![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Numerical analysis
This is an advanced book on modular forms. While there are many books published about modular forms, they are written at an elementary level, and not so interesting from the viewpoint of a reader who already knows thebasics. This book offers something new, which may satisfy the desire of such a reader. However, we state every definition and every essential fact concerning classical modular forms of one variable. One of the principal new features of this book is the theory of modular forms of half-integral weight, another being the discussion of theta functions and Eisenstein series of holomorphic and nonholomorphic types. Thus the book is presented so that the reader can learn such theories systematically. Ultimately, we concentrate on the following two themes: (I) The correspondence between the forms of half-integral weight and those of integral weight. (II) The arithmeticity of various Dirichlet series associated with modular forms of integral or half-integral weight."
Scilab and its Scicos block diagram graphical editor, with a special emphasis on modeling and simulation tools. The first part is a detailed Scilab tutorial, and the second is dedicated to modeling and simulation of dynamical systems in Scicos. The concepts are illustrated through numerous examples, and all code used in the book is available to the reader.
The proceedings represent the state of knowledge in the area of algorithmic differentiation (AD). The 31 contributed papers presented at the AD2012 conference cover the application of AD to many areas in science and engineering as well as aspects of AD theory and its implementation in tools. For all papers the referees, selected from the program committee and the greater community, as well as the editors have emphasized accessibility of the presented ideas also to non-AD experts. In the AD tools arena new implementations are introduced covering, for example, Java and graphical modeling environments or join the set of existing tools for Fortran. New developments in AD algorithms target the efficiency of matrix-operation derivatives, detection and exploitation of sparsity, partial separability, the treatment of nonsmooth functions, and other high-level mathematical aspects of the numerical computations to be differentiated. Applications stem from the Earth sciences, nuclear engineering, fluid dynamics, and chemistry, to name just a few. In many cases the applications in a given area of science or engineering share characteristics that require specific approaches to enable AD capabilities or provide an opportunity for efficiency gains in the derivative computation. The description of these characteristics and of the techniques for successfully using AD should make the proceedings a valuable source of information for users of AD tools.
The standard textbooks on aerodynamics usually omit any discussion of un steady aerodynamics or, at most, consider it only in a single chapter, based on two justifications. The first is that unsteady aerodynamics should be regarded as a specialized subject required "only" in connection with understanding and an alyzing aeroelastic phenomena such as flutter and gust response, and therefore should be dealt with in related specialist books. The second reason appears to be reluctance to discuss aerodynamics with the inclusion of the time-dependent terms in the conservation equations and the boundary conditions for fear that added complications may discourage the reader. We take the opposite view in this book and argue that a full understanding of the physics of lift generation is possible only by considering the unsteady aerody namics of the starting vortex generation process. Furthermore, certain "steady" flows are inherently unsteady in the presence of flow separation, as for example the unsteady flow caused by the Karman vortex shedding downstream of a cylin der and "static" airfoil stall which is an inherently unsteady flow phenomenon. Therefore, it stands to reason that a unified treatment of aerodynamics that yields steady-state aerodynamics as a special case offers advantages. This rea soning is strengthened by the developments in computational fluid dynamics over the past forty years, which showed that accurate steady-state solutions can be obtained efficiently by solving the unsteady flow equations.
Multibody Dynamics is an area of Computational Mechanics which blends together various disciplines such as structural dynamics, multi-physics - chanics, computational mathematics, control theory and computer science, in order to deliver methods and tools for the virtual prototyping of complex mechanical systems. Multibody dynamics plays today a central role in the modeling, analysis, simulation and optimization of mechanical systems in a variety of ?elds and for a wide range of industrial applications. The ECCOMAS Thematic Conference on Multibody Dynamics was ini- ated in Lisbon in 2003, and then continued in Madrid in 2005 with the goal of providing researchers in Multibody Dynamics with appropriate venues for exchanging ideas and results. The third edition of the Conference was held at the Politecnico di Milano, Milano, Italy, from June 25 to June 28, 2007. The Conference saw the participation of over 250 researchers from 32 di?- ent countries, presenting 209 technical papers, and proved to be an excellent forum for discussion and technical exchange on the most recent advances in this rapidly growing ?eld.
The ADI Model Problem presents the theoretical foundations of Alternating Direction Implicit (ADI) iteration for systems with both real and complex spectra and extends early work for real spectra into the complex plane with methods for computing optimum iteration parameters for both one and two variable problems. This book provides application of theory to the solution of boundary value problems and description of stable similarity reduction of a full matrix to low-band upper Hessenberg form, with application to computation of eigenvalues and solution of Lyapunov and Sylvester equations. Also included are MATLAB programs and numerical verification of theory and applications.
This book elucidates how Finite Element methods look like from the
perspective of Green's functions, and shows new insights into the
mathematical theory of Finite Elements. Practically, this new view
on Finite Elements enables the reader to better assess solutions of
standard programs and to find better model of a given problem.
This unique book gives a comprehensive account of new mathematical tools used to solve polygon problems. In the 20th and 21st centuries, many problems in mathematics, theoretical physics and theoretical chemistry - and more recently in molecular biology and bio-informatics - can be expressed as counting problems, in which specified graphs, or shapes, are counted. One very special class of shapes is that of polygons. These are closed, connected paths in space. We usually sketch them in two-dimensions, but they can exist in any dimension. The typical questions asked include "how many are there of a given perimeter?," "how big is the average polygon of given perimeter?," and corresponding questions about the area or volume enclosed. That is to say "how many enclosing a given area?" and "how large is an average polygon of given area?" Simple though these questions are to pose, they are extraordinarily difficult to answer. They are important questions because of the application of polygon, and the related problems of polyomino and polycube counting, to phenomena occurring in the natural world, and also because the study of these problems has been responsible for the development of powerful new techniques in mathematics and mathematical physics, as well as in computer science. These new techniques then find application more broadly. The book brings together chapters from many of the major contributors in the field. An introductory chapter giving the history of the problem is followed by fourteen further chapters describing particular aspects of the problem, and applications to biology, to surface phenomena and to computer enumeration methods.
This book arises from the INdAM Meeting "Complex and Symplectic Geometry", which was held in Cortona in June 2016. Several leading specialists, including young researchers, in the field of complex and symplectic geometry, present the state of the art of their research on topics such as the cohomology of complex manifolds; analytic techniques in Kahler and non-Kahler geometry; almost-complex and symplectic structures; special structures on complex manifolds; and deformations of complex objects. The work is intended for researchers in these areas.
Optical networks epitomize complex communication systems, and they comprise the Internet s infrastructural backbone. The first of its kind, this book develops the mathematical framework needed from a control perspective to tackle various game-theoretical problems in optical networks. In doing so, it aims to help design control algorithms that optimally allocate the resources of these networks. With its fresh problem-solving approach, Game Theory in Optical Networks is a unique resource for researchers, practitioners, and graduate students in applied mathematics and systems/control engineering, as well as those in electrical and computer engineering."
This book illustrates several aspects of the current research activity in operator theory, operator algebras and applications in various areas of mathematics and mathematical physics. It is addressed to specialists but also to graduate students in several fields including global analysis, Schur analysis, complex analysis, C*-algebras, noncommutative geometry, operator algebras, operator theory and their applications. Contributors: F. Arici, S. Bernstein, V. Bolotnikov, J. Bourgain, P. Cerejeiras, F. Cipriani, F. Colombo, F. D'Andrea, G. Dell'Antonio, M. Elin, U. Franz, D. Guido, T. Isola, A. Kula, L.E. Labuschagne, G. Landi, W.A. Majewski, I. Sabadini, J.-L. Sauvageot, D. Shoikhet, A. Skalski, H. de Snoo, D. C. Struppa, N. Vieira, D.V. Voiculescu, and H. Woracek.
The book presents the method of difference potentials first proposed by the author in 1969 and contains illustrative examples and new algorithms for solving applied problems of gas dynamics, diffraction, scattering theory, and active noise screening. The fundamentals of the method are described in Parts I-III and its applications in Parts IV-VIII. To get acquainted with the basic ideas of the method, it suffices to study the Introduction. After this, each of the Parts VI-VIII can be read independently. The book is intended for specialists in the field of computational mathematics and the theory of differential and integral equations, as well as for graduate students of related specialities.
Starting with novel algorithms for optimally updating bounding volume hierarchies of objects undergoing arbitrary deformations, the author presents a new data structure that allows, for the first time, the computation of the penetration volume. The penetration volume is related to the water displacement of the overlapping region, and thus corresponds to a physically motivated and continuous force. The practicability of the approaches used is shown by realizing new applications in the field of robotics and haptics, including a user study that evaluates the influence of the degrees of freedom in complex haptic interactions. New Geometric Data Structures for Collision Detection and Haptics closes by proposing an open source benchmarking suite that evaluates both the performance and the quality of the collision response in order to guarantee a fair comparison of different collision detection algorithms. Required in the fields of computer graphics, physically-based simulations, computer animations, robotics and haptics, collision detection is a fundamental problem that arises every time we interact with virtual objects. Some of the open challenges associated with collision detection include the handling of deformable objects, the stable computation of physically-plausible contact information, and the extremely high frequencies that are required for haptic rendering. New Geometric Data Structures for Collision Detection and Haptics presents new solutions to all of these challenges, and will prove to be a valuable resource for researchers and practitioners of collision detection in the haptics, robotics and computer graphics and animation domains.
In January 2012 an Oberwolfach workshop took place on the topic of recent developments in the numerics of partial differential equations. Focus was laid on methods of high order and on applications in Computational Fluid Dynamics. The book covers most of the talks presented at this workshop.
Thirty years ago mathematical, as opposed to applied numerical, computation was difficult to perform and so relatively little used. Three threads changed that: the emergence of the personal computer; the discovery of fiber-optics and the consequent development of the modern internet; and the building of the Three M s Maple, Mathematica and Matlab. We intend to persuade that Maple and other like tools are worth knowing assuming only that one wishes to be a mathematician, a mathematics educator, a computer scientist, an engineer or scientist, or anyone else who wishes/needs to use mathematics better. We also hope to explain how to become an experimental mathematician' while learning to be better at proving things. To accomplish this our material is divided into three main chapters followed by a postscript. These cover elementary number theory, calculus of one and several variables, introductory linear algebra, and visualization and interactive geometric computation."
This book includes a collection of research articles presented at the "6th International Workshop on Hydro Scheduling in Competitive Electricity Markets". The workshop was a unique and intimate forum for researchers and practitioners to present state-of-the-art research and development concerning novel methodological findings, best practices and real-life applications of hydro scheduling. It also provided a platform for discussing the developments that are taking place in the industry, sharing different experiences and discussing future trends related to this area. This proceedings book is a collection of the most relevant, high-quality articles from the workshop. Discussing the state-of-the-art in the field of hydro scheduling, it is a valuable resource for a wide audience of researchers and practitioners in the field now and in the interesting and challenging times ahead.
This book covers Lebesgue integration and its generalizations from Daniell's point of view, modified by the use of seminorms. Integrating functions rather than measuring sets is posited as the main purpose of measure theory. From this point of view Lebesgue's integral can be had as a rather straightforward, even simplistic, extension of Riemann's integral; and its aims, definitions, and procedures can be motivated at an elementary level. The notion of measurability, for example, is suggested by Littlewood's observations rather than being conveyed authoritatively through definitions of (sigma)-algebras and good-cut-conditions, the latter of which are hard to justify and thus appear mysterious, even nettlesome, to the beginner. The approach taken provides the additional benefit of cutting the labor in half. The use of seminorms, ubiquitous in modern analysis, speeds things up even further. The book is intended for the reader who has some experience with proofs, a beginning graduate student for example. It might even be useful to the advanced mathematician who is confronted with situations - such as stochastic integration - where the set-measuring approach to integration does not work.
The Jacobi group is a semidirect product of a symplectic group with a Heisenberg group. It is an important example for a non-reductive group and sets the frame within which to treat theta functions as well as elliptic functions - in particular, the universal elliptic curve. This text gathers for the first time material from the representation theory of this group in both local (archimedean and non-archimedean) cases and in the global number field case. Via a bridge to Waldspurger's theory for the metaplectic group, complete classification theorems for irreducible representations are obtained. Further topics include differential operators, Whittaker models, Hecke operators, spherical representations and theta functions. The global theory is aimed at the correspondence between automorphic representations and Jacobi forms. This volume is thus a complement to the seminal book on Jacobi forms by M. Eichler and D. Zagier. Incorporating results of the authors' original research, this exposition is meant for researchers and graduate students interested in algebraic groups and number theory, in particular, modular and automorphic forms.
Non-standard finite element methods, in particular mixed methods, are central to many applications. In this text the authors, Boffi, Brezzi and Fortin present a general framework, starting with a finite dimensional presentation, then moving on to formulation in Hilbert spaces and finally considering approximations, including stabilized methods and eigenvalue problems. This book also provides an introduction to standard finite element approximations, followed by the construction of elements for the approximation of mixed formulations in H(div) and H(curl). The general theory is applied to some classical examples: Dirichlet's problem, Stokes' problem, plate problems, elasticity and electromagnetism.
The papers presented here describe research to improve the general understanding of the application of SAMR to practical problems, to identify issues critical to efficient and effective implementation on high performance computers and to stimulate the development of a community code repository for software including benchmarks to assist in the evaluation of software and compiler technologies. The ten chapters have been divided into two parts reflecting two major issues in the topic: programming complexity of SAMR algorithms and the applicability and numerical challenges of SAMR methods.
This book provides an introduction to dynamical systems with multiple time scales. The approach it takes is to provide an overview of key areas, particularly topics that are less available in the introductory form. The broad range of topics included makes it accessible for students and researchers new to the field to gain a quick and thorough overview. The first of its kind, this book merges a wide variety of different mathematical techniques into a more unified framework. The book is highly illustrated with many examples and exercises and an extensive bibliography. The target audience of this book are senior undergraduates, graduate students as well as researchers interested in using the multiple time scale dynamics theory in nonlinear science, either from a theoretical or a mathematical modeling perspective.
These proceedings are based on papers presented at the international conference Approximation Theory XV, which was held May 22-25, 2016 in San Antonio, Texas. The conference was the fifteenth in a series of meetings in Approximation Theory held at various locations in the United States, and was attended by 146 participants. The book contains longer survey papers by some of the invited speakers covering topics such as compressive sensing, isogeometric analysis, and scaling limits of polynomials and entire functions of exponential type. The book also includes papers on a variety of current topics in Approximation Theory drawn from areas such as advances in kernel approximation with applications, approximation theory and algebraic geometry, multivariate splines for applications, practical function approximation, approximation of PDEs, wavelets and framelets with applications, approximation theory in signal processing, compressive sensing, rational interpolation, spline approximation in isogeometric analysis, approximation of fractional differential equations, numerical integration formulas, and trigonometric polynomial approximation.
Comprising specially selected papers on the subject of Computational Methods and Experimental Measurements, this book includes research from scientists, researchers and specialists who perform experiments, develop computer codes and carry out measurements on prototypes. Improvements relating to computational methods have generated an ever-increasing expansion of computational simulations that permeate all fields of science and technology. Validating the results of these improvements can be achieved by carrying out committed and accurate experiments, which have undertaken continuous development. Current experimental techniques have become more complex and sophisticated so that they require the intensive use of computers, both for running experiments as well as acquiring and processing the resulting data. This title explores new experimental and computational methods and covers various topics such as: Computer-aided Models; Image Analysis Applications; Noise Filtration of Shockwave Propagation; Finite Element Simulations.
Computer Science and Operations Research continue to have a synergistic relationship and this book represents the results of the cross-fertilization between OR/MS and CS/AI. It is this interface of OR/CS that makes possible advances that could not have been achieved in isolation. Taken collectively, these articles are indicative of the state of the art in the interface between OR/MS and CS/AI and of the high-caliber research being conducted by members of the INFORMS Computing Society.
My book "Asymptotic Expansions for Ordinary Differential Equations" published in 1965 is out of print. In the almost 20 years since then, the subject has grown so much in breadth and in depth that an account of the present state of knowledge of all the topics discussed there could not be fitted into one volume without resorting to an excessively terse style of writing. Instead of undertaking such a task, I have concentrated, in this exposi tion, on the aspects of the asymptotic theory with which I have been particularly concerned during those 20 years, which is the nature and structure of turning points. As in Chapter VIII of my previous book, only linear analytic differential equations are considered, but the inclusion of important new ideas and results, as well as the development of the neces sary background material have made this an exposition of book length. The formal theory of linear analytic differential equations without a parameter near singularities with respect to the independent variable has, in recent years, been greatly deepened by bringing to it methods of modern algebra and topology. It is very probable that many of these ideas could also be applied to the problems concerning singularities with respect to a parameter, and I hope that this will be done in the near future. It is less likely, however, that the analytic, as opposed to the formal, aspects of turning point theory will greatly benefit from such an algebraization." |
![]() ![]() You may like...
Advances in 3D Image and Graphics…
Roumen Kountchev, Srikanta Patnaik, …
Hardcover
R5,681
Discovery Miles 56 810
AI, IoT, and Blockchain Breakthroughs in…
Kavita Saini, N.S. Gowri Ganesh, …
Hardcover
R6,439
Discovery Miles 64 390
Computational Diffusion MRI - MICCAI…
Elisenda Bonet-Carne, Jana Hutter, …
Hardcover
R4,359
Discovery Miles 43 590
Stochastic Processes and Their…
Christo Ananth, N. Anbazhagan, …
Hardcover
R7,253
Discovery Miles 72 530
Vision, Sensing and Analytics…
MD Atiqur Rahman Ahad, Atsushi Inoue
Hardcover
R5,153
Discovery Miles 51 530
Metaheuristics for Data Clustering and…
Meera Ramadas, Ajith Abraham
Hardcover
R2,873
Discovery Miles 28 730
|