![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Numerical analysis
This series of volumes aims to cover the major aspects of Numerical Analysis, serving as the basic reference work on the subject. Each volume concentrates on one, two, or three, particular topics. Each article, is an in-depth survey, reflecting the most recent trends in the field, and is essentially self-contained. The handbook covers the basic methods of numerical analysis, under the following general headings: solution of equations in R n; finite difference methods; finite element methods; techniques of scientific computing; and optimization theory and systems science. It also covers the numerical solution of actual problems of contemporary interest in Applied Mathematics.
Infotext]((Kurztext))These are the proceedings of the 7th International Conference on Hyperbolic Problems, held in Zurich in February 1998. The speakers and contributors have been rigorously selected and present the state of the art in this field. The articles, both theoretical and numerical, encompass a wide range of applications, such as nonlinear waves in solids, various computational fluid dynamics from small-scale combustion to relativistic astrophysical problems, multiphase phenomena and geometrical optics. ((Volltext))These proceedings contain, in two volumes, approximately one hundred papers presented at the conference on hyperbolic problems, which has focused to a large extent on the laws of nonlinear hyperbolic conservation. Two-fifths of the papers are devoted to mathematical aspects such as global existence, uniqueness, asymptotic behavior such as large time stability, stability and instabilities of waves and structures, various limits of the solution, the Riemann problem and so on. Roughly the same number of articles are devoted to numerical analysis, for example stability and convergence of numerical schemes, as well as schemes with special desired properties such as shock capturing, interface fitting and high-order approximations to multidimensional systems. The results in these contributions, both theoretical and numerical, encompass a wide range of applications such as nonlinear waves in solids, various computational fluid dynamics from small-scale combustion to relativistic astrophysical problems, multiphase phenomena and geometrical optics."
This book explores four guiding themes - reduced order modelling, high dimensional problems, efficient algorithms, and applications - by reviewing recent algorithmic and mathematical advances and the development of new research directions for uncertainty quantification in the context of partial differential equations with random inputs. Highlighting the most promising approaches for (near-) future improvements in the way uncertainty quantification problems in the partial differential equation setting are solved, and gathering contributions by leading international experts, the book's content will impact the scientific, engineering, financial, economic, environmental, social, and commercial sectors.
Investigation of vortex wakes behind various aircraft, especially behind wide bodied and heavy cargo ones, is of both scientific and practical in terest. The vortex wakes shed from the wing's trailing edge are long lived and attenuate only atdistances of10-12kmbehindthe wake generating aircraft. The encounter of other aircraft with the vortex wake of a heavy aircraft is open to catastrophic hazards. For example, air refueling is adangerous operationpartly due to thepossibility of the receiver aircraft's encountering the trailing wake of the tanker aircraft. It is very important to know the behavior of vortex wakes of aircraft during theirtakeoff andlanding operations whenthe wakes canpropagate over the airport's ground surface and be a serious hazard to other depart ing or arriving aircraft. This knowledge can help in enhancing safety of aircraft's movements in the terminal areas of congested airports where the threat of vortex encounters limits passenger throughput. Theoreticalinvestigations of aircraft vortex wakes arebeingintensively performedinthe major aviationnations.Usedforthispurpose are various methods for mathematical modeling of turbulent flows: direct numerical simulation based on the Navier-Stokes equations, large eddy simulation using the Navier-Stokes equations in combination with subrigid scale modeling, simulation based on the Reynolds equations closed with a differential turbulence model. These approaches are widely used in works of Russian and other countries' scientists. It should be emphasized that the experiments in wind tunnels and studies of natural vortex wakes behind heavy and light aircraft in flight experiments are equally important.
This volume, dedicated to the eminent mathematician Vladimir Arnold, presents a collection of research and survey papers written on a large spectrum of theories and problems that have been studied or introduced by Arnold himself. Emphasis is given to topics relating to dynamical systems, stability of integrable systems, algebraic and differential topology, global analysis, singularity theory and classical mechanics. A number of applications of Arnold's groundbreaking work are presented. This publication will assist graduate students and research mathematicians in acquiring an in-depth understanding and insight into a wide domain of research of an interdisciplinary nature.
The approximation of a continuous function by either an algebraic polynomial, a trigonometric polynomial, or a spline, is an important issue in application areas like computer-aided geometric design and signal analysis. This book is an introduction to the mathematical analysis of such approximation, and, with the prerequisites of only calculus and linear algebra, the material is targeted at senior undergraduate level, with a treatment that is both rigorous and self-contained. The topics include polynomial interpolation; Bernstein polynomials and the Weierstrass theorem; best approximations in the general setting of normed linear spaces and inner product spaces; best uniform polynomial approximation; orthogonal polynomials; Newton-Cotes, Gauss and Clenshaw-Curtis quadrature; the Euler-Maclaurin formula; approximation of periodic functions; the uniform convergence of Fourier series; spline approximation, with an extensive treatment of local spline interpolation, and its application in quadrature. Exercises are provided at the end of each chapter
This book explores the impact of augmenting novel architectural designs with hardware-based application accelerators. The text covers comprehensive aspects of the applications in Geographic Information Science, remote sensing and deploying Modern Accelerator Technologies (MAT) for geospatial simulations and spatiotemporal analytics. MAT in GIS applications, MAT in remotely sensed data processing and analysis, heterogeneous processors, many-core and highly multi-threaded processors and general purpose processors are also presented. This book includes case studies and closes with a chapter on future trends. Modern Accelerator Technologies for GIS is a reference book for practitioners and researchers working in geographical information systems and related fields. Advanced-level students in geography, computational science, computer science and engineering will also find this book useful.
This series of volumes aims to cover all the major aspects of numerical analysis, serving as the basic reference work on the subject. Each volume will concentrate on one, two or three particular topics. Each article, written by an expert, is an in-depth survey, reflecting the most recent trends in the field, and is essentially self-contained. The Handbook will cover the basic methods of numerical analysis, under the following general headings: solution of equations in Rn; finite difference methods; finite element methods; techniques of scientific computing; and optimization theory and systems science. It will also cover the numerical solution of actual problems of contemporary interest in applied mathematics, under the following headings: numerical methods of fluids; numerical methods for solids; and specific applications - including meteorology, seismology, petroleum mechanics and celestial mechanics.
This book introduces the concepts and methodologies related to the modelling of the complex phenomena occurring in materials processing. After a short reminder of conservation laws and constitutive relationships, the authors introduce the main numerical methods: finite differences, finite volumes and finite elements. These techniques are developed in three main chapters of the book that tackle more specific problems: phase transformation, solid mechanics and fluid flow. The two last chapters treat inverse methods to obtain the boundary conditions or the material properties and stochastic methods for microstructural simulation. This book is intended for undergraduate and graduate students in materials science and engineering, mechanical engineering and physics and for engineering professionals or researchers who want to get acquainted with numerical simulation to model and compute materials processing.
With contributions by specialists in optimization and practitioners in the fields of aerospace engineering, chemical engineering, and fluid and solid mechanics, the major themes include an assessment of the state of the art in optimization algorithms as well as challenging applications in design and control, in the areas of process engineering and systems with partial differential equation models.
Stochastic numerical methods play an important role in large scale computations in the applied sciences. The first goal of this book is to give a mathematical description of classical direct simulation Monte Carlo (DSMC) procedures for rarefied gases, using the theory of Markov processes as a unifying framework. The second goal is a systematic treatment of an extension of DSMC, called stochastic weighted particle method. This method includes several new features, which are introduced for the purpose of variance reduction (rare event simulation). Rigorous convergence results as well as detailed numerical studies are presented.
With contributions by specialists in optimization and practitioners in the fields of aerospace engineering, chemical engineering, and fluid and solid mechanics, the major themes include an assessment of the state of the art in optimization algorithms as well as challenging applications in design and control, in the areas of process engineering and systems with partial differential equation models.
The Bia owie a workshops on Geometric Methods in Physics, taking place in the unique environment of the Bia owie a natural forest in Poland, are among the important meetings in the field. Every year some 80 to 100 participants both from mathematics and physics join to discuss new developments and to interchange ideas. The current volume was produced on the occasion of the XXXI meeting in 2012. For the first time the workshop was followed by a School on Geometry and Physics, which consisted of advanced lectures for graduate students and young researchers. Selected speakers of the workshop were asked to contribute, and additional review articles were added. The selection shows that despite its now long tradition the workshop remains always at the cutting edge of ongoing research. The XXXI workshop had as a special topic the works of the late Boris Vasilievich Fedosov (1938 2011) who is best known for a simple and very natural construction of a deformation quantization for any symplectic manifold, and for his contributions to index theory.
Inequalities arise as an essential component in various mathematical areas. Besides forming a highly important collection of tools, e.g. for proving analytic or stochastic theorems or for deriving error estimates in numerical mathematics, they constitute a challenging research field of their own. Inequalities also appear directly in mathematical models for applications in science, engineering, and economics. This edited volume covers divers aspects of this fascinating field. It addresses classical inequalities related to means or to convexity as well as inequalities arising in the field of ordinary and partial differential equations, like Sobolev or Hardy-type inequalities, and inequalities occurring in geometrical contexts. Within the last five decades, the late Wolfgang Walter has made great contributions to the field of inequalities. His book on differential and integral inequalities was a real breakthrough in the 1970 s and has generated a vast variety of further research in this field. He also organized six of the seven General Inequalities Conferences held at Oberwolfach between 1976 and 1995, and co-edited their proceedings. He participated as an honorary member of the Scientific Committee in the General Inequalities 8 conference in Hungary. As a recognition of his great achievements, this volume is dedicated to Wolfgang Walter s memory. The General Inequalities meetings found their continuation in the Conferences on Inequalities and Applications which, so far, have been held twice in Hungary. This volume contains selected contributions of participants of the second conference which took place in Hajduszoboszlo in September 2010, as well as additional articles written upon invitation. These contributions reflect many theoretical and practical aspects in the field of inequalities, and will be useful for researchers and lecturers, as well as for students who want to familiarize themselves with the area.
Inverse problems and optimal design have come of age as a consequence of the availability of better, more accurate, and more efficient simulation packages. Many of these simulators, which can run on small workstations, can capture the complicated behavior of the physical systems they are modeling, and have become commonplace tools in engineering and science. There is a great desire to use them as part of a process by which measured field data are analyzed or by which design of a product is automated. A major obstacle in doing precisely this is that one is ultimately confronted with a large-scale optimization problem. This volume contains expository articles on both inverse problems and design problems formulated as optimization. Each paper describes the physical problem in some detail and is meant to be accessible to researchers in optimization as well as those who work in applied areas where optimization is a key tool. What emerges in the presentations is that there are features about the problem that must be taken into account in posing the objective function, and in choosing an optimization strategy. In particular there are certain structures peculiar to the problems that deserve special treatment, and there is ample opportunity for parallel computation. THIS IS BACK COVER TEXT Inverse problems and optimal design have come of age as a consequence of the availability of better, more accurate, and more efficient, simulation packages. The problem of determining the parameters of a physical system from
The theory of Vector Optimization is developed by a systematic usage of infimum and supremum. In order to get existence and appropriate properties of the infimum, the image space of the vector optimization problem is embedded into a larger space, which is a subset of the power set, in fact, the space of self-infimal sets. Based on this idea we establish solution concepts, existence and duality results and algorithms for the linear case. The main advantage of this approach is the high degree of analogy to corresponding results of Scalar Optimization. The concepts and results are used to explain and to improve practically relevant algorithms for linear vector optimization problems.
This book provides an introduction to four central problems in analytic number theory. These are (1) the problem of estimating the number of integerpoints in planar domains (2) the problem of the distribution of prime numbers in the sequence of all natural numbers and in arithmetic progressions (3) Goldbach's problem on sums of primes, and (4) Waring's problem on sums of k-th powers. To solve these problems, one uses the fundamental methods of analytic number theory: complex integration, I.M.Vinogradov's method of trigonometric sums, and the circle method of G.H.Hardy, J.E.Littlewood, and S.Ramanujan. There are numerous exercises at the end of each chapter. These exercises either refine the theorems proved in the text, or lead to new ideas in number theory. The author also includes a section of hints for the solution of the exercises. The mathematical prerequisites for this volume are undergraduate courses in number theroy, mathematical analysis, and complex variables. The book would be an excellent text for a one or two semester course in analytic number theory for advanced undergraduates or graduate students.
This book paints a fresco of the field of extrapolation and rational approximation over the last several centuries to the present through the works of their primary contributors. It can serve as an introduction to the topics covered, including extrapolation methods, Pade approximation, orthogonal polynomials, continued fractions, Lanczos-type methods etc.; it also provides in depth discussion of the many links between these subjects. A highlight of this book is the presentation of the human side of the fields discussed via personal testimonies from contemporary researchers, their anecdotes, and their exclusive remembrances of some of the "actors." This book shows how research in this domain started and evolved. Biographies of other scholars encountered have also been included. An important branch of mathematics is described in its historical context, opening the way to new developments. After a mathematical introduction, the book contains a precise description of the mathematical landscape of these fields spanning from the 19th century to the first part of the 20th. After an analysis of the works produced after that period (in particular those of Richardson, Aitken, Shanks, Wynn, and others), the most recent developments and applications are reviewed.
In this book the author sets out to answer two important questions: 1. Which numerical methods may be combined together? 2. How can different numerical methods be matched together? In doing so the author presents a number of useful combinations, for instance, the combination of various FEMs, the combinations of FEM-FDM, REM-FEM, RGM-FDM, etc. The combined methods have many advantages over single methods: high accuracy of solutions, less CPU time, less computer storage, easy coupling with singularities as well as the complicated boundary conditions. Since coupling techniques are essential to combinations, various matching strategies among different methods are carefully discussed. The author provides the matching rules so that optimal convergence, even superconvergence, and optimal stability can be achieved, and also warns of the matching pitfalls to avoid. Audience: The book is intended for both mathematicians and engineers and may be used as text for advanced students.
This edited volume offers a state of the art overview of fast and robust solvers for the Helmholtz equation. The book consists of three parts: new developments and analysis in Helmholtz solvers, practical methods and implementations of Helmholtz solvers, and industrial applications. The Helmholtz equation appears in a wide range of science and engineering disciplines in which wave propagation is modeled. Examples are: seismic inversion, ultrasone medical imaging, sonar detection of submarines, waves in harbours and many more. The partial differential equation looks simple but is hard to solve. In order to approximate the solution of the problem numerical methods are needed. First a discretization is done. Various methods can be used: (high order) Finite Difference Method, Finite Element Method, Discontinuous Galerkin Method and Boundary Element Method. The resulting linear system is large, where the size of the problem increases with increasing frequency. Due to higher frequencies the seismic images need to be more detailed and, therefore, lead to numerical problems of a larger scale. To solve these three dimensional problems fast and robust, iterative solvers are required. However for standard iterative methods the number of iterations to solve the system becomes too large. For these reason a number of new methods are developed to overcome this hurdle. The book is meant for researchers both from academia and industry and graduate students. A prerequisite is knowledge on partial differential equations and numerical linear algebra.
The book addresses the problem of calculation of d-dimensional integrals (conditional expectations) in filter problems. It develops new methods of deterministic numerical integration, which can be used to speed up and stabilize filter algorithms. With the help of these methods, better estimates and predictions of latent variables are made possible in the fields of economics, engineering and physics. The resulting procedures are tested within four detailed simulation studies.
This book focuses on mathematical theory and numerical simulation related to various aspects of continuum mechanics, such as fracture mechanics, elasticity, plasticity, pattern dynamics, inverse problems, optimal shape design, material design, and disaster estimation related to earthquakes. Because these problems have become more important in engineering and industry, further development of mathematical study of them is required for future applications. Leading researchers with profound knowledge of mathematical analysis from the fields of applied mathematics, physics, seismology, engineering, and industry provide the contents of this book. They help readers to understand that mathematical theory can be applied not only to different types of industry, but also to a broad range of industrial problems including materials, processes, and products.
The first part of this volume gathers the lecture notes of the courses of the "XVII Escuela Hispano-Francesa", held in Gijon, Spain, in June 2016. Each chapter is devoted to an advanced topic and presents state-of-the-art research in a didactic and self-contained way. Young researchers will find a complete guide to beginning advanced work in fields such as High Performance Computing, Numerical Linear Algebra, Optimal Control of Partial Differential Equations and Quantum Mechanics Simulation, while experts in these areas will find a comprehensive reference guide, including some previously unpublished results, and teachers may find these chapters useful as textbooks in graduate courses. The second part features the extended abstracts of selected research work presented by the students during the School. It highlights new results and applications in Computational Algebra, Fluid Mechanics, Chemical Kinetics and Biomedicine, among others, offering interested researchers a convenient reference guide to these latest advances.
This book presents new optimization approaches and methods and their application in real-world and industrial problems. Numerous processes and problems in real life and industry can be represented as optimization problems, including modeling physical processes, wildfire, natural hazards and metal nanostructures, workforce planning, wireless network topology, parameter settings for controlling different processes, extracting elements from video clips, and management of cloud computing environments. This book shows how to develop algorithms for these problems, based on new intelligent methods like evolutionary computations, ant colony optimization and constraint programming, and demonstrates how real-world problems arising in engineering, economics and other domains can be formulated as optimization problems. The book is useful for researchers and practitioners alike.
This book highlights latest advancement in Mathematics, Physics and Chemistry. With the theme of "Innovative Science towards Sustainability and Industrial Revolution 4.0", ICFAS 2020 brings together leading experts, scientific communities and industrialists working in the field of applied sciences and mathematics from all over the world to share the most recent developments and cutting-edge discoveries addressing sustainability and industrial revolution 4.0 in the field. The conference topics include green materials, molecular modelling, catalysis, nanodevices and nanosystems, smart materials applications, solar cells technology, computational mathematics, data analysis and visualization, and numerical analysis. The contents of this book are useful for researchers, students, and industrial practitioners in the areas of Mathematics, Physics and Chemistry as most of the topics are in line with IR 4.0. |
![]() ![]() You may like...
C++ How to Program: Horizon Edition
Harvey Deitel, Paul Deitel
Paperback
R1,917
Discovery Miles 19 170
Principled Software Development - Essays…
Peter Muller, Ina Schaefer
Hardcover
R2,915
Discovery Miles 29 150
Introduction to Programming with Fortran
Ian Chivers, Jane Sleightholme
Hardcover
R3,982
Discovery Miles 39 820
New Data Structures and Algorithms for…
Luca Gaetano Amaru
Hardcover
The Garbage Collection Handbook - The…
Richard Jones, Antony Hosking, …
Hardcover
R1,946
Discovery Miles 19 460
A Practical Introduction to Fuzzy Logic…
Luis Arguelles Mendez
Hardcover
Fundamentals of Algebraic Graph…
Hartmut Ehrig, Karsten Ehrig, …
Hardcover
R3,428
Discovery Miles 34 280
|