![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Numerical analysis
This book constitutes the refereed proceedings of the 21st International Colloquium on Structural Information and Communication Complexity, SIROCCO 2014, held in Takayama, Japan, in July 2014. The 24 full papers presented together with 5 invited talks were carefully reviewed and selected from 51 submissions. The focus of the colloquium is on following subjects Shared Memory and Multiparty Communication, Network Optimization, CONGEST Algorithms and Lower Bounds, Wireless networks, Aggregation and Creation Games in Networks, Patrolling and Barrier Coverage, Exploration, Rendevous and Mobile Agents.
In this volume, designed for computational scientists and engineers working on applications requiring the memories and processing rates of large-scale parallelism, leading algorithmicists survey their own field-defining contributions, together with enough historical and bibliographical perspective to permit working one's way to the frontiers. This book is distinguished from earlier surveys in parallel numerical algorithms by its extension of coverage beyond core linear algebraic methods into tools more directly associated with partial differential and integral equations - though still with an appealing generality - and by its focus on practical medium-granularity parallelism, approachable through traditional programming languages. Several of the authors used their invitation to participate as a chance to stand back and create a unified overview, which nonspecialists will appreciate.
A cognitive journey towards the reliable simulation of scattering problems using finite element methods, with the pre-asymptotic analysis of Galerkin FEM for the Helmholtz equation with moderate and large wave number forming the core of this book. Starting from the basic physical assumptions, the author methodically develops both the strong and weak forms of the governing equations, while the main chapter on finite element analysis is preceded by a systematic treatment of Galerkin methods for indefinite sesquilinear forms. In the final chapter, three dimensional computational simulations are presented and compared with experimental data. The author also includes broad reference material on numerical methods for the Helmholtz equation in unbounded domains, including Dirichlet-to-Neumann methods, absorbing boundary conditions, infinite elements and the perfectly matched layer. A self-contained and easily readable work.
This proposed text appears to be a good introduction to evolutionary computation for use in applied statistics research. The authors draw from a vast base of knowledge about the current literature in both the design of evolutionary algorithms and statistical techniques. Modern statistical research is on the threshold of solving increasingly complex problems in high dimensions, and the generalization of its methodology to parameters whose estimators do not follow mathematically simple distributions is underway. Many of these challenges involve optimizing functions for which analytic solutions are infeasible. Evolutionary algorithms represent a powerful and easily understood means of approximating the optimum value in a variety of settings. The proposed text seeks to guide readers through the crucial issues of optimization problems in statistical settings and the implementation of tailored methods (including both stand-alone evolutionary algorithms and hybrid crosses of these procedures with standard statistical algorithms like Metropolis-Hastings) in a variety of applications. This book would serve as an excellent reference work for statistical researchers at an advanced graduate level or beyond, particularly those with a strong background in computer science.
This book collects up-to-date papers from world experts in a broad variety of relevant applications of approximation theory, including dynamical systems, multiscale modelling of fluid flow, metrology, and geometric modelling to mention a few. The 14 papers in this volume document modern trends in approximation through recent theoretical developments, important computational aspects and multidisciplinary applications. The book is arranged in seven invited surveys, followed by seven contributed research papers. The surveys of the first seven chapters are addressing the following relevant topics: emergent behaviour in large electrical networks, algorithms for multivariate piecewise constant approximation, anisotropic triangulation methods in adaptive image approximation, form assessment in coordinate metrology, discontinuous Galerkin methods for linear problems, a numerical analyst's view of the lattice Boltzmann method, approximation of probability measures on manifolds. Moreover, the diverse contributed papers of the remaining seven chapters reflect recent developments in approximation theory, approximation practice and their applications. Graduate students who wish to discover the state of the art in a number of important directions of approximation algorithms will find this a valuable volume. Established researchers from statisticians through to fluid modellers will find interesting new approaches to solving familiar but challenging problems. This book grew out of the sixth in the conference series on "Algorithms for Approximation", which took place from 31st August to September 4th 2009 in Ambleside in the Lake District of the United Kingdom.
A discussion of recent numerical and algorithmic tools for the solution of certain flow problems arising in CFD, which are governed by the incompressible Navier-Stokes equations. The book contains the latest results for the numerical solution of (complex) flow problems on modern computer platforms, with particular emphasis on the solution process of the resulting high dimensional discrete systems of equations which is often neglected in other works. Together with the accompanying CD ROM containing the complete FEATFLOW 1.1 software and parts of the "Virtual Album of Fluid Motion," readers are able to perform their own numerical simulations and will find numerous suggestions for improving their own computational simulations.
In the areas of image processing and computer vision, there is a particular need for software that can, given an unfocused or motion-blurred image, infer the three-dimensional shape of a scene. This book describes the analytical processes that go into designing such software, delineates the options open to programmers, and presents original algorithms. Written for readers with interests in image processing and computer vision and with backgrounds in engineering, science or mathematics, this highly practical text/reference is accessible to advanced students or those with a degree that includes basic linear algebra and calculus courses.
This IMA Volume in Mathematics and its Applications TWIST MAPPINGS AND THEIR APPLICATIONS is based on the proceedings of a workshop which was an integral part of the 1989- 90 IMA program on "Dynamical Systems and their Applications". The workshop brought together many of the leading figures in the modern study of twist maps. We thank Shui-Nee Chow, Martin Golubitsky, Richard McGehee, Ken Meyer, Jiirgen Moser, Clark Robinson, George R. Sell, and Eduard Zehnder for organizing the meeting and, especially, Richard McGehee and Ken Meyer for editing the volume. A vner Friedman Willard Miller, Jr. PREFACE In the 1890 volume of Acta Mathematica, H. Poincare published his prize- winning paper on the stability of orbits of the three body problem. In that paper, he introduced some of the basic ideas about twist maps of the annulus. One hun- dred years later, the study of twist maps is still an active and important area of dynamical systems theory.
13. 2 Abstract Saddle Point Problems . 282 13. 3 Preconditioned Iterative Methods . 283 13. 4 Examples of Saddle Point Problems 286 13. 5 Discretizations of Saddle Point Problems. 290 13. 6 Numerical Results . . . . . . . . . . . . . 295 III GEOMETRIC MODELLING 299 14 Surface Modelling from Scattered Geological Data 301 N. P. Fremming, @. Hjelle, C. Tarrou 14. 1 Introduction. . . . . . . . . . . 301 14. 2 Description of Geological Data 302 14. 3 Triangulations . . . . . . . . 304 14. 4 Regular Grid Models . . . . . 306 14. 5 A Composite Surface Model. 307 14. 6 Examples . . . . . . 312 14. 7 Concluding Remarks. . . . . 314 15 Varioscale Surfaces in Geographic Information Systems 317 G. Misund 15. 1 Introduction. . . . . . . . . . . . . . . 317 15. 2 Surfaces of Variable Resolution . . . . 318 15. 3 Surface Varioscaling by Normalization 320 15. 4 Examples . . . 323 15. 5 Final Remarks . . . . . . . . . . . . . 327 16 Surface Modelling from Biomedical Data 329 J. G. Bjaalie, M. Dtllhlen, T. V. Stensby 16. 1 Boundary Polygons. . . . . . . . . . . 332 16. 2 Curve Approximation . . . . . . . . . 333 16. 3 Reducing Twist in the Closed Surface 336 16. 4 Surface Approximation. 337 16. 5 Open Surfaces. . . . 339 16. 6 Examples . . . . . . 340 16. 7 Concluding Remarks 344 17 Data Reduction of Piecewise Linear Curves 347 E. Arge, M. Dtllhlen 17. 1 Introduction. . . . . . . . . . . 347 17. 2 Preliminaries . . . . . . . . . . 349 17. 3 The Intersecting Cones Method 351 17. 4 The Improved Douglas Method 353 17. 5 Numerical Examples . . . . . . 360 17. 6 Resolution Sorting . . . . . . . . . . . . . . . . . . 361 18 Aspects of Algorithms for Manifold Intersection 365 T. Dokken 18. 1 Introduction . . . . . . . . . . . . . . . 365 18. 2 Basic Concepts Used . . . . . . . . . .
These proceedings contain lectures presented at the NATO-NSF-ARO sponsored Advanced Study I stitute on "Computer Aided Analysis and Optimization of Mechanical System Dynamics" held in Iowa City, Iowa, 1-12 August, 1983. Lectures were presented by free world leaders in the field of machine dynamics and optimization. Participants in the Institute were specialists from throughout NATO, many of whom presented contributed papers during the Institute and all of whom participated actively in discussions on technical aspects of the subject. The proceedings are organized into five parts, each addressing a technical aspect of the field of computational methods in dynamic analysis and design of mechanical systems. The introductory paper presented first in the text outlines some of the numerous technical considerations that must be given to organizing effective and efficient computational methods and computer codes to serve engineers in dynamic analysis and design of mechanical systems. Two substantially different approaches to the field are identified in this introduction and are given attention throughout the text. The first and most classical approach uses a minimal set of Lagrangian generalized coordinates to formulate equations of motion with a small number of constraints. The second method uses a maximal set of cartesian coordinates and leads to a large number of differential and algebraic constraint equations of rather simple form. These fundamentally different approaches and associated methods of symbolic computation, numerical integration, and use of computer graphics are addressed throughout the proceedings.
The vast area of Scientific Computing, which is concerned with the computer- aided simulation of various processes in engineering, natural, economical, or social sciences, now enjoys rapid progress owing to the development of new efficient symbolic, numeric, and symbolic/numeric algorithms. There has already been for a long time a worldwide recognition of the fact that the mathematical term algorithm takes its origin from the Latin word algo- ritmi, which is in turn a Latin transliteration of the Arab name "AI Khoresmi" of the Khoresmian mathematician Moukhammad Khoresmi, who lived in the Khoresm khanate during the years 780 - 850. The Khoresm khanate took sig- nificant parts of the territories of present-day TUrkmenistan and Uzbekistan. Such towns of the Khoresm khanate as Bukhara and Marakanda (the present- day Samarkand) were the centers of mathematical science and astronomy. The great Khoresmian mathematician M. Khoresmi introduced the Indian decimal positional system into everyday's life; this system is based on using the famil- iar digits 1,2,3,4,5,6,7,8,9,0. M. Khoresmi had presented the arithmetic in the decimal positional calculus (prior to him, the Indian positional system was the subject only for jokes and witty disputes). Khoresmi's Book of Addition and Subtraction by Indian Method (Arithmetic) differs little from present-day arith- metic. This book was translated into Latin in 1150; the last reprint was produced in Rome in 1957.
The problems of conditional optimization of the uniform (or C-) norm for polynomials and rational functions arise in various branches of science and technology. Their numerical solution is notoriously difficult in case of high degree functions. The book develops the classical Chebyshev's approach which gives analytical representation for the solution in terms of Riemann surfaces. The techniques born in the remote (at the first glance) branches of mathematics such as complex analysis, Riemann surfaces and Teichmuller theory, foliations, braids, topology are applied to approximation problems. The key feature of this book is the usage of beautiful ideas of contemporary mathematics for the solution of applied problems and their effective numerical realization. This is one of the few books where the computational aspects of the higher genus Riemann surfaces are illuminated. Effective work with the moduli spaces of algebraic curves provides wide opportunities for numerical experiments in mathematics and theoretical physics.
On the 8th of August 1900 outstanding German mathematician David Hilbert delivered a talk "Mathematical problems" at the Second Interna tional Congress of Mathematicians in Paris. The talk covered practically all directions of mathematical thought of that time and contained a list of 23 problems which determined the further development of mathema tics in many respects (1, 119]. Hilbert's Sixteenth Problem (the second part) was stated as follows: Problem. To find the maximum number and to determine the relative position of limit cycles of the equation dy Qn(X, y) -= dx Pn(x, y)' where Pn and Qn are polynomials of real variables x, y with real coeffi cients and not greater than n degree. The study of limit cycles is an interesting and very difficult problem of the qualitative theory of differential equations. This theory was origi nated at the end of the nineteenth century in the works of two geniuses of the world science: of the Russian mathematician A. M. Lyapunov and of the French mathematician Henri Poincare. A. M. Lyapunov set forth and solved completely in the very wide class of cases a special problem of the qualitative theory: the problem of motion stability (154]. In turn, H. Poincare stated a general problem of the qualitative analysis which was formulated as follows: not integrating the differential equation and using only the properties of its right-hand sides, to give as more as possi ble complete information on the qualitative behaviour of integral curves defined by this equation (176]."
Methods of global analysis and stochastic analysis are most often applied in mathematical physics as separate entities, thus forming important directions in the field. However, while combination of the two subject areas is rare, it is fundamental for the consideration of a broader class of problems. This book develops methods of Global Analysis and Stochastic Analysis such that their combination allows one to have a more or less common treatment for areas of mathematical physics that traditionally are considered as divergent and requiring different methods of investigation. Global and Stochastic Analysis with Applications to Mathematical Physics covers branches of mathematics that are currently absent in monograph form. Through the demonstration of new topics of investigation and results, both in traditional and more recent problems, this book offers a fresh perspective on ordinary and stochastic differential equations and inclusions (in particular, given in terms of Nelson's mean derivatives) on linear spaces and manifolds. Topics covered include classical mechanics on non-linear configuration spaces, problems of statistical and quantum physics, and hydrodynamics. A self-contained book that provides a large amount of preliminary material and recent results which will serve to be a useful introduction to the subject and a valuable resource for further research. It will appeal to researchers, graduate and PhD students working in global analysis, stochastic analysis and mathematical physics.
In the spectrum of mathematics, graph theory which studies a mathe matical structure on a set of elements with a binary relation, as a recognized discipline, is a relative newcomer. In recent three decades the exciting and rapidly growing area of the subject abounds with new mathematical devel opments and significant applications to real-world problems. More and more colleges and universities have made it a required course for the senior or the beginning postgraduate students who are majoring in mathematics, computer science, electronics, scientific management and others. This book provides an introduction to graph theory for these students. The richness of theory and the wideness of applications make it impossi ble to include all topics in graph theory in a textbook for one semester. All materials presented in this book, however, I believe, are the most classical, fundamental, interesting and important. The method we deal with the mate rials is to particularly lay stress on digraphs, regarding undirected graphs as their special cases. My own experience from teaching out of the subject more than ten years at University of Science and Technology of China (USTC) shows that this treatment makes hardly the course di: fficult, but much more accords with the essence and the development trend of the subject."
At first sight discrete and fractional programming techniques appear to be two com pletely unrelated fields in operations research. We will show how techniques in both fields can be applied separately and in a combined form to particular models in location analysis. Location analysis deals with the problem of deciding where to locate facilities, con sidering the clients to be served, in such a way that a certain criterion is optimized. The term "facilities" immediately suggests factories, warehouses, schools, etc., while the term "clients" refers to depots, retail units, students, etc. Three basic classes can be identified in location analysis: continuous location, network location and dis crete location. The differences between these fields arise from the structure of the set of possible locations for the facilities. Hence, locating facilities in the plane or in another continuous space corresponds to a continuous location model while finding optimal facility locations on the edges or vertices of a network corresponds to a net work location model. Finally, if the possible set of locations is a finite set of points we have a discrete location model. Each of these fields has been actively studied, arousing intense discussion on the advantages and disadvantages of each of them. The usual requirement that every point in the plane or on the network must be a candidate location point, is one of the mostly used arguments "against" continuous and network location models."
This work presents a thorough treatment of boundary element methods (BEM) for solving strongly elliptic boundary integral equations obtained from boundary reduction of elliptic boundary value problems in $\mathbb{R} DEGREES3$. The book is self-contained, the prerequisites on elliptic partial differential and integral equations being presented in Chapters 2 and 3. The main focus is on the development, analysis, and implementation of Galerkin boundary element methods, which is one of the most flexible and robust numerical discretization methods for integral equations. For the efficient realization of the Galerkin BEM, it is essential to replace time-consuming steps in the numerical solution process with fast algorithms. In Chapters 5-9 these methods are developed, analyzed, and formulated in an algorithmic
This work describes the propagation properties of the so-called symmetric interior penalty discontinuous Galerkin (SIPG) approximations of the 1-d wave equation. This is done by means of linear approximations on uniform meshes. First, a careful Fourier analysis is constructed, highlighting the coexistence of two Fourier spectral branches or spectral diagrams (physical and spurious) related to the two components of the numerical solution (averages and jumps). Efficient filtering mechanisms are also developed by means of techniques previously proved to be appropriate for classical schemes like finite differences or P1-classical finite elements. In particular, the work presents a proof that the uniform observability property is recovered uniformly by considering initial data with null jumps and averages given by a bi-grid filtering algorithm. Finally, the book explains how these results can be extended to other more sophisticated conforming and non-conforming finite element methods, in particular to quadratic finite elements, local discontinuous Galerkin methods and a version of the SIPG method adding penalization on the normal derivatives of the numerical solution at the grid points. This work is the first publication to contain a rigorous analysis of the discontinuous Galerkin methods for wave control problems. It will be of interest to a range of researchers specializing in wave approximations.
Addressing students and researchers as well as Computational Fluid
Dynamics practitioners, this book is the most comprehensive review
of high-resolution schemes based on the principle of Flux-Corrected
Transport (FCT). The foreword by J.P. Boris and historical note by
D.L. Book describe the development of the classical FCT methodology
for convection-dominated transport problems, while the design
philosophy behind modern FCT schemes is explained by S.T. Zalesak.
The subsequent chapters present various improvements and
generalizations proposed over the past three decades.
Since most of the problems arising in science and engineering are nonlinear, they are inherently difficult to solve. Traditional analytical approximations are valid only for weakly nonlinear problems and often fail when used for problems with strong nonlinearity. Nonlinear Flow Phenomena and Homotopy Analysis: Fluid Flow and Heat Transfer presents the current theoretical developments of the analytical method of homotopy analysis. This book not only addresses the theoretical framework for the method, but also gives a number of examples of nonlinear problems that have been solved by means of the homotopy analysis method. The particular focus lies on fluid flow problems governed by nonlinear differential equations. This book is intended for researchers in applied mathematics, physics, mechanics and engineering. Both Kuppalapalle Vajravelu and Robert A. Van Gorder work at the University of Central Florida, USA."
Ricci Flow for Shape Analysis and Surface Registration introduces the beautiful and profound Ricci flow theory in a discrete setting. By using basic tools in linear algebra and multivariate calculus, readers can deduce all the major theorems in surface Ricci flow by themselves. The authors adapt the Ricci flow theory to practical computational algorithms, apply Ricci flow for shape analysis and surface registration, and demonstrate the power of Ricci flow in many applications in medical imaging, computer graphics, computer vision and wireless sensor network. Due to minimal pre-requisites, this book is accessible to engineers and medical experts, including educators, researchers, students and industry engineers who have an interest in solving real problems related to shape analysis and surface registration.
Edmund Hlawka is a leading number theorist whose work has had a lasting influence on modern number theory and other branches of mathematics. He has contributed to diophantine approximation, the geometry of numbers, uniform distributions, analytic number theory, discrete geometry, convexity, numerical integration, inequalities, differential equations and gas dynamics. Of particular importance are his findings in the geometry of numbers (especially the Minkowski-Hlawka theorem) and uniform distribution. This Selecta volume collects his most important articles, many of which were previously hard to find. It will provide a useful tool for researchers and graduate students working in the areas covered, and includes a general introduction by E. Hlawka.
The study of the genetic basis for evolution has flourished in this century, as well as our understanding of the evolvability and programmability of biological systems. Genetic algorithms meanwhile grew out of the realization that a computer program could use the biologically-inspired processes of mutation, recombination, and selection to solve hard optimization problems. Genetic and evolutionary programming provide further approaches to a wide variety of computational problems. A synthesis of these experiences reveals fundamental insights into both the computational nature of biological evolution and processes of importance to computer science. Topics include biological models of nucleic acid information processing and genome evolution; molecules, cells, and metabolic circuits that compute logical relationships; the origin and evolution of the genetic code; and the interface with genetic algorithms and genetic and evolutionary programming.
The theory of Vector Optimization is developed by a systematic usage of infimum and supremum. In order to get existence and appropriate properties of the infimum, the image space of the vector optimization problem is embedded into a larger space, which is a subset of the power set, in fact, the space of self-infimal sets. Based on this idea we establish solution concepts, existence and duality results and algorithms for the linear case. The main advantage of this approach is the high degree of analogy to corresponding results of Scalar Optimization. The concepts and results are used to explain and to improve practically relevant algorithms for linear vector optimization problems.
'Et moi, ..., si j'avait su comment en reveru.r, One service mathematics has rendered the je n'y scrais point aIle.' human race. It has put common sense back Jules Verne where it belongs, on the topmost shelf next to the dusty canister labelled 'discarded non The series is divergent; therefore we may be sense'. Eric T. Bell able to do something with it. o. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series." |
You may like...
Lacanian Psychoanalysis - A Contemporary…
Shlomit Yadlin-Gadot, Uri Hadar
Paperback
R761
Discovery Miles 7 610
Power Ultrasonics - Applications of…
Juan a Gallego-Juarez, Karl F. Graff, …
Paperback
R7,902
Discovery Miles 79 020
Theory And Practice Of Counselling And…
Umesh Bawa, Lionel Nicholas, …
Paperback
R843
Discovery Miles 8 430
|