Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Numerical analysis
Substantial effort has been drawn for years onto the development of (possibly high-order) numerical techniques for the scalar homogeneous conservation law, an equation which is strongly dissipative in L1 thanks to shock wave formation. Such a dissipation property is generally lost when considering hyperbolic systems of conservation laws, or simply inhomogeneous scalar balance laws involving accretive or space-dependent source terms, because of complex wave interactions. An overall weaker dissipation can reveal intrinsic numerical weaknesses through specific nonlinear mechanisms: Hugoniot curves being deformed by local averaging steps in Godunov-type schemes, low-order errors propagating along expanding characteristics after having hit a discontinuity, exponential amplification of truncation errors in the presence of accretive source terms... This book aims at presenting rigorous derivations of different, sometimes called well-balanced, numerical schemes which succeed in reconciling high accuracy with a stronger robustness even in the aforementioned accretive contexts. It is divided into two parts: one dealing with hyperbolic systems of balance laws, such as arising from quasi-one dimensional nozzle flow computations, multiphase WKB approximation of linear Schroedinger equations, or gravitational Navier-Stokes systems. Stability results for viscosity solutions of onedimensional balance laws are sketched. The other being entirely devoted to the treatment of weakly nonlinear kinetic equations in the discrete ordinate approximation, such as the ones of radiative transfer, chemotaxis dynamics, semiconductor conduction, spray dynamics or linearized Boltzmann models. "Caseology" is one of the main techniques used in these derivations. Lagrangian techniques for filtration equations are evoked too. Two-dimensional methods are studied in the context of non-degenerate semiconductor models.
This proceedings volume convenes selected, peer-reviewed papers presented at the 3rd International Conference on Mathematics and its Applications in Science and Engineering - ICMASE 2022, which was held on July 4-7, 2022 by the Technical University of Civil Engineering of Bucharest, Romania. Works in this volume cover new developments in applications of mathematics in science and engineering, with emphasis on mathematical and computational modeling of real-world problems. Topics range from the use of differential equations to model mechanical structures to the employ of number theory in the development of information security and cryptography. Educational issues specific to the acquisition of mathematical competencies by engineering and science students at all university levels are also touched on. Researchers and university students are the natural audiences for this book, which can be equally appealing to practitioners seeking up-to-date techniques in mathematical applications to different contexts and disciplines.
This volume on some recent aspects of finite element methods and their applications is dedicated to Ulrich Langer and Arnd Meyer on the occasion of their 60th birthdays in 2012. Their work combines the numerical analysis of finite element algorithms, their efficient implementation on state of the art hardware architectures, and the collaboration with engineers and practitioners. In this spirit, this volume contains contributions of former students and collaborators indicating the broad range of their interests in the theory and application of finite element methods. Topics cover the analysis of domain decomposition and multilevel methods, including hp finite elements, hybrid discontinuous Galerkin methods, and the coupling of finite and boundary element methods; the efficient solution of eigenvalue problems related to partial differential equations with applications in electrical engineering and optics; and the solution of direct and inverse field problems in solid mechanics.
Clear, rigorous definitions of mathematical terms are crucial to good scientific and technical writing-and to understanding the writings of others. Scientists, engineers, mathematicians, economists, technical writers, computer programmers, along with teachers, professors, and students, all have the occasional-if not frequent-need for comprehensible, working definitions of mathematical expressions.
Different aspects of harmonic analysis, complex analysis, sampling theory, approximation theory and related topics are covered in this volume. The topics included are Fourier analysis, Pade approximation, dynamical systems and difference operators, splines, Christoffel functions, best approximation, discrepancy theory and Jackson-type theorems of approximation. The articles of this collection were originated from the International Conference in Approximation Theory, held in Savannah, GA in 2017, and organized by the editors of this volume.
This book covers pseudorandom number generation algorithms, evaluation techniques, and offers practical advice and code examples. Random Numbers and Computers is an essential introduction or refresher on pseudorandom numbers in computer science. The first comprehensive book on the topic, readers are provided with a practical introduction to the techniques of pseudorandom number generation, including how the algorithms work and how to test the output to decide if it is suitable for a particular purpose. Practical applications are demonstrated with hands-on presentation and descriptions that readers can apply directly to their own work. Examples are in C and Python and given with an emphasis on understanding the algorithms to the point of practical application. The examples are meant to be implemented, experimented with and improved/adapted by the reader.
Quasi-Monte Carlo methods have become an increasingly popular alternative to Monte Carlo methods over the last two decades. Their successful implementation on practical problems, especially in finance, has motivated the development of several new research areas within this field to which practitioners and researchers from various disciplines currently contribute. This book presents essential tools for using quasi-Monte Carlo sampling in practice. The first part of the book focuses on issues related to Monte Carlo methods-uniform and non-uniform random number generation, variance reduction techniques-but the material is presented to prepare the readers for the next step, which is to replace the random sampling inherent to Monte Carlo by quasi-random sampling. The second part of the book deals with this next step. Several aspects of quasi-Monte Carlo methods are covered, including constructions, randomizations, the use of ANOVA decompositions, and the concept of effective dimension. The third part of the book is devoted to applications in finance and more advanced statistical tools like Markov chain Monte Carlo and sequential Monte Carlo, with a discussion of their quasi-Monte Carlo counterpart. The prerequisites for reading this book are a basic knowledge of statistics and enough mathematical maturity to follow through the various techniques used throughout the book. This text is aimed at graduate students in statistics, management science, operations research, engineering, and applied mathematics. It should also be useful to practitioners who want to learn more about Monte Carlo and quasi-Monte Carlo methods and researchers interested in an up-to-date guide to these methods.
Starting with the Zermelo-Fraenhel axiomatic set theory, this book gives a self-contained, step-by-step construction of real and complex numbers. The basic properties of real and complex numbers are developed, including a proof of the Fundamental Theorem of Algebra. Historical notes outline the evolution of the number systems and alert readers to the fact that polished mathematical concepts, as presented in lectures and books, are the culmination of the efforts of great minds over the years. The text also includes short life sketches of some of the contributing mathematicians. The book provides the logical foundation of Analysis and gives a basis to Abstract Algebra. It complements those books on real analysis which begin with axiomatic definitions of real numbers.The book can be used in various ways: as a textbook for a one semester course on the foundations of analysis for post-calculus students; for a seminar course; or self-study by school and college teachers.
Polynomial operators are a natural generalization of linear operators. Equations in such operators are the linear space analog of ordinary polynomials in one or several variables over the fields of real or complex numbers. Such equations encompass a broad spectrum of applied problems including all linear equations. Often the polynomial nature of many nonlinear problems goes unrecognized by researchers. This is more likely due to the fact that polynomial operators - unlike polynomials in a single variable - have received little attention. Consequently, this comprehensive presentation is needed, benefiting those working in the field as well as those seeking information about specific results or techniques.
This is the second of three volumes providing a comprehensive presentation of the fundamentals of scientific computing. This volume discusses more advanced topics than volume one, and is largely not a prerequisite for volume three. This book and its companions show how to determine the quality of computational results, and how to measure the relative efficiency of competing methods. Readers learn how to determine the maximum attainable accuracy of algorithms, and how to select the best method for computing problems. This book also discusses programming in several languages, including C++, Fortran and MATLAB. There are 49 examples, 110 exercises, 66 algorithms, 24 interactive JavaScript programs, 77 references to software programs and 1 case study. Topics are introduced with goals, literature references and links to public software. There are descriptions of the current algorithms in LAPACK, GSLIB and MATLAB. This book could be used for a second course in numerical methods, for either upper level undergraduates or first year graduate students. Parts of the text could be used for specialized courses, such as nonlinear optimization or iterative linear algebra.
"Based on the International Federatiojn for Information Processing WG 7.2 Conference, held recently in Pisa, Italy. Provides recent results as well as entirely new material on control theory and shape analysis. Written by leading authorities from various desciplines."
This monograph deals with a general class of solution approaches in deterministic global optimization, namely the geometric branch-and-bound methods which are popular algorithms, for instance, in Lipschitzian optimization, d.c. programming, and interval analysis.It alsointroduces a new concept for the rate of convergence and analyzes several bounding operations reported in the literature, from the theoretical as well as from the empirical point of view. Furthermore, extensions of the prototype algorithm for multicriteria global optimization problems as well as mixed combinatorial optimization problems are considered. Numerical examples based on facility location problems support the theory. Applications of geometric branch-and-bound methods, namely the circle detection problem in image processing, the integrated scheduling and location makespan problem, and the median line location problem in the three-dimensional space are also presented. The book is intended for both researchers and students in the areas of mathematics, operations research, engineering, and computer science.
Partial differential equations (PDEs) play an important role in the natural sciences and technology, because they describe the way systems (natural and other) behave. The inherent suitability of PDEs to characterizing the nature, motion, and evolution of systems, has led to their wide-ranging use in numerical models that are developed in order to analyze systems that are not otherwise easily studied. Numerical Solutions for Partial Differential Equations contains all the details necessary for the reader to understand the principles and applications of advanced numerical methods for solving PDEs. In addition, it shows how the modern computer system algebra MathematicaA(R) can be used for the analytic investigation of such numerical properties as stability, approximation, and dispersion.
Foundations of Abstract Analysis is the first of a two book series offered as the second (expanded) edition to the previously published text Real Analysis. It is written for a graduate-level course on real analysis and presented in a self-contained way suitable both for classroom use and for self-study. While this book carries the rigor of advanced modern analysis texts, it elaborates the material in much greater details and therefore fills a gap between introductory level texts (with topics developed in Euclidean spaces) and advanced level texts (exclusively dealing with abstract spaces) making it accessible for a much wider interested audience. To relieve the reader of the potential overload of new words, definitions, and concepts, the book (in its unique feature) provides lists of new terms at the end of each section, in a chronological order. Difficult to understand abstract notions are preceded by informal discussions and blueprints followed by thorough details and supported by examples and figures. To further reinforce the text, hints and solutions to almost a half of more than 580 problems are provided at the end of the book, still leaving ample exercises for assignments. This volume covers topics in point-set topology and measure and integration. Prerequisites include advanced calculus, linear algebra, complex variables, and calculus based probability.
This book presents the bending theory of hyperelastic beams in the context of finite elasticity. The main difficulties in addressing this issue are due to its fully nonlinear framework, which makes no assumptions regarding the size of the deformation and displacement fields. Despite the complexity of its mathematical formulation, the inflexion problem of nonlinear beams is frequently used in practice, and has numerous applications in the industrial, mechanical and civil sectors. Adopting a semi-inverse approach, the book formulates a three-dimensional kinematic model in which the longitudinal bending is accompanied by the transversal deformation of cross-sections. The results provided by the theoretical model are subsequently compared with those of numerical and experimental analyses. The numerical analysis is based on the finite element method (FEM), whereas a test equipment prototype was designed and fabricated for the experimental analysis. The experimental data was acquired using digital image correlation (DIC) instrumentation. These two further analyses serve to confirm the hypotheses underlying the theoretical model. In the book's closing section, the analysis is generalized to the case of variable bending moment. The governing equations then take the form of a coupled system of three equations in integral form, which can be applied to a very wide class of equilibrium problems for nonlinear beams.
The Monte Carlo method is a numerical method of solving mathematical problems through random sampling. As a universal numerical technique, the method became possible only with the advent of computers, and its application continues to expand with each new computer generation. A Primer for the Monte Carlo Method demonstrates how practical problems in science, industry, and trade can be solved using this method. The book features the main schemes of the Monte Carlo method and presents various examples of its application, including queueing, quality and reliability estimations, neutron transport, astrophysics, and numerical analysis. The only prerequisite to using the book is an understanding of elementary calculus.
This volume contains invited papers presented at the 15th Dundee Biennial Conference on Numerical Analysis held at the University of Dundee in June of 1993. The Dundee Conferences are important events in the numerical analysis calendar, and the papers published here represent accounts of recent research work by leading numerical analysts covering a wide range of fields of interest. The book is a valuable guide to the direction of current research in many areas of numerical analysis. It will be of particular interest to graduate students and research workers concerned with the theory and application of numerical methods for solving ordinary and partial differential equations.
This judicious selection of articles combines mathematical and numerical methods to apply parameter estimation and optimum experimental design in a range of contexts. These include fields as diverse as biology, medicine, chemistry, environmental physics, image processing and computer vision. The material chosen was presented at a multidisciplinary workshop on parameter estimation held in 2009 in Heidelberg. The contributions show how indispensable efficient methods of applied mathematics and computer-based modeling can be to enhancing the quality of interdisciplinary research. The use of scientific computing to model, simulate, and optimize complex processes has become a standard methodology in many scientific fields, as well as in industry. Demonstrating that the use of state-of-the-art optimization techniques in a number of research areas has much potential for improvement, this book provides advanced numerical methods and the very latest results for the applications under consideration.
This book provides a clear summary of the work of the author on the construction of nonstandard finite difference schemes for the numerical integration of differential equations. The major thrust of the book is to show that discrete models of differential equations exist such that the elementary types of numerical instabilities do not occur. A consequence of this result is that in general bigger step-sizes can often be used in actual calculations and/or finite difference schemes can be constructed that are conditionally stable in many instances whereas in using standard techniques no such schemes exist. The theoretical basis of this work is centered on the concepts of "exact" and "best" finite difference schemes. In addition, a set of rules is given for the discrete modeling of derivatives and nonlinear expressions that occur in differential equations. These rules often lead to a unique nonstandard finite difference model for a given differential equation.
Fractal structures or geometries currently play a key role in all models for natural and industrial processes that exhibit the formation of rough surfaces and interfaces. Computer simulations, analytical theories and experiments have led to significant advances in modeling these phenomena across wild media. Many problems coming from engineering, physics or biology are characterized by both the presence of different temporal and spatial scales and the presence of contacts among different components through (irregular) interfaces that often connect media with different characteristics. This work is devoted to collecting new results on fractal applications in engineering from both theoretical and numerical perspectives. The book is addressed to researchers in the field.
Numerical analysis of matter transfer is an area that pharmacists find difficult, but which is a technique frequently used in preparing controlled drug release and oral dosage forms. This book provides clear and straightforward information enabling the reader to carry out numerical analysis of matter transfer - a vital processs when looking at the formulation of oral dosage forms with controlled drug release. The drug is dispersed in a polymeric matrix (either biodegradable or not), the basis of which is the transfer of the liquid and the drug through dosage form. Information on this diffusion is found either through mathematical treatment (when the problem is simple), or through numerical analysis (for more complex problems). Professor Vergnaud demonstrates and clarifies these, modelling the process of drug delivery by using numerical analysis and computerization. A simulation of the process is provided, together with a determination of the effects of all parameters, and the author uses both mathematical and numerical models to predict the preparation of new dosage forms able to fulfil specific conditions.
This volume compiles the major results of conference participants from the "Third International Conference in Network Analysis" held at the Higher School of Economics, Nizhny Novgorod in May 2013, with the aim to initiate further joint research among different groups. The contributions in this book cover a broad range of topics relevant to the theory and practice of network analysis, including the reliability of complex networks, software, theory, methodology, and applications. Network analysis has become a major research topic over the last several years. The broad range of applications that can be described and analyzed by means of a network has brought together researchers, practitioners from numerous fields such as operations research, computer science, transportation, energy, biomedicine, computational neuroscience and social sciences. In addition, new approaches and computer environments such as parallel computing, grid computing, cloud computing, and quantum computing have helped to solve large scale network optimization problems.
Recent Advances in Numerical Methods features contributions from distinguished researchers, focused on significant aspects of current numerical methods and computational mathematics. The increasing necessity to present new computational methods that can solve complex scientific and engineering problems requires the preparation of this volume with actual new results and innovative methods that provide numerical solutions in effective computing times. Each chapter will present new and advanced methods and modern variations on known techniques that can solve difficult scientific problems efficiently.
The book presents high quality research papers presented at International Conference on Computational Intelligence (ICCI 2020) held at Indian Institute of Information Technology, Pune, India during 12-13 December, 2020. The topics covered are artificial intelligence, neural network, deep learning techniques, fuzzy theory and systems, rough sets, self-organizing maps, machine learning, chaotic systems, multi-agent systems, computational optimization ensemble classifiers, reinforcement learning, decision trees, support vector machines, hybrid learning, statistical learning. metaheuristics algorithms: evolutionary and swarm-based algorithms like genetic algorithms, genetic programming, differential evolution, particle swarm optimization, whale optimization, spider monkey optimization, firefly algorithm, memetic algorithms. And also machine vision, Internet of Things, image processing, image segmentation, data clustering, sentiment analysis, big data, computer networks, signal processing, supply chain management, web and text mining, distributed systems, bioinformatics, embedded systems, expert system, forecasting, pattern recognition, planning and scheduling, time series analysis, human-computer interaction, web mining, natural language processing, multimedia systems, and quantum computing.
This thesis make significant contributions to both the numerical and analytical aspects of particle physics, reducing the noise associated with matrix calculations in quantum chromodynamics (QCD) and modeling multi-quark mesonic matters that could be used to investigate particles previously unseen in nature. Several methods are developed that can reduce the statistical uncertainty in the extraction of hard-to-detect lattice QCD signals from disconnected diagrams. The most promising technique beats competing methods by 1700 percent, leading to a potential decrease in the computation time of quark loop quantities by an order of magnitude. This not only increases efficiency but also works for QCD matrices with almost-zero eigenvalues, a region where most QCD algorithms break down. This thesis also develops analytical solutions used to investigate exotic particles, specifically the Thomas-Fermi quark model, giving insight into possible new states formed from mesonic matter. The main benefit of this model is that it can work for a large number of quarks which is currently almost impossible with lattice QCD. Patterns of single-quark energies are observed which give the first a priori indication that stable octa-quark and hexadeca-quark versions of the charmed and bottom Z-meson exist. |
You may like...
Nonlinear Functional Analysis and…
Jesus Garcia-Falset, Khalid Latrach
Hardcover
R4,936
Discovery Miles 49 360
Numerical Simulation of Incompressible…
Roland Glowinski, Tsorng-Whay Pan
Hardcover
R4,614
Discovery Miles 46 140
Nature-Inspired Computing for Smart…
Santosh Kumar Das, Thanh-Phong Dao, …
Hardcover
R2,823
Discovery Miles 28 230
Numerical Geometry, Grid Generation and…
Vladimir A. Garanzha, Lennard Kamenski, …
Hardcover
R6,220
Discovery Miles 62 200
Frontiers in Molecular Design and…
Rachelle J. Bienstock, Veerabahu Shanmugasundaram, …
Hardcover
R4,794
Discovery Miles 47 940
Matheuristics - Algorithms and…
Vittorio Maniezzo, Marco Antonio Boschetti, …
Hardcover
R2,981
Discovery Miles 29 810
|