![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Numerical analysis
This book systematically analyses the latest insights into night vision imaging processing and perceptual understanding as well as related theories and methods. The algorithm model and hardware system provided can be used as the reference basis for the general design, algorithm design and hardware design of photoelectric systems. Focusing on the differences in the imaging environment, target characteristics, and imaging methods, this book discusses multi-spectral and video data, and investigates a variety of information mining and perceptual understanding algorithms. It also assesses different processing methods for multiple types of scenes and targets.Taking into account the needs of scientists and technicians engaged in night vision optoelectronic imaging detection research, the book incorporates the latest international technical methods. The content fully reflects the technical significance and dynamics of the new field of night vision. The eight chapters cover topics including multispectral imaging, Hadamard transform spectrometry; dimensionality reduction, data mining, data analysis, feature classification, feature learning; computer vision, image understanding, target recognition, object detection and colorization algorithms, which reflect the main areas of research in artificial intelligence in night vision. The book enables readers to grasp the novelty and practicality of the field and to develop their ability to connect theory with real-world applications. It also provides the necessary foundation to allow them to conduct research in the field and adapt to new technological developments in the future.
Discover How Geometric Integrators Preserve the Main Qualitative Properties of Continuous Dynamical Systems A Concise Introduction to Geometric Numerical Integration presents the main themes, techniques, and applications of geometric integrators for researchers in mathematics, physics, astronomy, and chemistry who are already familiar with numerical tools for solving differential equations. It also offers a bridge from traditional training in the numerical analysis of differential equations to understanding recent, advanced research literature on numerical geometric integration. The book first examines high-order classical integration methods from the structure preservation point of view. It then illustrates how to construct high-order integrators via the composition of basic low-order methods and analyzes the idea of splitting. It next reviews symplectic integrators constructed directly from the theory of generating functions as well as the important category of variational integrators. The authors also explain the relationship between the preservation of the geometric properties of a numerical method and the observed favorable error propagation in long-time integration. The book concludes with an analysis of the applicability of splitting and composition methods to certain classes of partial differential equations, such as the Schroedinger equation and other evolution equations. The motivation of geometric numerical integration is not only to develop numerical methods with improved qualitative behavior but also to provide more accurate long-time integration results than those obtained by general-purpose algorithms. Accessible to researchers and post-graduate students from diverse backgrounds, this introductory book gets readers up to speed on the ideas, methods, and applications of this field. Readers can reproduce the figures and results given in the text using the MATLAB (R) programs and model files available online.
The book presents high quality research papers presented at International Conference on Computational Intelligence (ICCI 2020) held at Indian Institute of Information Technology, Pune, India during 12-13 December, 2020. The topics covered are artificial intelligence, neural network, deep learning techniques, fuzzy theory and systems, rough sets, self-organizing maps, machine learning, chaotic systems, multi-agent systems, computational optimization ensemble classifiers, reinforcement learning, decision trees, support vector machines, hybrid learning, statistical learning. metaheuristics algorithms: evolutionary and swarm-based algorithms like genetic algorithms, genetic programming, differential evolution, particle swarm optimization, whale optimization, spider monkey optimization, firefly algorithm, memetic algorithms. And also machine vision, Internet of Things, image processing, image segmentation, data clustering, sentiment analysis, big data, computer networks, signal processing, supply chain management, web and text mining, distributed systems, bioinformatics, embedded systems, expert system, forecasting, pattern recognition, planning and scheduling, time series analysis, human-computer interaction, web mining, natural language processing, multimedia systems, and quantum computing.
This book introduces an interesting and alternative way to design absorbing boundary conditions (ABCs) for quantum wave equations, basically the nonlinear Schroedinger equation. The focus of this book is the application of the phase space filter approach to derive accurate radiation conditions for Schroedinger equations. Researchers who are interested in partial differential equations and mathematical physics might find this book appealing.
This edited volume has a two-fold purpose. First, comprehensive survey articles provide a way for beginners to ease into the corresponding sub-fields. These are then supplemented by original works that give the more advanced readers a glimpse of the current research in geometric analysis and related PDEs. The book is of significant interest for researchers, including advanced Ph.D. students, working in geometric analysis. Readers who have a secondary interest in geometric analysis will benefit from the survey articles. The results included in this book will stimulate further advances in the subjects: geometric analysis, including complex differential geometry, symplectic geometry, PDEs with a geometric origin, and geometry related to topology. Contributions by Claudio Arezzo, Alberto Della Vedova, Werner Ballmann, Henrik Matthiesen, Panagiotis Polymerakis, Sun-Yung A. Chang, Zheng-Chao Han, Paul Yang, Tobias Holck Colding, William P. Minicozzi II, Panagiotis Dimakis, Richard Melrose, Akito Futaki, Hajime Ono, Jiyuan Han, Jeff A. Viaclovsky, Bruce Kleiner, John Lott, Slawomir Kolodziej, Ngoc Cuong Nguyen, Chi Li, Yuchen Liu, Chenyang Xu, YanYan Li, Luc Nguyen, Bo Wang, Shiguang Ma, Jie Qing, Xiaonan Ma, Sean Timothy Paul, Kyriakos Sergiou, Tristan Riviere, Yanir A. Rubinstein, Natasa Sesum, Jian Song, Jeffrey Streets, Neil S. Trudinger, Yu Yuan, Weiping Zhang, Xiaohua Zhu and Aleksey Zinger.
The genesis of this book goes back to the conference held at the University of Bologna, June 1999, on collaborative work between the University of California at Berkeley and the University of Bologna. The book, in its present form, is a compilation of some of the recent work using geometric partial differential equations and the level set methodology in medical and biomedical image analysis.The book not only gives a good overview on some of the traditional applications in medical imagery such as, CT, MR, Ultrasound, but also shows some new and exciting applications in the area of Life Sciences, such as confocal microscope image understanding.
The finite element method is a numerical method widely used in engineering. This reference text is the first to discuss finite element methods for structures with large stochastic variations. Graduate students, lecturers, and researchers in mathematics, engineering, and scientific computation will find this a very useful reference
This volume contains the extended version of selected talks given at the international research workshop "Coping with Complexity: Model Reduction and Data Analysis," Ambleside, UK, August 31 - September 4, 2009. The book is deliberately broad in scope and aims at promoting new ideas and methodological perspectives. The topics of the chapters range from theoretical analysis of complex and multiscale mathematical models to applications in e.g., fluid dynamics and chemical kinetics.
One of the most elementary questions in mathematics is whether an area minimizing surface spanning a contour in three space is immersed or not; i.e. does its derivative have maximal rank everywhere. The purpose of this monograph is to present an elementary proof of this very fundamental and beautiful mathematical result. The exposition follows the original line of attack initiated by Jesse Douglas in his Fields medal work in 1931, namely use Dirichlet's energy as opposed to area. Remarkably, the author shows how to calculate arbitrarily high orders of derivatives of Dirichlet's energy defined on the infinite dimensional manifold of all surfaces spanning a contour, breaking new ground in the Calculus of Variations, where normally only the second derivative or variation is calculated. The monograph begins with easy examples leading to a proof in a large number of cases that can be presented in a graduate course in either manifolds or complex analysis. Thus this monograph requires only the most basic knowledge of analysis, complex analysis and topology and can therefore be read by almost anyone with a basic graduate education.
Perturbation methods are widely used in the study of physically significant differential equations, which arise in Applied Mathematics, Physics and Engineering.; Background material is provided in each chapter along with illustrative examples, problems, and solutions.; A comprehensive bibliography and index complete the work.; Covers an important field of solutions for engineering and the physical sciences.; To allow an interdisciplinary readership, the book focuses almost exclusively on the procedures and the underlying ideas and soft pedal the proofs; Dr. Bhimsen K. Shivamoggi has authored seven successful books for various publishers like John Wiley & Sons and Kluwer Academic Publishers.
This proceedings volume gathers selected, peer-reviewed papers presented at the 2nd International Conference on Mathematics and its Applications in Science and Engineering - ICMASE 2021, which was virtually held on July 1-2, 2021 by the University of Salamanca, Spain. Works included in this book cover applications of mathematics both in engineering research and in real-world problems, touching topics such as difference equations, number theory, optimization, and more. The list of applications includes the modeling of mechanical structures, the shape of machines, and the growth of a population, expanding to fields like information security and cryptography. Advances in teaching and learning mathematics in the context of engineering courses are also covered.This volume can be of special interest to researchers in applied mathematics and engineering fields, as well as practitioners seeking studies that address real-life problems in engineering.
This is the first of three volumes providing a comprehensive presentation of the fundamentals of scientific computing. This volume discusses basic principles of computation, and fundamental numerical algorithms that will serve as basic tools for the subsequent two volumes. This book and its companions show how to determine the quality of computational results, and how to measure the relative efficiency of competing methods. Readers learn how to determine the maximum attainable accuracy of algorithms, and how to select the best method for computing problems. This book also discusses programming in several languages, including C++, Fortran and MATLAB. There are 80 examples, 324 exercises, 77 algorithms, 35 interactive JavaScript programs, 391 references to software programs and 4 case studies. Topics are introduced with goals, literature references and links to public software. There are descriptions of the current algorithms in LAPACK, GSLIB and MATLAB. This book could be used for an introductory course in numerical methods, for either upper level undergraduates or first year graduate students. Parts of the text could be used for specialized courses, such as principles of computer languages or numerical linear algebra.
The 1947 paper by John von Neumann and Herman Goldstine, "Numerical Inverting of Matrices of High Order" (Bulletin of the AMS, Nov. 1947), is considered as the birth certificate of numerical analysis. Since its publication, the evolution of this domain has been enormous. This book is a unique collection of contributions by researchers who have lived through this evolution, testifying about their personal experiences and sketching the evolution of their respective subdomains since the early years.
Partial differential equations provide mathematical models of many important problems in the physical sciences and engineering. This book, first published in 2000, treats one class of such equations, concentrating on methods involving the use of surface potentials. It provided the first detailed exposition of the mathematical theory of boundary integral equations of the first kind on non-smooth domains. Included are chapters on three specific examples: the Laplace equation, the Helmholtz equation and the equations of linear elasticity. The book is designed to provide an ideal preparation for studying the modern research literature on boundary element methods.
This book presents the refereed proceedings of the Eleventh International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing that was held at the University of Leuven (Belgium) in April 2014. These biennial conferences are major events for Monte Carlo and quasi-Monte Carlo researchers. The proceedings include articles based on invited lectures as well as carefully selected contributed papers on all theoretical aspects and applications of Monte Carlo and quasi-Monte Carlo methods. Offering information on the latest developments in these very active areas, this book is an excellent reference resource for theoreticians and practitioners interested in solving high-dimensional computational problems, arising, in particular, in finance, statistics and computer graphics.
This volume contains the articles presented at the 20th International Meshing Roundtable (IMR) organized, in part, by Sandia National Laboratories and was held in Paris, France on Oct 23-26, 2011. This is the first year the IMR was held outside the United States territory. Other sponsors of the 20th IMR are Systematic Paris Region Systems & ICT Cluster, AIAA, NAFEMS, CEA, and NSF. The Sandia National Laboratories started the first IMR in 1992, and the conference has been held annually since. Each year the IMR brings together researchers, developers, and application experts, from a variety of disciplines, to present and discuss ideas on mesh generation and related topics. The topics covered by the IMR have applications in numerical analysis, computational geometry, computer graphics, as well as other areas, and the presentations describe novel work ranging from theory to application.
This book introduces resource-aware data fusion algorithms to gather and combine data from multiple sources (e.g., sensors) in order to achieve inferences. These techniques can be used in centralized and distributed systems to overcome sensor failure, technological limitation, and spatial and temporal coverage problems. The algorithms described in this book are evaluated with simulation and experimental results to show they will maintain data integrity and make data useful and informative. Describes techniques to overcome real problems posed by wireless sensor networks deployed in circumstances that might interfere with measurements provided, such as strong variations of pressure, temperature, radiation, and electromagnetic noise; Uses simulation and experimental results to evaluate algorithms presented and includes real test-bed; Includes case study implementing data fusion algorithms on a remote monitoring framework for sand production in oil pipelines. "
This book has been designed for a first course on digital design for engineering and computer science students. It offers an extensive introduction on fundamental theories, from Boolean algebra and binary arithmetic to sequential networks and finite state machines, together with the essential tools to design and simulate systems composed of a controller and a datapath. The numerous worked examples and solved exercises allow a better understanding and more effective learning. All of the examples and exercises can be run on the Deeds software, freely available online on a webpage developed and maintained by the authors. Thanks to the learning-by-doing approach and the plentiful examples, no prior knowledge in electronics of programming is required. Moreover, the book can be adapted to different level of education, with different targets and depth, be used for self-study, and even independently from the simulator. The book draws on the authors' extensive experience in teaching and developing learning materials.
Here we present numerical analysis to advanced undergraduate and master degree level grad students. This is to be done in one semester. The programming language is Mathematica. The mathematical foundation and technique is included. The emphasis is geared toward the two major developing areas of applied mathematics, mathematical finance and mathematical biology.
This book presents new ideas in the framework of novel, finite element discretization schemes for solids and structure, focusing on the mechanical as well as the mathematical background. It also explores the implementation and automation aspects of these technologies. Furthermore, the authors highlight recent developments in mixed finite element formulations in solid mechanics as well as novel techniques for flexible structures at finite deformations. The book also describes automation processes and the application of automatic differentiation technique, including characteristic problems, automatic code generation and code optimization. The combination of these approaches leads to highly efficient numerical codes, which are fundamental for reliable simulations of complicated engineering problems. These techniques are used in a wide range of applications from elasticity, viscoelasticity, plasticity, and viscoplasticity in classical engineering disciplines, such as civil and mechanical engineering, as well as in modern branches like biomechanics and multiphysics.
Provides avenues for applying functional analysis to the practical study of natural sciences as well as mathematics. Contains worked problems on Hilbert space theory and on Banach spaces and emphasizes concepts, principles, methods and major applications of functional analysis.
This textbook offers an accessible introduction to the theory and numerics of approximation methods, combining classical topics of approximation with recent advances in mathematical signal processing, and adopting a constructive approach, in which the development of numerical algorithms for data analysis plays an important role. The following topics are covered: * least-squares approximation and regularization methods * interpolation by algebraic and trigonometric polynomials * basic results on best approximations * Euclidean approximation * Chebyshev approximation * asymptotic concepts: error estimates and convergence rates * signal approximation by Fourier and wavelet methods * kernel-based multivariate approximation * approximation methods in computerized tomography Providing numerous supporting examples, graphical illustrations, and carefully selected exercises, this textbook is suitable for introductory courses, seminars, and distance learning programs on approximation for undergraduate students.
This monograph discusses covariant Schroedinger operators and their heat semigroups on noncompact Riemannian manifolds and aims to fill a gap in the literature, given the fact that the existing literature on Schroedinger operators has mainly focused on scalar Schroedinger operators on Euclidean spaces so far. In particular, the book studies operators that act on sections of vector bundles. In addition, these operators are allowed to have unbounded potential terms, possibly with strong local singularities. The results presented here provide the first systematic study of such operators that is sufficiently general to simultaneously treat the natural operators from quantum mechanics, such as magnetic Schroedinger operators with singular electric potentials, and those from geometry, such as squares of Dirac operators that have smooth but endomorphism-valued and possibly unbounded potentials. The book is largely self-contained, making it accessible for graduate and postgraduate students alike. Since it also includes unpublished findings and new proofs of recently published results, it will also be interesting for researchers from geometric analysis, stochastic analysis, spectral theory, and mathematical physics..
This new edition is a concise introduction to the basic methods of computational physics. Readers will discover the benefits of numerical methods for solving complex mathematical problems and for the direct simulation of physical processes. The book is divided into two main parts: Deterministic methods and stochastic methods in computational physics. Based on concrete problems, the first part discusses numerical differentiation and integration, as well as the treatment of ordinary differential equations. This is extended by a brief introduction to the numerics of partial differential equations. The second part deals with the generation of random numbers, summarizes the basics of stochastics, and subsequently introduces Monte-Carlo (MC) methods. Specific emphasis is on MARKOV chain MC algorithms. The final two chapters discuss data analysis and stochastic optimization. All this is again motivated and augmented by applications from physics. In addition, the book offers a number of appendices to provide the reader with information on topics not discussed in the main text. Numerous problems with worked-out solutions, chapter introductions and summaries, together with a clear and application-oriented style support the reader. Ready to use C++ codes are provided online.
This monograph systematically explores the theory of rational maps between spheres in complex Euclidean spaces and its connections to other areas of mathematics. Synthesizing research from the last forty years, the author aims for accessibility by balancing abstract concepts with concrete examples. Numerous computations are worked out in detail, and more than 100 optional exercises are provided throughout for readers wishing to better understand challenging material. The text begins by presenting core concepts in complex analysis and a wide variety of results about rational sphere maps. The subsequent chapters discuss combinatorial and optimization results about monomial sphere maps, groups associated with rational sphere maps, relevant complex and CR geometry, and some geometric properties of rational sphere maps. Fifteen open problems appear in the final chapter, with references provided to appropriate parts of the text. These problems will encourage readers to apply the material to future research. Rational Sphere Maps will be of interest to researchers and graduate students studying several complex variables and CR geometry. Mathematicians from other areas, such as number theory, optimization, and combinatorics, will also find the material appealing. See the author's research web page for a list of typos, clarifications, etc.: https://faculty.math.illinois.edu/~jpda/research.html |
![]() ![]() You may like...
Processing, Analyzing and Learning of…
Ron Kimmel, Xue-Cheng Tai
Hardcover
Numerical Geometry, Grid Generation and…
Vladimir A. Garanzha, Lennard Kamenski, …
Hardcover
R6,387
Discovery Miles 63 870
Processing, Analyzing and Learning of…
Ron Kimmel, Xue-Cheng Tai
Hardcover
R4,613
Discovery Miles 46 130
Schwarz Methods and Multilevel…
Ernst P. Stephan, Thanh Tran
Hardcover
R4,967
Discovery Miles 49 670
Numerical Simulation of Incompressible…
Roland Glowinski, Tsorng-Whay Pan
Hardcover
R4,958
Discovery Miles 49 580
Nonlinear Functional Analysis and…
Jesus Garcia-Falset, Khalid Latrach
Hardcover
R5,303
Discovery Miles 53 030
Statics and Influence Functions - From a…
Friedel Hartmann, Peter Jahn
Hardcover
R5,170
Discovery Miles 51 700
|