![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Numerical analysis
A discussion of recent numerical and algorithmic tools for the solution of certain flow problems arising in CFD, which are governed by the incompressible Navier-Stokes equations. The book contains the latest results for the numerical solution of (complex) flow problems on modern computer platforms, with particular emphasis on the solution process of the resulting high dimensional discrete systems of equations which is often neglected in other works. Together with the accompanying CD ROM containing the complete FEATFLOW 1.1 software and parts of the "Virtual Album of Fluid Motion," readers are able to perform their own numerical simulations and will find numerous suggestions for improving their own computational simulations.
This book collects up-to-date papers from world experts in a broad variety of relevant applications of approximation theory, including dynamical systems, multiscale modelling of fluid flow, metrology, and geometric modelling to mention a few. The 14 papers in this volume document modern trends in approximation through recent theoretical developments, important computational aspects and multidisciplinary applications. The book is arranged in seven invited surveys, followed by seven contributed research papers. The surveys of the first seven chapters are addressing the following relevant topics: emergent behaviour in large electrical networks, algorithms for multivariate piecewise constant approximation, anisotropic triangulation methods in adaptive image approximation, form assessment in coordinate metrology, discontinuous Galerkin methods for linear problems, a numerical analyst's view of the lattice Boltzmann method, approximation of probability measures on manifolds. Moreover, the diverse contributed papers of the remaining seven chapters reflect recent developments in approximation theory, approximation practice and their applications. Graduate students who wish to discover the state of the art in a number of important directions of approximation algorithms will find this a valuable volume. Established researchers from statisticians through to fluid modellers will find interesting new approaches to solving familiar but challenging problems. This book grew out of the sixth in the conference series on "Algorithms for Approximation", which took place from 31st August to September 4th 2009 in Ambleside in the Lake District of the United Kingdom.
Combining both the classical theory and numerical techniques for partial differential equations, this thoroughly modern approach shows the significance of computations in PDEs and illustrates the strong interaction between mathematical theory and the development of numerical methods. Great care has been taken throughout the book to seek a sound balance between these techniques. The authors present the material at an easy pace and exercises ranging from the straightforward to the challenging have been included. In addition there are some "projects" suggested, either to refresh the students memory of results needed in this course, or to extend the theories developed in the text. Suitable for undergraduate and graduate students in mathematics and engineering.
This is a completely up-to-date compendium of Fortran algorithms for numerical mathematics, including many sophisticated algorithms which are not available elsewhere. All have been extensively field-tested and cover methods for solving nonlinear equations, the method of Laguerre for solving algebraic equations, conjugating gradients for solving linear systems of equations, and the McKee algorithm for solving special systems of symmetric equations. The real, practical algorithms provided make the book indispensable for applied scientists working in all areas of research. The CD contains Fortran programs for the algorithms given in the text.
These proceedings contain lectures presented at the NATO-NSF-ARO sponsored Advanced Study I stitute on "Computer Aided Analysis and Optimization of Mechanical System Dynamics" held in Iowa City, Iowa, 1-12 August, 1983. Lectures were presented by free world leaders in the field of machine dynamics and optimization. Participants in the Institute were specialists from throughout NATO, many of whom presented contributed papers during the Institute and all of whom participated actively in discussions on technical aspects of the subject. The proceedings are organized into five parts, each addressing a technical aspect of the field of computational methods in dynamic analysis and design of mechanical systems. The introductory paper presented first in the text outlines some of the numerous technical considerations that must be given to organizing effective and efficient computational methods and computer codes to serve engineers in dynamic analysis and design of mechanical systems. Two substantially different approaches to the field are identified in this introduction and are given attention throughout the text. The first and most classical approach uses a minimal set of Lagrangian generalized coordinates to formulate equations of motion with a small number of constraints. The second method uses a maximal set of cartesian coordinates and leads to a large number of differential and algebraic constraint equations of rather simple form. These fundamentally different approaches and associated methods of symbolic computation, numerical integration, and use of computer graphics are addressed throughout the proceedings.
The problems of conditional optimization of the uniform (or C-) norm for polynomials and rational functions arise in various branches of science and technology. Their numerical solution is notoriously difficult in case of high degree functions. The book develops the classical Chebyshev's approach which gives analytical representation for the solution in terms of Riemann surfaces. The techniques born in the remote (at the first glance) branches of mathematics such as complex analysis, Riemann surfaces and Teichmuller theory, foliations, braids, topology are applied to approximation problems. The key feature of this book is the usage of beautiful ideas of contemporary mathematics for the solution of applied problems and their effective numerical realization. This is one of the few books where the computational aspects of the higher genus Riemann surfaces are illuminated. Effective work with the moduli spaces of algebraic curves provides wide opportunities for numerical experiments in mathematics and theoretical physics.
Methods of global analysis and stochastic analysis are most often applied in mathematical physics as separate entities, thus forming important directions in the field. However, while combination of the two subject areas is rare, it is fundamental for the consideration of a broader class of problems. This book develops methods of Global Analysis and Stochastic Analysis such that their combination allows one to have a more or less common treatment for areas of mathematical physics that traditionally are considered as divergent and requiring different methods of investigation. Global and Stochastic Analysis with Applications to Mathematical Physics covers branches of mathematics that are currently absent in monograph form. Through the demonstration of new topics of investigation and results, both in traditional and more recent problems, this book offers a fresh perspective on ordinary and stochastic differential equations and inclusions (in particular, given in terms of Nelson's mean derivatives) on linear spaces and manifolds. Topics covered include classical mechanics on non-linear configuration spaces, problems of statistical and quantum physics, and hydrodynamics. A self-contained book that provides a large amount of preliminary material and recent results which will serve to be a useful introduction to the subject and a valuable resource for further research. It will appeal to researchers, graduate and PhD students working in global analysis, stochastic analysis and mathematical physics.
This proposed text appears to be a good introduction to evolutionary computation for use in applied statistics research. The authors draw from a vast base of knowledge about the current literature in both the design of evolutionary algorithms and statistical techniques. Modern statistical research is on the threshold of solving increasingly complex problems in high dimensions, and the generalization of its methodology to parameters whose estimators do not follow mathematically simple distributions is underway. Many of these challenges involve optimizing functions for which analytic solutions are infeasible. Evolutionary algorithms represent a powerful and easily understood means of approximating the optimum value in a variety of settings. The proposed text seeks to guide readers through the crucial issues of optimization problems in statistical settings and the implementation of tailored methods (including both stand-alone evolutionary algorithms and hybrid crosses of these procedures with standard statistical algorithms like Metropolis-Hastings) in a variety of applications. This book would serve as an excellent reference work for statistical researchers at an advanced graduate level or beyond, particularly those with a strong background in computer science.
Faced with the challenge of solving the hard optimization problems that abound in the real world, existing methods often encounter great difficulties. Important applications in business, engineering or economics cannot be tackled by the techniques that have formed the predominant focus of academic research throughout the past three decades. Exact and heuristic approaches are dramatically changing our ability to solve problems of practical significance and are extending the frontier of problems that can be handled effectively. This monograph details state-of-the-art optimization methods, both exact and heuristic, for the LOP. The authors employ the LOP to illustrate contemporary optimization technologies as well as how to design successful implementations of exact and heuristic procedures. Therefore, they do not limit the scope of this book to the LOP, but on the contrary, provide the reader with the background and practical strategies in optimization to tackle different combinatorial problems.
The numerical treatment of partial differential equations with particle methods and meshfree discretization techniques is an extremely active research field, both in the mathematics and engineering communities. Meshfree methods are becoming increasingly mainstream in various applications. Due to their independence of a mesh, particle schemes and meshfree methods can deal with large geometric changes of the domain more easily than classical discretization techniques. Furthermore, meshfree methods offer a promising approach for the coupling of particle models to continuous models. This volume of LNCSE is a collection of the papers from the proceedings of the Fifth International Workshop on Meshfree Methods, held in Bonn in August 2009. The articles address the different meshfree methods and their use in applied mathematics, physics and engineering. The volume is intended to foster this highly active and exciting area of interdisciplinary research and to present recent advances and findings in this field.
'Et moi, ..., si j'avait su comment en reveru.r, One service mathematics has rendered the je n'y scrais point aIle.' human race. It has put common sense back Jules Verne where it belongs, on the topmost shelf next to the dusty canister labelled 'discarded non The series is divergent; therefore we may be sense'. Eric T. Bell able to do something with it. o. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series."
This IMA Volume in Mathematics and its Applications TWIST MAPPINGS AND THEIR APPLICATIONS is based on the proceedings of a workshop which was an integral part of the 1989- 90 IMA program on "Dynamical Systems and their Applications". The workshop brought together many of the leading figures in the modern study of twist maps. We thank Shui-Nee Chow, Martin Golubitsky, Richard McGehee, Ken Meyer, Jiirgen Moser, Clark Robinson, George R. Sell, and Eduard Zehnder for organizing the meeting and, especially, Richard McGehee and Ken Meyer for editing the volume. A vner Friedman Willard Miller, Jr. PREFACE In the 1890 volume of Acta Mathematica, H. Poincare published his prize- winning paper on the stability of orbits of the three body problem. In that paper, he introduced some of the basic ideas about twist maps of the annulus. One hun- dred years later, the study of twist maps is still an active and important area of dynamical systems theory.
Ricci Flow for Shape Analysis and Surface Registration introduces the beautiful and profound Ricci flow theory in a discrete setting. By using basic tools in linear algebra and multivariate calculus, readers can deduce all the major theorems in surface Ricci flow by themselves. The authors adapt the Ricci flow theory to practical computational algorithms, apply Ricci flow for shape analysis and surface registration, and demonstrate the power of Ricci flow in many applications in medical imaging, computer graphics, computer vision and wireless sensor network. Due to minimal pre-requisites, this book is accessible to engineers and medical experts, including educators, researchers, students and industry engineers who have an interest in solving real problems related to shape analysis and surface registration.
Edmund Hlawka is a leading number theorist whose work has had a lasting influence on modern number theory and other branches of mathematics. He has contributed to diophantine approximation, the geometry of numbers, uniform distributions, analytic number theory, discrete geometry, convexity, numerical integration, inequalities, differential equations and gas dynamics. Of particular importance are his findings in the geometry of numbers (especially the Minkowski-Hlawka theorem) and uniform distribution. This Selecta volume collects his most important articles, many of which were previously hard to find. It will provide a useful tool for researchers and graduate students working in the areas covered, and includes a general introduction by E. Hlawka.
This book constitutes the thoroughly refereed post-conference proceedings of the 20th International Colloquium on Structural Information and Communication Complexity, SIROCCO 2013, held in Ischia, Italy, in July 2013. The 28 revised full papers presented were carefully reviewed and selected from 67 submissions. SIROCCO is devoted to the study of communication and knowledge in distributed systems. Special emphasis is given to innovative approaches and fundamental understanding, in addition to efforts to optimize current designs. The typical areas include distributed computing, communication networks, game theory, parallel computing, social networks, mobile computing (including autonomous robots), peer to peer systems, communication complexity, fault tolerant graph theories and randomized/probabilistic issues in networks.
This work presents a thorough treatment of boundary element methods (BEM) for solving strongly elliptic boundary integral equations obtained from boundary reduction of elliptic boundary value problems in $\mathbb{R} DEGREES3$. The book is self-contained, the prerequisites on elliptic partial differential and integral equations being presented in Chapters 2 and 3. The main focus is on the development, analysis, and implementation of Galerkin boundary element methods, which is one of the most flexible and robust numerical discretization methods for integral equations. For the efficient realization of the Galerkin BEM, it is essential to replace time-consuming steps in the numerical solution process with fast algorithms. In Chapters 5-9 these methods are developed, analyzed, and formulated in an algorithmic
This work describes the propagation properties of the so-called symmetric interior penalty discontinuous Galerkin (SIPG) approximations of the 1-d wave equation. This is done by means of linear approximations on uniform meshes. First, a careful Fourier analysis is constructed, highlighting the coexistence of two Fourier spectral branches or spectral diagrams (physical and spurious) related to the two components of the numerical solution (averages and jumps). Efficient filtering mechanisms are also developed by means of techniques previously proved to be appropriate for classical schemes like finite differences or P1-classical finite elements. In particular, the work presents a proof that the uniform observability property is recovered uniformly by considering initial data with null jumps and averages given by a bi-grid filtering algorithm. Finally, the book explains how these results can be extended to other more sophisticated conforming and non-conforming finite element methods, in particular to quadratic finite elements, local discontinuous Galerkin methods and a version of the SIPG method adding penalization on the normal derivatives of the numerical solution at the grid points. This work is the first publication to contain a rigorous analysis of the discontinuous Galerkin methods for wave control problems. It will be of interest to a range of researchers specializing in wave approximations.
Addressing students and researchers as well as Computational Fluid
Dynamics practitioners, this book is the most comprehensive review
of high-resolution schemes based on the principle of Flux-Corrected
Transport (FCT). The foreword by J.P. Boris and historical note by
D.L. Book describe the development of the classical FCT methodology
for convection-dominated transport problems, while the design
philosophy behind modern FCT schemes is explained by S.T. Zalesak.
The subsequent chapters present various improvements and
generalizations proposed over the past three decades.
The purpose of the volume is to bring forward recent trends of research in hypercomplex analysis. The list of contributors includes first rate mathematicians and young researchers working on several different aspects in quaternionic and Clifford analysis. Besides original research papers, there are papers providing the state-of-the-art of a specific topic, sometimes containing interdisciplinary fields. The intended audience includes researchers, PhD students, postgraduate students who are interested in the field and in possible connection between hypercomplex analysis and other disciplines, including mathematical analysis, mathematical physics, algebra.
The study of the genetic basis for evolution has flourished in this century, as well as our understanding of the evolvability and programmability of biological systems. Genetic algorithms meanwhile grew out of the realization that a computer program could use the biologically-inspired processes of mutation, recombination, and selection to solve hard optimization problems. Genetic and evolutionary programming provide further approaches to a wide variety of computational problems. A synthesis of these experiences reveals fundamental insights into both the computational nature of biological evolution and processes of importance to computer science. Topics include biological models of nucleic acid information processing and genome evolution; molecules, cells, and metabolic circuits that compute logical relationships; the origin and evolution of the genetic code; and the interface with genetic algorithms and genetic and evolutionary programming.
Since most of the problems arising in science and engineering are nonlinear, they are inherently difficult to solve. Traditional analytical approximations are valid only for weakly nonlinear problems and often fail when used for problems with strong nonlinearity. Nonlinear Flow Phenomena and Homotopy Analysis: Fluid Flow and Heat Transfer presents the current theoretical developments of the analytical method of homotopy analysis. This book not only addresses the theoretical framework for the method, but also gives a number of examples of nonlinear problems that have been solved by means of the homotopy analysis method. The particular focus lies on fluid flow problems governed by nonlinear differential equations. This book is intended for researchers in applied mathematics, physics, mechanics and engineering. Both Kuppalapalle Vajravelu and Robert A. Van Gorder work at the University of Central Florida, USA."
A logically organized advanced textbook, which turns the reader into an active participant by asking questions, hinting, giving direct recommendations, comparing different methods, and discussing "pessimistic" and "optimistic" approaches to numerical analysis. Advanced students and graduate students majoring in computer science, physics and mathematics will find this book helpful.
Mechanical design includes an optimization process in which designers always consider objectives such as strength, deflection, weight, wear, corrosion, etc. depending on the requirements. However, design optimization for a complete mechanical assembly leads to a complicated objective function with a large number of design variables. It is a good practice to apply optimization techniques for individual components or intermediate assemblies than a complete assembly. Analytical or numerical methods for calculating the extreme values of a function may perform well in many practical cases, but may fail in more complex design situations. In real design problems, the number of design parameters can be very large and their influence on the value to be optimized (the goal function) can be very complicated, having nonlinear character. In these complex cases, advanced optimization algorithms offer solutions to the problems, because they find a solution near to the global optimum within reasonable time and computational costs. "Mechanical Design Optimization Using Advanced Optimization Techniques" presents a comprehensive review on latest research and development trends for design optimization of mechanical elements and devices. Using examples of various mechanical elements and devices, the possibilities for design optimization with advanced optimization techniques are demonstrated. Basic and advanced concepts of traditional and advanced optimization techniques are presented, along with real case studies, results of applications of the proposed techniques, and the best optimization strategies to achieve best performance are highlighted. Furthermore, a novel advanced optimization method named teaching-learning-based optimization (TLBO) is presented in this book and this method shows better performance with less computational effort for the large scale problems. "Mechanical Design Optimization Using Advanced Optimization Techniques" is intended for designers, practitioners, managers, institutes involved in design related projects, applied research workers, academics, and graduate students in mechanical and industrial engineering and will be useful to the industrial product designers for realizing a product as it presents new models and optimization techniques to make tasks easier, logical, efficient and effective.
In this book, the new and rapidly expanding field of scientific computing is understood in a double sense: as computing for scientific and engineering problems and as the science of doing such computations. Thus scientific computing touches at one side mathematical modelling (in the various fields of applications) and at the other side computer science. As soon as the mathematical models de scribe the features of real life processes in sufficient detail, the associated computations tend to be large scale. As a consequence, interest more and more focusses on such numerical methods that can be expected to cope with large scale computational problems. Moreover, given the algorithms which are known to be efficient on a tradi tional computer, the question of implementation on modern supercomputers may get crucial. The present book is the proceedings of a meeting on "Large Scale Scientific Computing," that was held a t the Oberwolfach Mathematical Institute (July 14-19, 1985) under the auspices of the Sonderforschungsbereich 123 of the University of Heidelberg. Participants included applied scientists with computational interests, numerical analysts, and experts on modern parallel computers. 'l'he purpose of the meeting was to establish a common under standing of recent issues in scientific computing, especially in view of large scale problems. Fields of applications, which have been covered, included semi-conductor design, chemical combustion, flow through porous media, climatology, seismology, fluid dynami. cs, tomography, rheology, hydro power plant optimization, subwil. y control, space technology."
Acta Numerica is an annual publication containing invited survey papers by leading researchers in numerical mathematics and scientific computing. The papers present overviews of recent developments in their area and provide state-of-the-art techniques and analysis. |
You may like...
Nevanlinna Theory in Several Complex…
Junjiro Noguchi, Joerg Winkelmann
Hardcover
R3,866
Discovery Miles 38 660
|