields and gravity. It contains a carefully selected cross-section of lively discussions which took place in autumn 2010 at the fifth conference "Quantum field theory and gravity - Conceptual and mathematical advances in the search for a unified framework" in Regensburg, Germany. In the tradition of the other proceedings covering this series of conferences, a special feature of this book is the exposition of a wide variety of approaches, with the intention to facilitate a comparison. The book is mainly addressed to mathematicians and physicists who are interested in fundamental questions of mathematical physics. It allows the reader to obtain a broad and up-to-date overview of a fascinating active research area.
These proceedings contain lectures presented at the NATO-NSF-ARO sponsored Advanced Study I stitute on "Computer Aided Analysis and Optimization of Mechanical System Dynamics" held in Iowa City, Iowa, 1-12 August, 1983. Lectures were presented by free world leaders in the field of machine dynamics and optimization. Participants in the Institute were specialists from throughout NATO, many of whom presented contributed papers during the Institute and all of whom participated actively in discussions on technical aspects of the subject. The proceedings are organized into five parts, each addressing a technical aspect of the field of computational methods in dynamic analysis and design of mechanical systems. The introductory paper presented first in the text outlines some of the numerous technical considerations that must be given to organizing effective and efficient computational methods and computer codes to serve engineers in dynamic analysis and design of mechanical systems. Two substantially different approaches to the field are identified in this introduction and are given attention throughout the text. The first and most classical approach uses a minimal set of Lagrangian generalized coordinates to formulate equations of motion with a small number of constraints. The second method uses a maximal set of cartesian coordinates and leads to a large number of differential and algebraic constraint equations of rather simple form. These fundamentally different approaches and associated methods of symbolic computation, numerical integration, and use of computer graphics are addressed throughout the proceedings.
Computational Fluid Dynamics has now grown into a multidisciplinary activity with considerable industrial applications. The papers in this volume bring out the current status and future trends in CFD very effectively. They cover numerical techniques for solving Euler and Navier-Stokes equations and other models of fluid flow, along with a number of papers on applications. Besides the 88 contributed papers by research workers from all over the world, the book also includes 6 invited lectures from distinguished scientists and engineers.
The vast area of Scientific Computing, which is concerned with the computer- aided simulation of various processes in engineering, natural, economical, or social sciences, now enjoys rapid progress owing to the development of new efficient symbolic, numeric, and symbolic/numeric algorithms. There has already been for a long time a worldwide recognition of the fact that the mathematical term algorithm takes its origin from the Latin word algo- ritmi, which is in turn a Latin transliteration of the Arab name "AI Khoresmi" of the Khoresmian mathematician Moukhammad Khoresmi, who lived in the Khoresm khanate during the years 780 - 850. The Khoresm khanate took sig- nificant parts of the territories of present-day TUrkmenistan and Uzbekistan. Such towns of the Khoresm khanate as Bukhara and Marakanda (the present- day Samarkand) were the centers of mathematical science and astronomy. The great Khoresmian mathematician M. Khoresmi introduced the Indian decimal positional system into everyday's life; this system is based on using the famil- iar digits 1,2,3,4,5,6,7,8,9,0. M. Khoresmi had presented the arithmetic in the decimal positional calculus (prior to him, the Indian positional system was the subject only for jokes and witty disputes). Khoresmi's Book of Addition and Subtraction by Indian Method (Arithmetic) differs little from present-day arith- metic. This book was translated into Latin in 1150; the last reprint was produced in Rome in 1957. |
![]() ![]() You may like...
Infinite Words, Volume 141 - Automata…
Dominique Perrin, Jean-Eric Pin
Hardcover
R4,319
Discovery Miles 43 190
Behavior and Environment, Volume 96…
T. Garling, R.G. Golledge
Hardcover
R3,820
Discovery Miles 38 200
Advances in Pure and Applied Algebra…
Ratnesh Kumar Mishra, Manoj Kumar Patel, …
Hardcover
R5,069
Discovery Miles 50 690
Stochastic Analysis of Mixed Fractional…
Yuliya Mishura, Mounir Zili
Hardcover
Progress in Relativity
Calin Gheorghe Buzea, Maricel Agop, …
Hardcover
R3,366
Discovery Miles 33 660
|