![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Numerical analysis
Current and historical research methods in approximation theory are presented in this book beginning with the 1800s and following the evolution of approximation theory via the refinement and extension of classical methods and ending with recent techniques and methodologies. Graduate students, postdocs, and researchers in mathematics, specifically those working in the theory of functions, approximation theory, geometric function theory, and optimization will find new insights as well as a guide to advanced topics. The chapters in this book are grouped into four themes; the first, polynomials (Chapters 1 -8), includes inequalities for polynomials and rational functions, orthogonal polynomials, and location of zeros. The second, inequalities and extremal problems are discussed in Chapters 9 -13. The third, approximation of functions, involves the approximants being polynomials, rational functions, and other types of functions and are covered in Chapters 14 -19. The last theme, quadrature, cubature and applications, comprises the final three chapters and includes an article coauthored by Rahman. This volume serves as a memorial volume to commemorate the distinguished career of Qazi Ibadur Rahman (1934-2013) of the Universite de Montreal. Rahman was considered by his peers as one of the prominent experts in analytic theory of polynomials and entire functions. The novelty of his work lies in his profound abilities and skills in applying techniques from other areas of mathematics, such as optimization theory and variational principles, to obtain final answers to countless open problems.
'The numerical algorithms presented are written in pseudocode and based on MATLAB, a programming and numeric computing platform widely used in STEM fields. Thus, no formal training in computer science or knowledge of any specific programming language is needed to parse the algorithms. Summing up: Recommended.'CHOICEMany students come to numerical linear algebra from science and engineering seeking modern tools and an understanding of how the tools work and their limitations. Often their backgrounds and experience are extensive in applications of numerical methods but limited in abstract mathematics and matrix theory. Often enough it is limited to multivariable calculus, basic differential equations and methods of applied mathematics. This book introduces modern tools of numerical linear algebra based on this background, heavy in applied analysis but light in matrix canonical forms and their algebraic properties. Each topic is presented as algorithmic ideas and through a foundation based on mostly applied analysis. By picking a path through the book appropriate for the level, it has been used for both senior level undergraduates and beginning graduate classes with students from diverse fields and backgrounds.
'The numerical algorithms presented are written in pseudocode and based on MATLAB, a programming and numeric computing platform widely used in STEM fields. Thus, no formal training in computer science or knowledge of any specific programming language is needed to parse the algorithms. Summing up: Recommended.'CHOICEMany students come to numerical linear algebra from science and engineering seeking modern tools and an understanding of how the tools work and their limitations. Often their backgrounds and experience are extensive in applications of numerical methods but limited in abstract mathematics and matrix theory. Often enough it is limited to multivariable calculus, basic differential equations and methods of applied mathematics. This book introduces modern tools of numerical linear algebra based on this background, heavy in applied analysis but light in matrix canonical forms and their algebraic properties. Each topic is presented as algorithmic ideas and through a foundation based on mostly applied analysis. By picking a path through the book appropriate for the level, it has been used for both senior level undergraduates and beginning graduate classes with students from diverse fields and backgrounds.
This book provides an extensive introduction to numerical computing from the viewpoint of backward error analysis. The intended audience includes students and researchers in science, engineering and mathematics. The approach taken is somewhat informal owing to the wide variety of backgrounds of the readers, but the central ideas of backward error and sensitivity (conditioning) are systematically emphasized. The book is divided into four parts: Part I provides the background preliminaries including floating-point arithmetic, polynomials and computer evaluation of functions; Part II covers numerical linear algebra; Part III covers interpolation, the FFT and quadrature; and Part IV covers numerical solutions of differential equations including initial-value problems, boundary-value problems, delay differential equations and a brief chapter on partial differential equations. The book contains detailed illustrations, chapter summaries and a variety of exercises as well some Matlab codes provided online as supplementary material. "I really like the focus on backward error analysis and condition. This is novel in a textbook and a practical approach that will bring welcome attention." Lawrence F. Shampine A Graduate Introduction to Numerical Methods and Backward Error Analysis" has been selected by Computing Reviews as a notable book in computing in 2013. Computing Reviews Best of 2013 list consists of book and article nominations from reviewers, CR category editors, the editors-in-chief of journals, and others in the computing community.
This new work is an introduction to the numerical solution of the initial value problem for a system of ordinary differential equations. The first three chapters are general in nature, and chapters 4 through 8 derive the basic numerical methods, prove their convergence, study their stability and consider how to implement them effectively. The book focuses on the most important methods in practice and develops them fully, uses examples throughout, and emphasizes practical problem-solving methods.
This book is an essential tool written to be used as the primary text for an undergraduate or early postgraduate course as well as a reference book for engineers and scientists who want to quickly develop finite-element programs. Regarding the formulation of the finite element method, the book emphasizes the essential unity of all processes of approximation used in the solution of differential equations such as finite differences, finite elements and boundary elements. Computational aspects are presented in Maple. Three Maple packages were specially developed for this book and are included in a companion CD-ROM.
Modelling with Ordinary Differential Equations: A Comprehensive Approach aims to provide a broad and self-contained introduction to the mathematical tools necessary to investigate and apply ODE models. The book starts by establishing the existence of solutions in various settings and analysing their stability properties. The next step is to illustrate modelling issues arising in the calculus of variation and optimal control theory that are of interest in many applications. This discussion is continued with an introduction to inverse problems governed by ODE models and to differential games. The book is completed with an illustration of stochastic differential equations and the development of neural networks to solve ODE systems. Many numerical methods are presented to solve the classes of problems discussed in this book. Features: Provides insight into rigorous mathematical issues concerning various topics, while discussing many different models of interest in different disciplines (biology, chemistry, economics, medicine, physics, social sciences, etc.) Suitable for undergraduate and graduate students and as an introduction for researchers in engineering and the sciences Accompanied by codes which allow the reader to apply the numerical methods discussed in this book in those cases where analytical solutions are not available
ECMI, the European Consortium for Mathematics in Industry, is the European brand associated with applied mathematics for industry and organizes highly successful biannual conferences. In this series, the ECMI 2010, the 16th European Conference on Mathematics for Industry, was held in the historic city hall of Wuppertal in Germany. It covered the mathematics of a wide range of applications and methods, from circuit and electromagnetic device simulation to model order reduction for chip design, uncertainties and stochastics, production, fluids, life and environmental sciences, and dedicated and versatile methods. These proceedings of ECMI 2010 emphasize mathematics as an innovation enabler for industry and business, and as an absolutely essential pre-requiste for Europe on its way to becoming the leading knowledge-based economy in the world.
Revised andupdated, this second edition of Walter Gautschi's successful "Numerical Analysis"explorescomputational methodsfor problems arising in the areas of classical analysis, approximation theory, and ordinary differential equations, among others. Topics included in the book are presented with a view toward stressing basic principles and maintaining simplicity and teachability as far as possible, while subjects requiring a higher level of technicality are referenced in detailed bibliographic notes at the end of each chapter. Readers are thus given the guidance and opportunity to pursue advanced modern topics in more depth. Along with updated references, new biographical notes, and enhanced notational clarity, this second editionincludes the expansion of an alreadylarge collection of exercises and assignments, both the kind that deal with theoretical and practical aspects of the subject and those requiring machine computation and the use of mathematical software. Perhaps most notably, the edition also comes with a complete solutions manual, carefully developed and polished by the author, which will serve as an exceptionally valuable resource for instructors."
This open access book demonstrates all the steps required to design heuristic algorithms for difficult optimization. The classic problem of the travelling salesman is used as a common thread to illustrate all the techniques discussed. This problem is ideal for introducing readers to the subject because it is very intuitive and its solutions can be graphically represented. The book features a wealth of illustrations that allow the concepts to be understood at a glance. The book approaches the main metaheuristics from a new angle, deconstructing them into a few key concepts presented in separate chapters: construction, improvement, decomposition, randomization and learning methods. Each metaheuristic can then be presented in simplified form as a combination of these concepts. This approach avoids giving the impression that metaheuristics is a non-formal discipline, a kind of cloud sculpture. Moreover, it provides concrete applications of the travelling salesman problem, which illustrate in just a few lines of code how to design a new heuristic and remove all ambiguities left by a general framework. Two chapters reviewing the basics of combinatorial optimization and complexity theory make the book self-contained. As such, even readers with a very limited background in the field will be able to follow all the content.
This book is a revised and updated version, including a substantial portion of new material, of the authors' widely acclaimed earlier text "Perturbation Methods in Applied Mathematics". A new chapter dealing with regular expansions has been added, the discussion of layer-type singular perturbations has been revised, and the coverage of multiple scale and averaging methods has been significantly expanded to reflect recent advances and viewpoints. The result is a comprehensive account of the various perturbation techniques currently used in the sciences and engineering, and is suitable for a graduate text as well as a reference work on the subject.
This book collects the final versions of the highest quality papers presented at the conference 11th European Symposium on Computational Intelligence and Mathematics held on October 2-5, 2019, in Toledo (Spain). The conjugation of computational sciences with different mathematical tools is essential in order to solve different challenges that arise in a wide-ranging knowledge areas. Nowadays, many promising research lines are being developed in this direction from the theoretical and applicational perspectives. In this publication, computational intelligence and mathematics are combined in interesting research works that aim to give answers to complex real problems. Moreover, the technical program of this conference included four excellent keynote speeches, given by Prof. Jose Luis Verdegay (Guidelines to solve Decision Making Problems), Prof. Joao Paulo Carvalho (Recommender Systems: Using Fuzzy Fingerprints for ``Proper'' Recommendations), Dr. Andreja Tepavcevic (Special lattice valued structures and approximate solutions of linear equations), and Prof. Juan Moreno-Garcia (Generating linguistic descriptions using Linguistic Petri Nets).
Data evaluation and data combination require the use of a wide range of probability theory concepts and tools, from deductive statistics mainly concerning frequencies and sample tallies to inductive inference for assimilating non-frequency data and a priori knowledge. Computational Methods for Data Evaluation and Assimilation presents interdisciplinary methods for integrating experimental and computational information. This self-contained book shows how the methods can be applied in many scientific and engineering areas. After presenting the fundamentals underlying the evaluation of experimental data, the book explains how to estimate covariances and confidence intervals from experimental data. It then describes algorithms for both unconstrained and constrained minimization of large-scale systems, such as time-dependent variational data assimilation in weather prediction and similar applications in the geophysical sciences. The book also discusses several basic principles of four-dimensional variational assimilation (4D VAR) and highlights specific difficulties in applying 4D VAR to large-scale operational numerical weather prediction models.
This edited volume gathers selected, peer-reviewed contributions presented at the fourth International Conference on Differential & Difference Equations Applications (ICDDEA), which was held in Lisbon, Portugal, in July 2019. First organized in 2011, the ICDDEA conferences bring together mathematicians from various countries in order to promote cooperation in the field, with a particular focus on applications. The book includes studies on boundary value problems; Markov models; time scales; non-linear difference equations; multi-scale modeling; and myriad applications.
A Theoretical Introduction to Numerical Analysis presents the general methodology and principles of numerical analysis, illustrating these concepts using numerical methods from real analysis, linear algebra, and differential equations. The book focuses on how to efficiently represent mathematical models for computer-based study. An accessible yet rigorous mathematical introduction, this book provides a pedagogical account of the fundamentals of numerical analysis. The authors thoroughly explain basic concepts, such as discretization, error, efficiency, complexity, numerical stability, consistency, and convergence. The text also addresses more complex topics like intrinsic error limits and the effect of smoothness on the accuracy of approximation in the context of Chebyshev interpolation, Gaussian quadratures, and spectral methods for differential equations. Another advanced subject discussed, the method of difference potentials, employs discrete analogues of Calderon's potentials and boundary projection operators. The authors often delineate various techniques through exercises that require further theoretical study or computer implementation. By lucidly presenting the central mathematical concepts of numerical methods, A Theoretical Introduction to Numerical Analysis provides a foundational link to more specialized computational work in fluid dynamics, acoustics, and electromagnetism.
This book provides a comprehensive introduction to the theory of ordinary differential equations with a focus on mechanics and dynamical systems as important applications of the theory. The text is written to be used in the traditional way or in a more applied way. In addition to its use in a traditional one or two semester graduate course in mathematics, the book is organized to be used for interdisciplinary courses in applied mathematics, physics, and engineering.
This book includes selected papers presented at the MIMS (Mediterranean Institute for the Mathematical Sciences) - GGTM (Geometry and Topology Grouping for the Maghreb) conference, held in memory of Mohammed Salah Baouendi, a most renowned figure in the field of several complex variables, who passed away in 2011. All research articles were written by leading experts, some of whom are prize winners in the fields of complex geometry, algebraic geometry and analysis. The book offers a valuable resource for all researchers interested in recent developments in analysis and geometry.
Since publication of the initial papers in 2006, compressed sensing has captured the imagination of the international signal processing community, and the mathematical foundations are nowadays quite well understood. Parallel to the progress in mathematics, the potential applications of compressed sensing have been explored by many international groups of, in particular, engineers and applied mathematicians, achieving very promising advances in various areas such as communication theory, imaging sciences, optics, radar technology, sensor networks, or tomography. Since many applications have reached a mature state, the research center MATHEON in Berlin focusing on "Mathematics for Key Technologies", invited leading researchers on applications of compressed sensing from mathematics, computer science, and engineering to the "MATHEON Workshop 2013: Compressed Sensing and its Applications" in December 2013. It was the first workshop specifically focusing on the applications of compressed sensing. This book features contributions by the plenary and invited speakers of this workshop. To make this book accessible for those unfamiliar with compressed sensing, the book will not only contain chapters on various applications of compressed sensing written by plenary and invited speakers, but will also provide a general introduction into compressed sensing. The book is aimed at both graduate students and researchers in the areas of applied mathematics, computer science, and engineering as well as other applied scientists interested in the potential and applications of the novel methodology of compressed sensing. For those readers who are not already familiar with compressed sensing, an introduction to the basics of this theory will be included.
This book presents open optimization problems in graph theory and networks. Each chapter reflects developments in theory and applications based on Gregory Gutin's fundamental contributions to advanced methods and techniques in combinatorial optimization. Researchers, students, and engineers in computer science, big data, applied mathematics, operations research, algorithm design, artificial intelligence, software engineering, data analysis, industrial and systems engineering will benefit from the state-of-the-art results presented in modern graph theory and its applications to the design of efficient algorithms for optimization problems. Topics covered in this work include: * Algorithmic aspects of problems with disjoint cycles in graphs * Graphs where maximal cliques and stable sets intersect * The maximum independent set problem with special classes * A general technique for heuristic algorithms for optimization problems * The network design problem with cut constraints * Algorithms for computing the frustration index of a signed graph * A heuristic approach for studying the patrol problem on a graph * Minimum possible sum and product of the proper connection number * Structural and algorithmic results on branchings in digraphs * Improved upper bounds for Korkel--Ghosh benchmark SPLP instances
This book discusses a family of computational methods, known as discontinuous Galerkin methods, for solving partial differential equations. While these methods have been known since the early 1970s, they have experienced an almost explosive growth interest during the last ten to fifteen years, leading both to substantial theoretical developments and the application of these methods to a broad range of problems. These methods are different in nature from standard methods such as finite element or finite difference methods, often presenting a challenge in the transition from theoretical developments to actual implementations and applications. This book is aimed at graduate level classes in applied and computational mathematics. The combination of an in depth discussion of the fundamental properties of the discontinuous Galerkin computational methods with the availability of extensive software allows students to gain first hand experience from the beginning without eliminating theoretical insight.
This volume contains original research articles, survey articles and lecture notes related to the Computations with Modular Forms 2011 Summer School and Conference, held at the University of Heidelberg. A key theme of the Conference and Summer School was the interplay between theory, algorithms and experiment. The 14 papers offer readers both, instructional courses on the latest algorithms for computing modular and automorphic forms, as well as original research articles reporting on the latest developments in the field. The three Summer School lectures provide an introduction to modern algorithms together with some theoretical background for computations of and with modular forms, including computing cohomology of arithmetic groups, algebraic automorphic forms, and overconvergent modular symbols. The 11 Conference papers cover a wide range of themes related to computations with modular forms, including lattice methods for algebraic modular forms on classical groups, a generalization of the Maeda conjecture, an efficient algorithm for special values of p-adic Rankin triple product L-functions, arithmetic aspects and experimental data of Bianchi groups, a theoretical study of the real Jacobian of modular curves, results on computing weight one modular forms, and more.
This self-contained textbook presents matrix analysis in the context of numerical computation with numerical conditioning of problems and numerical stability of algorithms at the forefront. Using a unique combination of numerical insight and mathematical rigour, it advances readers' understanding of two phenomena: sensitivity of linear systems and least squares problems, and numerical stability of algorithms. This book differs in several ways from other numerical linear algebra texts. It offers a systematic development of numerical conditioning; a simplified concept of numerical stability in exact arithmetic; simple derivations; a high-level view of algorithms; and results for complex matrices. The material is presented at a basic level, emphasizing ideas and intuition, and each chapter offers simple exercises for use in the classroom and more challenging exercises for student practice. This book differs from other numerical linear algebra texts by offering:* A systematic development of numerical conditioning.* A simplified concept of numerical stability in exact arithmetic.* Simple derivations.* A high-level view of algorithms. * Results for complex matrices. The material is presented at a basic level, emphasizing ideas and intuition, and each chapter offers simple exercises for use in the classroom and more challenging exercises for student practice.
This book collects selected contributions presented at the INdAM Workshop "Geometric Challenges in Isogeometric Analysis", held in Rome, Italy on January 27-31, 2020. It gives an overview of the forefront research on splines and their efficient use in isogeometric methods for the discretization of differential problems over complex and trimmed geometries. A variety of research topics in this context are covered, including (i) high-quality spline surfaces on complex and trimmed geometries, (ii) construction and analysis of smooth spline spaces on unstructured meshes, (iii) numerical aspects and benchmarking of isogeometric discretizations on unstructured meshes, meshing strategies and software. Given its scope, the book will be of interest to both researchers and graduate students working in the areas of approximation theory, geometric design and numerical simulation. Chapter 10 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
Inequalities arise as an essential component in various mathematical areas. Besides forming a highly important collection of tools, e.g. for proving analytic or stochastic theorems or for deriving error estimates in numerical mathematics, they constitute a challenging research field of their own. Inequalities also appear directly in mathematical models for applications in science, engineering, and economics. This edited volume covers divers aspects of this fascinating field. It addresses classical inequalities related to means or to convexity as well as inequalities arising in the field of ordinary and partial differential equations, like Sobolev or Hardy-type inequalities, and inequalities occurring in geometrical contexts. Within the last five decades, the late Wolfgang Walter has made great contributions to the field of inequalities. His book on differential and integral inequalities was a real breakthrough in the 1970 s and has generated a vast variety of further research in this field. He also organized six of the seven General Inequalities Conferences held at Oberwolfach between 1976 and 1995, and co-edited their proceedings. He participated as an honorary member of the Scientific Committee in the General Inequalities 8 conference in Hungary. As a recognition of his great achievements, this volume is dedicated to Wolfgang Walter s memory. The General Inequalities meetings found their continuation in the Conferences on Inequalities and Applications which, so far, have been held twice in Hungary. This volume contains selected contributions of participants of the second conference which took place in Hajduszoboszlo in September 2010, as well as additional articles written upon invitation. These contributions reflect many theoretical and practical aspects in the field of inequalities, and will be useful for researchers and lecturers, as well as for students who want to familiarize themselves with the area.
This book explores four guiding themes - reduced order modelling, high dimensional problems, efficient algorithms, and applications - by reviewing recent algorithmic and mathematical advances and the development of new research directions for uncertainty quantification in the context of partial differential equations with random inputs. Highlighting the most promising approaches for (near-) future improvements in the way uncertainty quantification problems in the partial differential equation setting are solved, and gathering contributions by leading international experts, the book's content will impact the scientific, engineering, financial, economic, environmental, social, and commercial sectors. |
You may like...
Constructive Approximation on the Sphere…
W Freeden, T. Gervens, …
Hardcover
R3,855
Discovery Miles 38 550
Numerical Control: Part B, Volume 24
Emmanuel Trelat, Enrique Zuazua
Hardcover
R4,968
Discovery Miles 49 680
Nonlinear Functional Analysis and…
Jesus Garcia-Falset, Khalid Latrach
Hardcover
R4,990
Discovery Miles 49 900
Hardy Type Inequalities on Time Scales
Ravi P. Agarwal, Donal O'Regan, …
Hardcover
R3,741
Discovery Miles 37 410
A Primer on Radial Basis Functions with…
Bengt Fornberg, Natasha Flyer
Paperback
Finite Elements and Fast Iterative…
Howard Elman, David Silvester, …
Hardcover
R4,317
Discovery Miles 43 170
|