![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Numerical analysis
In this book, the author compares the meaning of stability in different subfields of numerical mathematics. Concept of Stability in numerical mathematics opens by examining the stability of finite algorithms. A more precise definition of stability holds for quadrature and interpolation methods, which the following chapters focus on. The discussion then progresses to the numerical treatment of ordinary differential equations (ODEs). While one-step methods for ODEs are always stable, this is not the case for hyperbolic or parabolic differential equations, which are investigated next. The final chapters discuss stability for discretisations of elliptic differential equations and integral equations. In comparison among the subfields we discuss the practical importance of stability and the possible conflict between higher consistency order and stability.
This book investigates the stability and vibrations of conductive, perfectly conductive and superconductive thin bodies in electromagnetic fields. It introduces the main principles and derives basic equations and relations describing interconnected mechanical and electromagnetic processes in deformable electro conductive bodies placed in an external inhomogeneous magnetic field and under the influence of various types of force interactions. Basic equations and relations are addressed in the nonlinear formulation and special emphasis is placed on the mechanical interactions of superconducting thin-body plates with magnetic fields.
This book is devoted to the broad field of Fourier analysis and its applications to several areas of mathematics, including problems in the theory of pseudo-differential operators, partial differential equations, and time-frequency analysis. It is based on lectures given at the international conference "Fourier Analysis and Pseudo-Differential Operators," June 25-30, 2012, at Aalto University, Finland. This collection of 20 refereed articles is based on selected talks and presents the latest advances in the field. The conference was a satellite meeting of the 6th European Congress of Mathematics, which took place in Krakow in July 2012; it was also the 6th meeting in the series "Fourier Analysis and Partial Differential Equations."
Proceedings from the 14th European Conference for Mathematics in Industry held in Madrid present innovative numerical and mathematical techniques. Topics include the latest applications in aerospace, information and communications, materials, energy and environment, imaging, biology and biotechnology, life sciences, and finance. In addition, the conference also delved into education in industrial mathematics and web learning.
This book presents theories and the main useful techniques of the Finite Element Method (FEM), with an introduction to FEM and many case studies of its use in engineering practice. It supports engineers and students to solve primarily linear problems in mechanical engineering, with a main focus on static and dynamic structural problems. Readers of this text are encouraged to discover the proper relationship between theory and practice, within the finite element method: Practice without theory is blind, but theory without practice is sterile. Beginning with elasticity basic concepts and the classical theories of stressed materials, the work goes on to apply the relationship between forces, displacements, stresses and strains on the process of modeling, simulating and designing engineered technical systems. Chapters discuss the finite element equations for static, eigenvalue analysis, as well as transient analyses. Students and practitioners using commercial FEM software will find this book very helpful. It uses straightforward examples to demonstrate a complete and detailed finite element procedure, emphasizing the differences between exact and numerical procedures.
The 15th European Conference on Mathematics for Industry was held in the agreeable surroundings of University College London, just 5 minutes walk from the British Museum in the heart of London, over the ?ve warm, sunny days from 30 June to 4 July 2008. Participants from all over the world met with the commonaimofreinforcingthe roleofmathematics asanoverarching resource for industry and business. The conference attracted over 300 participants from 30 countries, most of them participating with either a contributed talk, a minisymposium pres- tation or a plenary lecture. 'Mathematics in Industry' was interpreted in its widest sense as can be seen from the range of applications and techniques described in this volume. We mention just two examples. The Alan Tayler Lecture was given by Mario Primicerio on a problem arising from moving oil through pipelines when temperature variations a?ect the shearing properties of wax and thus modify the ?ow. The Wacker Prize winner, Master's student Lauri Harhanen from the Helsinki University of Technology, showed how a novel piece of mathematics allowed new software to capture real-time images of teeth from the data supplied by present day dental machinery (see ECMI Newsletter 44). The meeting was attended by leading ?gures from government, bu- ness and science who all shared the same aim - to promote the application of innovative mathematics to industry, and identify industrial sectors that o?er the most exciting opportunities for mathematicians to provide new insight and new ideas.
Prolate Spheroidal Wave Functions (PSWFs) are the eigenfunctions of the bandlimited operator in one dimension. As such, they play an important role in signal processing, Fourier analysis, and approximation theory. While historically the numerical evaluation of PSWFs presented serious difficulties, the developments of the last fifteen years or so made them as computationally tractable as any other class of special functions. As a result, PSWFs have been becoming a popular computational tool. The present book serves as a complete, self-contained resource for both theory and computation. It will be of interest to a wide range of scientists and engineers, from mathematicians interested in PSWFs as an analytical tool to electrical engineers designing filters and antennas.
This book focuses on nonlinear boundary value problems and the aspects of nonlinear analysis which are necessary to their study. The authors first give a comprehensive introduction to the many different classical methods from nonlinear analysis, variational principles, and Morse theory. They then provide a rigorous and detailed treatment of the relevant areas of nonlinear analysis with new applications to nonlinear boundary value problems for both ordinary and partial differential equations. Recent results on the existence and multiplicity of critical points for both smooth and nonsmooth functional, developments on the degree theory of monotone type operators, nonlinear maximum and comparison principles for p-Laplacian type operators, and new developments on nonlinear Neumann problems involving non-homogeneous differential operators appear for the first time in book form. The presentation is systematic, and an extensive bibliography and a remarks section at the end of each chapter highlight the text. This work will serve as an invaluable reference for researchers working in nonlinear analysis and partial differential equations as well as a useful tool for all those interested in the topics presented.
The European Conference on Numerical Mathematics and Advanced Applications (ENUMATH) is a series of conferences held every two years to provide a forum for discussion on recent aspects of numerical mathematics and their applications. The ?rst ENUMATH conference was held in Paris (1995), and the series continued by the one in Heidelberg (1997), Jyvaskyla (1999), Ischia (2001), Prague (2003), and Santiago de Compostela (2005). This volume contains a selection of invited plenary lectures, papers presented in minisymposia, and contributed papers of ENUMATH 2007, held in Graz, Austria, September 10-14, 2007. We are happy that so many people have shown their interest in this conference. In addition to the ten invited presentations and the public lecture, we had more than 240 talks in nine minisymposia and ?fty four sessions of contributed talks, and about 316 participants from all over the world, specially from Europe. A total of 98 contributions appear in these proceedings. Topics include theoretical aspects of new numerical techniques and algorithms, as well as to applications in engineering and science. The book will be useful for a wide range of readers, giving them an excellent overview of the most modern methods, techniques, algorithms and results in numerical mathematics, scienti?c computing and their applications. We would like to thank all the participants for the attendance and for their va- ablecontributionsanddiscussionsduringtheconference.Specialthanksgothe m- isymposium organizers, who made a large contribution to the conference, the chair persons, and all speakers.
Aircraft concepts are always driven by the requirements of the desired m- sion. A di?erent purpose for the use of the aircraft consequently results in a di?erent design. Therefore, depending on the intended outcome, con?i- ing requirements need to be ful?lled, for example, e?cient cruise speed and greatercargocapabilities, in combinationwith shorttake-o?andlanding ?eld lengths, or high speed and agility combined with variable payload demands. Due to the highly complex, non-linear physical environment in which aircraft operate, this task demands that the most advanced methods and tools are employed, to gain the necessary understanding of ?ow phenomena, and to exploit the ?ow physics to achieve maximum aircraft e?ciency. Inthe naturalsciences, researcherstry to create andextend humankno- edge by understanding and explaining the mechanisms of physical processes. In engineering, a designer is limited by certain requirements, and in order to ful?l these requirements the necessary technical tools need to be designed. In general, for a given problem the corresponding scienti?c or technical solution is sought. In order to successfully advance from a problem towards a solution, three main methods may be used. The two classical methods include theory and experiment, which are now being complemented by a third method, - scribedasnumericalsimulation.Theexperimentalapproachis basedonph- ical observation, measurement of relevant values, and methodical variation of the subject matter. For example, such experiments are used to gain a ph- ical understanding as well as to validate and investigate design alternative
This volume contains papers that were presented at HYP2006, the eleventh international Conference on Hyperbolic Problems: Theory, Numerics and Applications. This biennial series of conferences has become one of the most important international events in Applied Mathematics. As computers became more and more powerful, the interplay between theory, modeling, and numerical algorithms gained considerable impact, and the scope of HYP conferences expanded accordingly.
This volume contains a collection of papers based on lectures and presentations delivered at the International Conference on Constructive Nonsmooth Analysis (CNSA) held in St. Petersburg (Russia) from June 18-23, 2012. This conference was organized to mark the 50th anniversary of the birth of nonsmooth analysis and nondifferentiable optimization and was dedicated to J.-J. Moreau and the late B.N. Pshenichnyi, A.M. Rubinov, and N.Z. Shor, whose contributions to NSA and NDO remain invaluable. The first four chapters of the book are devoted to the theory of nonsmooth analysis. Chapters 5-8 contain new results in nonsmooth mechanics and calculus of variations. Chapters 9-13 are related to nondifferentiable optimization, and the volume concludes with four chapters containing interesting and important historical chapters, including tributes to three giants of nonsmooth analysis, convexity, and optimization: Alexandr Alexandrov, Leonid Kantorovich, and Alex Rubinov. The last chapter provides an overview and important snapshots of the 50-year history of convex analysis and optimization.
The book integrates theoretical analysis, numerical simulation and modeling approaches for the treatment of singular phenomena. The projects covered focus on actual applied problems, and develop qualitatively new and mathematically challenging methods for various problems from the natural sciences. Ranging from stochastic and geometric analysis over nonlinear analysis and modelling to numerical analysis and scientific computation, the book is divided into the three sections: A) Scaling limits of diffusion processes and singular spaces, B) Multiple scales in mathematical models of materials science and biology and C) Numerics for multiscale models and singular phenomena. Each section addresses the key aspects of multiple scales and model hierarchies, singularities and degeneracies, and scaling laws and self-similarity.
The problem of counting the number of self-avoiding polygons on a square grid, - therbytheirperimeterortheirenclosedarea,is aproblemthatis soeasytostate that, at ?rst sight, it seems surprising that it hasn't been solved. It is however perhaps the simplest member of a large class of such problems that have resisted all attempts at their exact solution. These are all problems that are easy to state and look as if they should be solvable. They include percolation, in its various forms, the Ising model of ferromagnetism, polyomino enumeration, Potts models and many others. These models are of intrinsic interest to mathematicians and mathematical physicists, but can also be applied to many other areas, including economics, the social sciences, the biological sciences and even to traf?c models. It is the widespread applicab- ity of these models to interesting phenomena that makes them so deserving of our attention. Here however we restrict our attention to the mathematical aspects. Here we are concerned with collecting together most of what is known about polygons, and the closely related problems of polyominoes. We describe what is known, taking care to distinguish between what has been proved, and what is c- tainlytrue,but has notbeenproved. Theearlierchaptersfocusonwhatis knownand on why the problems have not been solved, culminating in a proof of unsolvability, in a certain sense. The next chapters describe a range of numerical and theoretical methods and tools for extracting as much information about the problem as possible, in some cases permittingexactconjecturesto be made.
The book presents, in a systematic manner, the optimal controls under different mathematical models in fermentation processes. Variant mathematical models - i.e., those for multistage systems; switched autonomous systems; time-dependent and state-dependent switched systems; multistage time-delay systems and switched time-delay systems - for fed-batch fermentation processes are proposed and the theories and algorithms of their optimal control problems are studied and discussed. By putting forward novel methods and innovative tools, the book provides a state-of-the-art and comprehensive systematic treatment of optimal control problems arising in fermentation processes. It not only develops nonlinear dynamical system, optimal control theory and optimization algorithms, but can also help to increase productivity and provide valuable reference material on commercial fermentation processes.
Fluid flows are characterized by uncertain inputs such as random initial data, material and flux coefficients, and boundary conditions. The current volume addresses the pertinent issue of efficiently computing the flow uncertainty, given this initial randomness. It collects seven original review articles that cover improved versions of the Monte Carlo method (the so-called multi-level Monte Carlo method (MLMC)), moment-based stochastic Galerkin methods and modified versions of the stochastic collocation methods that use adaptive stencil selection of the ENO-WENO type in both physical and stochastic space. The methods are also complemented by concrete applications such as flows around aerofoils and rockets, problems of aeroelasticity (fluid-structure interactions), and shallow water flows for propagating water waves. The wealth of numerical examples provide evidence on the suitability of each proposed method as well as comparisons of different approaches.
Martin Groetschel is one of the most influential mathematicians of our time. He has received numerous honors and holds a number of key positions in the international mathematical community. He celebrated his 65th birthday on September 10, 2013. Martin Groetschel's doctoral descendant tree 1983-2012, i.e., the first 30 years, features 39 children, 74 grandchildren, 24 great-grandchildren and 2 great-great-grandchildren, a total of 139 doctoral descendants. This book starts with a personal tribute to Martin Groetschel by the editors (Part I), a contribution by his very special "predecessor" Manfred Padberg on "Facets and Rank of Integer Polyhedra" (Part II), and the doctoral descendant tree 1983-2012 (Part III). The core of this book (Part IV) contains 16 contributions, each of which is coauthored by at least one doctoral descendant. The sequence of the articles starts with contributions to the theory of mathematical optimization, including polyhedral combinatorics, extended formulations, mixed-integer convex optimization, super classes of perfect graphs, efficient algorithms for subtree-telecenters, junctions in acyclic graphs and preemptive restricted strip covering, as well as efficient approximation of non-preemptive restricted strip covering. Combinations of new theoretical insights with algorithms and experiments deal with network design problems, combinatorial optimization problems with submodular objective functions and more general mixed-integer nonlinear optimization problems. Applications include VLSI layout design, systems biology, wireless network design, mean-risk optimization and gas network optimization. Computational studies include a semidefinite branch and cut approach for the max k-cut problem, mixed-integer nonlinear optimal control, and mixed-integer linear optimization for scheduling and routing of fly-in safari planes. The two closing articles are devoted to computational advances in general mixed integer linear optimization, the first by scientists working in industry, the second by scientists working in academia. These articles reflect the "scientific facets" of Martin Groetschel who has set standards in theory, computation and applications.
This book offers a comprehensive collection of the most advanced numerical techniques for the efficient and effective solution of simulation and optimization problems governed by systems of time-dependent differential equations. The contributions present various approaches to time domain decomposition, focusing on multiple shooting and parareal algorithms. The range of topics covers theoretical analysis of the methods, as well as their algorithmic formulation and guidelines for practical implementation. Selected examples show that the discussed approaches are mandatory for the solution of challenging practical problems. The practicability and efficiency of the presented methods is illustrated by several case studies from fluid dynamics, data compression, image processing and computational biology, giving rise to possible new research topics. This volume, resulting from the workshop Multiple Shooting and Time Domain Decomposition Methods, held in Heidelberg in May 2013, will be of great interest to applied mathematicians, computer scientists and all scientists using mathematical methods.
Invited papers.- Discrete Differential Forms, Approximation of Eigenvalue Problems, and Application to the p Version of Edge Finite Elements.- Semi-Implicit DGFE Discretization of the Compressible Navier-Stokes Equations: Efficient Solution Strategy.- Some Numerical Approaches for Weakly Random Homogenization.- Goal Oriented, Anisotropic, A Posteriori Error Estimates for the Laplace Equation.- Contributed papers.- Energy Stability of the MUSCL Scheme.- Numerical Stabilization of the Melt Front for Laser Beam Cutting.- Numerical Optimization of a Bioreactor for the Treatment of Eutrophicated Water.- Finite Element Approximation of a Quasi-3D Model for Estuarian River Flows.- Convergence of a Mixed Discontinuous Galerkin and Finite Volume Scheme for the 3 Dimensional Vlasov-Poisson-Fokker-Planck System.- Infrastructure for the Coupling of Dune Grids.- FEM for Flow and Pollution Transport in a Street Canyon.- Stabilized Finite Element Methods with Shock-Capturing for Nonlinear Convection-Diffusion-Reaction Models.- Finite Element Discretization of the Giesekus Model for Polymer Flows.- A dG Method for the Strain-Rate Formulation of the Stokes Problem Related with Nonconforming Finite Element Methods.- Numerical Simulation of the Stratified Flow Past a Body.- A Flexible Updating Framework for Preconditioners in PDE-Based Image Restoration Algorithms.- Stabilized Finite Element Method for Compressible-Incompressible Diphasic Flows.- An Immersed Interface Technique for the Numerical Solution of the Heat Equation on a Moving Domain.- Lid-Driven-Cavity Simulations of Oldroyd-B Models Using Free-Energy-Dissipative Schemes.- Adaptive Multiresolution Simulation of Waves in Electrocardiology.- On the Numerical Approximation of the Laplace Transform Function from Real Samples and Its Inversion.- A Motion-Aided Ultrasound Image Sequence Segmentation.- A High Order Finite Volume Numerical Scheme for Shallow Water System: An Efficient Implementation on GPUs.- Spectral Analysis for Radial Basis Function Collocation Matrices.- Finite Element Solution of the Primitive Equations of the Ocean by the Orthogonal Sub-Scales Method.- Solution of Incompressible Flow Equations by a High-Order Term-by-Term Stabilized Method.- Solving Large Sparse Linear Systems Efficiently on Grid Computers Using an Asynchronous Iterative Method as a Preconditioner.- Hierarchical High Order Finite Element Approximation Spaces for H(div) and H(curl).- Some Theoretical Results About Stability for IMEX Schemes Applied to Hyperbolic Equations with Stiff Reaction Terms.- Stable Perfectly Matched Layers for the Schroedinger Equations.- Domain Decomposition Schemes for Frictionless Multibody Contact Problems of Elasticity.- Analysis and Acceleration of a Fluid-Structure Interaction Coupling Scheme.- Second Order Numerical Operator Splitting for 3D Advection-Diffusion-Reaction Models.- Space-Time DG Method for Nonstationary Convection-Diffusion Problems.- High Order Finite Volume Schemes for Numerical Solution of Unsteady Flows.- Multigrid Finite Element Method on Semi-Structured Grids for the Poroelasticity Problem.- A Posteriori Error Bounds for Discontinuous Galerkin Methods for Quasilinear Parabolic Problems.- An A Posteriori Analysis of Multiscale Operator Decomposition.- Goal-Oriented Error Estimation for the Discontinuous Galerkin Method Applied to the Biharmonic Equation.- Solving Stochastic Collocation Systems with Algebraic Multigrid.- Adaptive Two-Step Peer Methods for Incompressible Navier-Stokes Equations.- On Hierarchical Error Estimators for Time-Discretized Phase Field Models.- Nonlinear Decomposition Methods in Elastodynamics.- An Implementation Framework for Solving High-Dimensional PDEs on Massively Parallel Computers.- Benchmarking FE-Methods for the Brinkman Problem.- Finite Element Based Second Moment Analysis for Elliptic Problems in Stochastic Domains.- On Robust Parallel Preconditioning for Incompressible Flow Problems.- Hybrid Modeling of Plasmas.- A Pr
This volume is dedicated to the memory of Shoshichi Kobayashi, and gathers contributions from distinguished researchers working on topics close to his research areas. The book is organized into three parts, with the first part presenting an overview of Professor Shoshichi Kobayashi's career. This is followed by two expository course lectures (the second part) on recent topics in extremal Kahler metrics and value distribution theory, which will be helpful for graduate students in mathematics interested in new topics in complex geometry and complex analysis. Lastly, the third part of the volume collects authoritative research papers on differential geometry and complex analysis. Professor Shoshichi Kobayashi was a recognized international leader in the areas of differential and complex geometry. He contributed crucial ideas that are still considered fundamental in these fields. The book will be of interest to researchers in the fields of differential geometry, complex geometry, and several complex variables geometry, as well as to graduate students in mathematics.
This book reports on solved problems concerning vibrations and stability of complex beam systems. The complexity of a system is considered from two points of view: the complexity originating from the nature of the structure, in the case of two or more elastically connected beams; and the complexity derived from the dynamic behavior of the system, in the case of a damaged single beam, resulting from the harm done to its simple structure. Furthermore, the book describes the analytical derivation of equations of two or more elastically connected beams, using four different theories (Euler, Rayleigh, Timoshenko and Reddy-Bickford). It also reports on a new, improved p-version of the finite element method for geometrically nonlinear vibrations. The new method provides more accurate approximations of solutions, while also allowing us to analyze geometrically nonlinear vibrations. The book describes the appearance of longitudinal vibrations of damaged clamped-clamped beams as a result of discontinuity (damage). It describes the cases of stability in detail, employing all four theories, and provides the readers with practical examples of stochastic stability. Overall, the book succeeds in collecting in one place theoretical analyses, mathematical modeling and validation approaches based on various methods, thus providing the readers with a comprehensive toolkit for performing vibration analysis on complex beam systems.
The contributions in this volume have been written by eminent scientists from the international mathematical community and present significant advances in several theories, methods and problems of Mathematical Analysis, Discrete Mathematics, Geometry and their Applications. The chapters focus on both old and recent developments in Functional Analysis, Harmonic Analysis, Complex Analysis, Operator Theory, Combinatorics, Functional Equations, Differential Equations as well as a variety of Applications. The book also contains some review works, which could prove particularly useful for a broader audience of readers in Mathematical Sciences, and especially to graduate students looking for the latest information.
The Whole Truth About Whole Numbers is an introduction to the field of Number Theory for students in non-math and non-science majors who have studied at least two years of high school algebra. Rather than giving brief introductions to a wide variety of topics, this book provides an in-depth introduction to the field of Number Theory. The topics covered are many of those included in an introductory Number Theory course for mathematics majors, but the presentation is carefully tailored to meet the needs of elementary education, liberal arts, and other non-mathematical majors. The text covers logic and proofs, as well as major concepts in Number Theory, and contains an abundance of worked examples and exercises to both clearly illustrate concepts and evaluate the students' mastery of the material.
A fixed-parameter is an algorithm that provides an optimal solution
to a combinatorial problem. This research-level text is an
application-oriented introduction to the growing and highly topical
area of the development and analysis of efficient fixed-parameter
algorithms for hard problems.
This book represents the refereed proceedings of the Tenth International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing that was held at the University of New South Wales (Australia) in February 2012. These biennial conferences are major events for Monte Carlo and the premiere event for quasi-Monte Carlo research. The proceedings include articles based on invited lectures as well as carefully selected contributed papers on all theoretical aspects and applications of Monte Carlo and quasi-Monte Carlo methods. The reader will be provided with information on latest developments in these very active areas. The book is an excellent reference for theoreticians and practitioners interested in solving high-dimensional computational problems arising, in particular, in finance, statistics and computer graphics. |
![]() ![]() You may like...
Fuzzy Expert Systems and Applications in…
A.V. Senthil Kumar, M Kalpana
Hardcover
R7,095
Discovery Miles 70 950
Innovations in Artificial Intelligence…
Surbhi Bhatia, Suyel Namasudra, …
Paperback
Applications of Bat Algorithm and its…
Nilanjan Dey, V. Rajinikanth
Hardcover
R4,348
Discovery Miles 43 480
EVOLVE - A Bridge between Probability…
Michael Emmerich, Andre Deutz, …
Hardcover
Smart Technologies - Breakthroughs in…
Information Resources Management Association
Hardcover
R9,165
Discovery Miles 91 650
Evolutionary Data Clustering: Algorithms…
Ibrahim Aljarah, Hossam Faris, …
Hardcover
R5,106
Discovery Miles 51 060
Artificial Intelligence for Neurological…
Ajith Abraham, Sujata Dash, …
Paperback
R4,171
Discovery Miles 41 710
|