![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Numerical analysis
This book is intended to be a useful contribution for the modern teaching of applied mathematics, educating Industrial Mathematicians that will meet the growing demand for such experts. It covers many applications where mathematics play a fundamental role, from biology, telecommunications, medicine, physics, finance and industry. It is presented in such a way that can be useful in Modelation, Simulation and Optimization courses, targeting master and PhD students. Its content is based on many editions from the successful series of Modelling Weeks organized by the European Consortium of Mathematics in Industry (ECMI). Each chapter addresses a particular problem, and is written in a didactic way, providing the description of the problem, the particular way of approaching it and the proposed solution, along with the results obtained.
This volume constitutes the proceedings of NetSci-X 2020: the Sixth International School and Conference on Network Science, which was held in Tokyo, Japan, in January 2020. NetSci-X is the Network Science Society's winter conference series that covers a wide variety of interdisciplinary topics on networks. Participants come from various fields, including (but not limited to): mathematics, physics, computer science, social sciences, management and marketing sciences, organization science, communication science, systems science, biology, ecology, neuroscience, medicine, as well as business. This volume consists of contributed papers that have been accepted to NetSc-X 2020 through a rigorous peer review process. Researchers, students, and professionals will gain first-hand information about today's cutting-edge research frontier of network science.
This handbook focuses on special functions in physics in the real and complex domain. It covers more than 170 different functions with additional numerical hints for efficient computation, which are useful to anyone who needs to program with other programming languages as well. The book comes with MATLAB-based programs for each of these functions and a detailed html-based documentation. Some of the explained functions are: Gamma and Beta functions; Legendre functions, which are linked to quantum mechanics and electrodynamics; Bessel functions; hypergeometric functions, which play an important role in mathematical physics; orthogonal polynomials, which are largely used in computational physics; and Riemann zeta functions, which play an important role, e.g., in quantum chaos or string theory. The book's primary audience are scientists, professionals working in research areas of industries, and advanced students in physics, applied mathematics, and engineering.
This book explores four guiding themes - reduced order modelling, high dimensional problems, efficient algorithms, and applications - by reviewing recent algorithmic and mathematical advances and the development of new research directions for uncertainty quantification in the context of partial differential equations with random inputs. Highlighting the most promising approaches for (near-) future improvements in the way uncertainty quantification problems in the partial differential equation setting are solved, and gathering contributions by leading international experts, the book's content will impact the scientific, engineering, financial, economic, environmental, social, and commercial sectors.
This book introduces models and methodologies that can be employed towards making the Industry 4.0 vision a reality within the process industries, and at the same time investigates the impact of uncertainties in such highly integrated settings. Advances in computing power along with the widespread availability of data have led process industries to consider a new paradigm for automated and more efficient operations. The book presents a theoretically proven optimal solution to multi-parametric linear and mixed-integer linear programs and efficient solutions to problems such as process scheduling and design under global uncertainty. It also proposes a systematic framework for the uncertainty-aware integration of planning, scheduling and control, based on the judicious coupling of reactive and proactive methods. Using these developments, the book demonstrates how the integration of different decision-making layers and their simultaneous optimisation can enhance industrial process operations and their economic resilience in the face of uncertainty.
The book consists of articles based on the XXXVIII Bialowieza Workshop on Geometric Methods in Physics, 2019. The series of Bialowieza workshops, attended by a community of experts at the crossroads of mathematics and physics, is a major annual event in the field. The works in this book, based on presentations given at the workshop, are previously unpublished, at the cutting edge of current research, typically grounded in geometry and analysis, with applications to classical and quantum physics. For the past eight years, the Bialowieza Workshops have been complemented by a School on Geometry and Physics, comprising series of advanced lectures for graduate students and early-career researchers. The extended abstracts of the five lecture series that were given in the eighth school are included. The unique character of the Workshop-and-School series draws on the venue, a famous historical, cultural and environmental site in the Bialowieza forest, a UNESCO World Heritage Centre in the east of Poland: lectures are given in the Nature and Forest Museum and local traditions are interwoven with the scientific activities. The chapter "Toeplitz Extensions in Noncommutative Topology and Mathematical Physics" is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
This book provides a comprehensive explanation of forward error correction, which is a vital part of communication systems. The book is written in such a way to make the subject easy and understandable for the reader. The book starts with a review of linear algebra to provide a basis for the text. The author then goes on to cover linear block codes, syndrome error correction, cyclic codes, Galois fields, BCH codes, Reed Solomon codes, and convolutional codes. Examples are provided throughout the text.
A solutions manual to accompany An Introduction to Numerical Methods and Analysis, Second Edition An Introduction to Numerical Methods and Analysis, Second Edition reflects the latest trends in the field, includes new material and revised exercises, and offers a unique emphasis on applications. The author clearly explains how to both construct and evaluate approximations for accuracy and performance, which are key skills in a variety of fields. A wide range of higher-level methods and solutions, including new topics such as the roots of polynomials, spectral collocation, finite element ideas, and Clenshaw-Curtis quadrature, are presented from an introductory perspective, and the Second Edition also features: Chapters and sections that begin with basic, elementary material followed by gradual coverage of more advanced material Exercises ranging from simple hand computations to challenging derivations and minor proofs to programming exercises Widespread exposure and utilization of MATLAB(R) An appendix that contains proofs of various theorems and other material
This book includes original research findings in the field of memetic algorithms for image processing applications. It gathers contributions on theory, case studies, and design methods pertaining to memetic algorithms for image processing applications ranging from defence, medical image processing, and surveillance, to computer vision, robotics, etc. The content presented here provides new directions for future research from both theoretical and practical viewpoints, and will spur further advances in the field.
The book discusses advantages of the firefly algorithm over other well-known metaheuristic algorithms in various engineering studies. The book provides a brief outline of various application-oriented problem solving methods, like economic emission load dispatch problem, designing a fully digital controlled reconfigurable switched beam nonconcentric ring array antenna, image segmentation, span minimization in permutation flow shop scheduling, multi-objective load dispatch problems, image compression, etc., using FA and its variants. It also covers the use of the firefly algorithm to select features, as research has shown that the firefly algorithm generates precise and optimal results in terms of time and optimality. In addition, the book also explores the potential of the firefly algorithm to provide a solution to traveling salesman problem, graph coloring problem, etc
This book covers different aspects of real-world applications of optimization algorithms. It provides insights from the Sixth International Conference on Harmony Search, Soft Computing and Applications held at Istanbul University, Turkey, in July 2020. Harmony Search (HS) is one of the most popular metaheuristic algorithms, developed in 2001 by Prof. Joong Hoon Kim and Prof. Zong Woo Geem, that mimics the improvisation process of jazz musicians to seek the best harmony. The book consists of research articles on novel and newly proposed optimization algorithms; the theoretical study of nature-inspired optimization algorithms; numerically established results of nature-inspired optimization algorithms; and real-world applications of optimization algorithms and synthetic benchmarking of optimization algorithms.
This book describes the development of a constitutive modeling platform for soil testing, which is one of the key components in geomechanics and geotechnics. It discusses the fundamentals of the constitutive modeling of soils and illustrates the use of these models to simulate various laboratory tests. To help readers understand the fundamentals and modeling of soil behaviors, it first introduces the general stress-strain relationship of soils and the principles and modeling approaches of various laboratory tests, before examining the ideas and formulations of constitutive models of soils. Moving on to the application of constitutive models, it presents a modeling platform with a practical, simple interface, which includes various kinds of tests and constitutive models ranging from clay to sand, that is used for simulating most kinds of laboratory tests. The book is intended for undergraduate and graduate-level teaching in soil mechanics and geotechnical engineering and other related engineering specialties. Thanks to the inclusion of real-world applications, it is also of use to industry practitioners, opening the door to advanced courses on modeling within the industrial engineering and operations research fields.
This book focuses on two of the most important aspects of wind farm operation: decisions and control. The first part of the book deals with decision-making processes, and explains that hybrid wind farm operation is governed by a set of alternatives that the wind farm operator must choose from in order to achieve optimal delivery of wind power to the utility grid. This decision-making is accompanied by accurate forecasts of wind speed, which must be known beforehand. Errors in wind forecasting can be compensated for by pumping power from a reserve capacity to the grid using a battery energy storage system (BESS). Alternatives based on penalty cost are assessed using certain criteria, and MCDM methods are used to evaluate the best choice. Further, considering the randomness in the dynamic phenomenon in wind farms, a fuzzy MCDM approach is applied during the decision-making process to evaluate the best alternative for hybrid wind farm operation. Case studies from wind farms in the USA are presented, together with numerical solutions to the problem. In turn, the second part deals with the control aspect, and especially with yaw angle control, which facilitates power maximization at wind farms. A novel transfer function-based methodology is presented that controls the wake center of the upstream turbine(s); lidar-based numerical simulation is carried out for wind farm layouts; and an adaptive control strategy is implemented to achieve the desired yaw angle for upstream turbines. The proposed methodology is tested for two wind farm layouts. Wake management is also implemented for hybrid wind farms where BESS life enhancement is studied. The effect of yaw angle on the operational cost of BESS is assessed, and case studies for wind farm datasets from the USA and Denmark are discussed. Overall, the book provides a comprehensive guide to decision and control aspects for hybrid wind farms, which are particularly important from an industrial standpoint.
The focus of these conference proceedings is on research, development, and applications in the fields of numerical geometry, scientific computing and numerical simulation, particularly in mesh generation and related problems. In addition, this year's special focus is on Voronoi diagrams and their applications, celebrating the 150th birthday of G.F. Voronoi. In terms of content, the book strikes a balance between engineering algorithms and mathematical foundations. It presents an overview of recent advances in numerical geometry, grid generation and adaptation in terms of mathematical foundations, algorithm and software development and applications. The specific topics covered include: quasi-conformal and quasi-isometric mappings, hyperelastic deformations, multidimensional generalisations of the equidistribution principle, discrete differential geometry, spatial and metric encodings, Voronoi-Delaunay theory for tilings and partitions, duality in mathematical programming and numerical geometry, mesh-based optimisation and optimal control methods. Further aspects examined include iterative solvers for variational problems and algorithm and software development. The applications of the methods discussed are multidisciplinary and include problems from mathematics, physics, biology, chemistry, material science, and engineering.
Build programs that give users full control of their applications in order to meet end users' unique needs and scenarios. Over the last couple of decades, there has been an ongoing quandary in the developer world. Developers are enlisted to build applications to meet users' demands; users get applications that meet the criteria from the developers' point of view, but they are far from what the users envisioned. The difference is often wide and nearly catastrophic in fields where users' actions are nearly impossible to predict, such as science, research work, financial analysis, and others. End users get frustrated with the applications because they were not built with their use cases in mind. For a long time, it was assumed that the developers who created the code should drive their programs and be responsible for all scenarios. While generally not an issue in simple programs, this view is wrong for complex applications in the field of science. These end users are the best specialists in their respective fields and need applications to work beyond the scenarios prepared and allowed for by developers. This book teaches you methods to manage your applications in a way that gives control to your target end users. You will learn proven methods using an easy and predictable instrument, the all-powerful algorithm, to create objects that are movable and re-sizable by users. Get ready to learn by example, using an algorithm of total movability and experience, implemented in different situations. You will begin with the simplest code examples and work your way up to real, complicated programs applicable in STEM fields. What You Will Learn Pass the control of your programs from developers to end users Understand that the most valuable result is not the algorithm itself, but the consequence of using it Build user-driven applications that include total movability of screen elements See concepts applied in real situations and scenarios Be exposed to well-known programs and tasks for developing user-driven applications Access accompanying code written in C# and available on GitHub Who This Book Is For Developers who want to write or design programs that give their target end users full control over their application
The book provides an introduction of very recent results about the tensors and mainly focuses on the authors' work and perspective. A systematic description about how to extend the numerical linear algebra to the numerical multi-linear algebra is also delivered in this book. The authors design the neural network model for the computation of the rank-one approximation of real tensors, a normalization algorithm to convert some nonnegative tensors to plane stochastic tensors and a probabilistic algorithm for locating a positive diagonal in a nonnegative tensors, adaptive randomized algorithms for computing the approximate tensor decompositions, and the QR type method for computing U-eigenpairs of complex tensors. This book could be used for the Graduate course, such as Introduction to Tensor. Researchers may also find it helpful as a reference in tensor research.
Numerical Linear Algebra with Julia provides in-depth coverage of fundamental topics in numerical linear algebra, including how to solve dense and sparse linear systems, compute QR factorizations, compute the eigendecomposition of a matrix, and solve linear systems using iterative methods such as conjugate gradient. The style is friendly and approachable and cartoon characters guide the way. Inside this book, readers will find detailed descriptions of algorithms, implementations in Julia that illustrate concepts and allow readers to explore methods on their own, and illustrations and graphics that emphasize core concepts and demonstrate algorithms. Numerical Linear Algebra with Julia is a textbook for undergraduate and graduate students. It is appropriate for the following courses: Advanced Numerical Analysis, Special Topics on Numerical Analysis, Topics on Data Science, Topics on Numerical Optimization, and Topics on Approximation Theory. The book may also serve as a reference for researchers in various fields such as computational engineering, statistics, data-science, and machine learning, who depend on numerical solvers in linear algebra.
This book discusses the stability of axially moving materials, which are encountered in process industry applications such as papermaking. A special emphasis is given to analytical and semianalytical approaches. As preliminaries, we consider a variety of problems across mechanics involving bifurcations, allowing to introduce the techniques in a simplified setting. In the main part of the book, the fundamentals of the theory of axially moving materials are presented in a systematic manner, including both elastic and viscoelastic material models, and the connection between the beam and panel models. The issues that arise in formulating boundary conditions specifically for axially moving materials are discussed. Some problems involving axially moving isotropic and orthotropic elastic plates are analyzed. Analytical free-vibration solutions for axially moving strings with and without damping are derived. A simple model for fluid--structure interaction of an axially moving panel is presented in detail. This book is addressed to researchers, industrial specialists and students in the fields of theoretical and applied mechanics, and of applied and computational mathematics.
This book gives a detailed and self-contained introduction into the theory of spectral functions, with an emphasis on their applications to quantum field theory. All methods are illustrated with applications to specific physical problems from the forefront of current research, such as finite-temperature field theory, D-branes, quantum solitons and noncommutativity. In the first part of the book, necessary background information on differential geometry and quantization, including less standard material, is collected. The second part of the book contains a detailed description of main spectral functions and methods of their calculation. In the third part, the theory is applied to several examples (D-branes, quantum solitons, anomalies, noncommutativity). This book addresses advanced graduate students and researchers in mathematical physics with basic knowledge of quantum field theory and differential geometry. The aim is to prepare readers to use spectral functions in their own research, in particular in relation to heat kernels and zeta functions.
This monograph presents cutting-edge research on dispersive wave modelling, and the numerical methods used to simulate the propagation and generation of long surface water waves. Including both an overview of existing dispersive models, as well as recent breakthroughs, the authors maintain an ideal balance between theory and applications. From modelling tsunami waves to smaller scale coastal processes, this book will be an indispensable resource for those looking to be brought up-to-date in this active area of scientific research. Beginning with an introduction to various dispersive long wave models on the flat space, the authors establish a foundation on which readers can confidently approach more advanced mathematical models and numerical techniques. The first two chapters of the book cover modelling and numerical simulation over globally flat spaces, including adaptive moving grid methods along with the operator splitting approach, which was historically proposed at the Institute of Computational Technologies at Novosibirsk. Later chapters build on this to explore high-end mathematical modelling of the fluid flow over deformed and rotating spheres using the operator splitting approach. The appendices that follow further elaborate by providing valuable insight into long wave models based on the potential flow assumption, and modified intermediate weakly nonlinear weakly dispersive equations. Dispersive Shallow Water Waves will be a valuable resource for researchers studying theoretical or applied oceanography, nonlinear waves as well as those more broadly interested in free surface flow dynamics.
Exploring Monte Carlo Methods, Second Edition provides a valuable introduction to the numerical methods that have come to be known as "Monte Carlo." This unique and trusted resource for course use, as well as researcher reference, offers accessible coverage, clear explanations and helpful examples throughout. Building from the basics, the text also includes applications in a variety of fields, such as physics, nuclear engineering, finance and investment, medical modeling and prediction, archaeology, geology and transportation planning.
This book is a revised and updated version, including a substantial portion of new material, of J. D. Cole's text Perturbation Methods in Applied Mathe matics, Ginn-Blaisdell, 1968. We present the material at a level which assumes some familiarity with the basics of ordinary and partial differential equations. Some of the more advanced ideas are reviewed as needed; therefore this book can serve as a text in either an advanced undergraduate course or a graduate level course on the subject. The applied mathematician, attempting to understand or solve a physical problem, very often uses a perturbation procedure. In doing this, he usually draws on a backlog of experience gained from the solution of similar examples rather than on some general theory of perturbations. The aim of this book is to survey these perturbation methods, especially in connection with differ ential equations, in order to illustrate certain general features common to many examples. The basic ideas, however, are also applicable to integral equations, integrodifferential equations, and even to_difference equations. In essence, a perturbation procedure consists of constructing the solution for a problem involving a small parameter B, either in the differential equation or the boundary conditions or both, when the solution for the limiting case B = 0 is known. The main mathematical tool used is asymptotic expansion with respect to a suitable asymptotic sequence of functions of B."
This book presents new optimization approaches and methods and their application in real-world and industrial problems. Numerous processes and problems in real life and industry can be represented as optimization problems, including modeling physical processes, wildfire, natural hazards and metal nanostructures, workforce planning, wireless network topology, parameter settings for controlling different processes, extracting elements from video clips, and management of cloud computing environments. This book shows how to develop algorithms for these problems, based on new intelligent methods like evolutionary computations, ant colony optimization and constraint programming, and demonstrates how real-world problems arising in engineering, economics and other domains can be formulated as optimization problems. The book is useful for researchers and practitioners alike.
This book presents new ideas in the framework of novel, finite element discretization schemes for solids and structure, focusing on the mechanical as well as the mathematical background. It also explores the implementation and automation aspects of these technologies. Furthermore, the authors highlight recent developments in mixed finite element formulations in solid mechanics as well as novel techniques for flexible structures at finite deformations. The book also describes automation processes and the application of automatic differentiation technique, including characteristic problems, automatic code generation and code optimization. The combination of these approaches leads to highly efficient numerical codes, which are fundamental for reliable simulations of complicated engineering problems. These techniques are used in a wide range of applications from elasticity, viscoelasticity, plasticity, and viscoplasticity in classical engineering disciplines, such as civil and mechanical engineering, as well as in modern branches like biomechanics and multiphysics.
This book contains a selection of the latest research in the field of Computational Social Science (CSS) methods, uses, and results, as presented at the 2018 annual conference of the CSSSA. This conference was held in Santa Fe, New Mexico, October 25 - 28, 2018, at the Drury Plaza Hotel. CSS investigates social and behavioral dynamics in both nature and society, through computer simulation, network analysis, and the science of complex systems. The Computational Social Science Society of the Americas (CSSSA) is a professional society that aims to advance the field of CSS in all its areas, from fundamental principles to real-world applications, by holding conferences and workshops, promoting standards of scientific excellence in research and teaching, and publishing novel research findings. What follows is a diverse representation of new approaches and research findings, using the tools of CSS and Agent-Based Modeling (ABM) in exploring complex phenomena across many different domains. Readers will not only have the methods and results of these specific projects on which to build, but will also gain a greater appreciation for the broad scope of CSS, and have a wealth of case-study examples that can serve as meaningful exemplars for new research projects and activities. This book, we hope, will appeal to any researchers and students working in the social sciences, broadly defined, who aim to better understand and apply the concepts of Complex Adaptive Systems to their work. |
![]() ![]() You may like...
Nature-Inspired Computing for Smart…
Santosh Kumar Das, Thanh-Phong Dao, …
Hardcover
R2,908
Discovery Miles 29 080
Processing, Analyzing and Learning of…
Ron Kimmel, Xue-Cheng Tai
Hardcover
R4,613
Discovery Miles 46 130
Geometric Partial Differential Equations…
Andrea Bonito, Ricardo H. Nochetto
Hardcover
Finite Elements and Fast Iterative…
Howard Elman, David Silvester, …
Hardcover
R4,587
Discovery Miles 45 870
Model Reduction of Complex Dynamical…
Peter Benner, Tobias Breiten, …
Hardcover
R3,917
Discovery Miles 39 170
Numerical Control: Part A, Volume 23
Emmanuel Trelat, Enrique Zuazua
Hardcover
Frontiers in Molecular Design and…
Rachelle J. Bienstock, Veerabahu Shanmugasundaram, …
Hardcover
R5,150
Discovery Miles 51 500
|