![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Numerical analysis
Scienti?c Computing in Electrical Engineering (SCEE) is an international c- ference series, which started as a national German meeting held in Darmstadt (1997) and Berlin (1998), both under the auspices of the Deutscher Mathematiker Verein. The ?rst truly international SCEE conference was organized in 2000 in Warnemunde, .. Germany, by the University of Rostock. In 2002, the 4th SCEE c- ference took place in Eindhoven, The Netherlands, jointly organized by the Ei- hoven University of Technologyand Philips Research LaboratoriesEindhoven.The 5th SCEE conference was held in 2004 in Capo D'Orlando, Italy, jointly organized by Universita di Catania and Consorzio Catania Ricerche. The venue of the 6th SCEE conference was Sinaia, Romania, in 2006, organized by the Politehnica U- versity of Bucharest. The 7th International Conference on Scienti?c Computing in Electrical En- neering (SCEE 2008) was held in Espoo, Finland, from September 28 to October 3, 2008. It was organized by the Helsinki University of Technology; Faculty of Electronics, Communications and Automation; Department of Radio Science and Engineering; Circuit Theory Group. (Details on the SCEE 2008 conference are at http://radio.tkk.fi/en/conferences/scee2008/).
This book is the first monograph providing an introduction to and an overview of numerical methods for the simulation of two-phase incompressible flows. The Navier-Stokes equations describing the fluid dynamics are examined in combination with models for mass and surfactant transport. The book pursues a comprehensive approach: important modeling issues are treated, appropriate weak formulations are derived, level set and finite element discretization techniques are analyzed, efficient iterative solvers are investigated, implementational aspects are considered and the results of numerical experiments are presented. The book is aimed at M Sc and PhD students and other researchers in the fields of Numerical Analysis and Computational Engineering Science interested in the numerical treatment of two-phase incompressible flows.
This unique book describes, analyses, and improves various approaches and techniques for the numerical solution of delay differential equations. It includes a list of available codes and also aids the reader in writing his or her own.
This volume of LNCSE is a collection of the papers from the proceedings of the third workshop on sparse grids and applications. Sparse grids are a popular approach for the numerical treatment of high-dimensional problems. Where classical numerical discretization schemes fail in more than three or four dimensions, sparse grids, in their different guises, are frequently the method of choice, be it spatially adaptive in the hierarchical basis or via the dimensionally adaptive combination technique. Demonstrating once again the importance of this numerical discretization scheme, the selected articles present recent advances on the numerical analysis of sparse grids as well as efficient data structures. The book also discusses a range of applications, including uncertainty quantification and plasma physics.
This book reports on solved problems concerning vibrations and stability of complex beam systems. The complexity of a system is considered from two points of view: the complexity originating from the nature of the structure, in the case of two or more elastically connected beams; and the complexity derived from the dynamic behavior of the system, in the case of a damaged single beam, resulting from the harm done to its simple structure. Furthermore, the book describes the analytical derivation of equations of two or more elastically connected beams, using four different theories (Euler, Rayleigh, Timoshenko and Reddy-Bickford). It also reports on a new, improved p-version of the finite element method for geometrically nonlinear vibrations. The new method provides more accurate approximations of solutions, while also allowing us to analyze geometrically nonlinear vibrations. The book describes the appearance of longitudinal vibrations of damaged clamped-clamped beams as a result of discontinuity (damage). It describes the cases of stability in detail, employing all four theories, and provides the readers with practical examples of stochastic stability. Overall, the book succeeds in collecting in one place theoretical analyses, mathematical modeling and validation approaches based on various methods, thus providing the readers with a comprehensive toolkit for performing vibration analysis on complex beam systems.
Aimed at the community of mathematicians working on ordinary and partial differential equations, difference equations, and functional equations, this book contains selected papers based on the presentations at the International Conference on Differential & Difference Equations and Applications (ICDDEA) 2015, dedicated to the memory of Professor Georg Sell. Contributions include new trends in the field of differential and difference equations, applications of differential and difference equations, as well as high-level survey results. The main aim of this recurring conference series is to promote, encourage, cooperate, and bring together researchers in the fields of differential & difference equations. All areas of differential and difference equations are represented, with special emphasis on applications.
These are the proceedings of the 20th international conference on domain decomposition methods in science and engineering. Domain decomposition methods are iterative methods for solving the often very large linearor nonlinear systems of algebraic equations that arise when various problems in continuum mechanics are discretized using finite elements. They are designed for massively parallel computers and take the memory hierarchy of such systems in mind. This is essential for approaching peak floating point performance. There is an increasingly well developed theory whichis having a direct impact on the development and improvements of these algorithms.
This book features a selection of articles based on the XXXIV Bialowieza Workshop on Geometric Methods in Physics, 2015. The articles presented are mathematically rigorous, include important physical implications and address the application of geometry in classical and quantum physics. Special attention deserves the session devoted to discussions of Gerard Emch's most important and lasting achievements in mathematical physics. The Bialowieza workshops are among the most important meetings in the field and gather participants from mathematics and physics alike. Despite their long tradition, the Workshops remain at the cutting edge of ongoing research. For the past several years, the Bialowieza Workshop has been followed by a School on Geometry and Physics, where advanced lectures for graduate students and young researchers are presented. The unique atmosphere of the Workshop and School is enhanced by the venue, framed by the natural beauty of the Bialowieza forest in eastern Poland.
The editors and authors dedicate this book to Bernhard Korte on the occasion of his seventieth birthday. We, the editors, are happy about the overwhelming feedback to our initiative to honor him with this book and with a workshop in Bonn on November 3-7,2008.Althoughthiswouldbeareasontolookback,wewouldratherliketolook forward and see what are the interesting research directions today. This book is written by leading experts in combinatorial optimization. All - pers were carefully reviewed, and eventually twenty-three of the invited papers were accepted for this book. The breadth of topics is typical for the eld: combinatorial optimization builds bridges between areas like combinatorics and graph theory, submodular functions and matroids, network ows and connectivity, approximation algorithms and mat- matical programming, computational geometry and polyhedral combinatorics. All these topics are related, and they are all addressed in this book. Combi- torial optimization is also known for its numerous applications. To limit the scope, however, this book is not primarily about applications, although some are mentioned at various places. Most papers in this volume are surveys that provide an excellent overview of an activeresearcharea,butthisbookalsocontainsmanynewresults.Highlightingmany of the currently most interesting research directions in combinatorial optimization, we hope that this book constitutes a good basis for future research in these areas.
This book helps advanced undergraduate, graduate and postdoctoral students in their daily work by offering them a compendium of numerical methods. The choice of methods pays significant attention to error estimates, stability and convergence issues as well as to the ways to optimize program execution speeds. Many examples are given throughout the chapters, and each chapter is followed by at least a handful of more comprehensive problems which may be dealt with, for example, on a weekly basis in a one- or two-semester course. In these end-of-chapter problems the physics background is pronounced, and the main text preceding them is intended as an introduction or as a later reference. Less stress is given to the explanation of individual algorithms. It is tried to induce in the reader an own independent thinking and a certain amount of scepticism and scrutiny instead of blindly following readily available commercial tools.
This book investigates the stability and vibrations of conductive, perfectly conductive and superconductive thin bodies in electromagnetic fields. It introduces the main principles and derives basic equations and relations describing interconnected mechanical and electromagnetic processes in deformable electro conductive bodies placed in an external inhomogeneous magnetic field and under the influence of various types of force interactions. Basic equations and relations are addressed in the nonlinear formulation and special emphasis is placed on the mechanical interactions of superconducting thin-body plates with magnetic fields.
One of the current main challenges in the area of scientific computing is the design and implementation of accurate numerical models for complex physical systems which are described by time dependent coupled systems of nonlinear PDEs. This volume integrates the works of experts in computational mathematics and its applications, with a focus on modern algorithms which are at the heart of accurate modeling: adaptive finite element methods, conservative finite difference methods and finite volume methods, and multilevel solution techniques. Fundamental theoretical results are revisited in survey articles and new techniques in numerical analysis are introduced. Applications showcasing the efficiency, reliability and robustness of the algorithms in porous media, structural mechanics and electromagnetism are presented. Researchers and graduate students in numerical analysis and numerical solutions of PDEs and their scientific computing applications will find this book useful.
This is the second, completely revised and expanded edition of the author's first book, covering numerous new topics and recent developments in ultrametric summability theory. Ultrametric analysis has emerged as an important branch of mathematics in recent years. This book presents a brief survey of the research to date in ultrametric summability theory, which is a fusion of a classical branch of mathematics (summability theory) with a modern branch of analysis (ultrametric analysis). Several mathematicians have contributed to summability theory as well as functional analysis. The book will appeal to both young researchers and more experienced mathematicians who are looking to explore new areas in analysis. The book is also useful as a text for those who wish to specialize in ultrametric summability theory.
Real Analysis is a discipline of intensive study in many institutions of higher education, because it contains useful concepts and fundamental results in the study of mathematics and physics, of the technical disciplines and geometry. This book is the first one of its kind that solves mathematical analysis problems with all four related main software Matlab, Mathcad, Mathematica and Maple. Besides the fundamental theoretical notions, the book contains many exercises, solved both mathematically and by computer, using: Matlab 7.9, Mathcad 14, Mathematica 8 or Maple 15 programming languages. The book is divided into nine chapters, which illustrate the application of the mathematical concepts using the computer. Each chapter presents the fundamental concepts and the elements required to solve the problems contained in that chapter and finishes with some problems left to be solved by the readers. The calculations can be verified by using a specific software such as Matlab, Mathcad, Mathematica or Maple.
This book focuses on recent research in modern optimization and its implications in control and data analysis. This book is a collection of papers from the conference "Optimization and Its Applications in Control and Data Science" dedicated to Professor Boris T. Polyak, which was held in Moscow, Russia on May 13-15, 2015. This book reflects developments in theory and applications rooted by Professor Polyak's fundamental contributions to constrained and unconstrained optimization, differentiable and nonsmooth functions, control theory and approximation. Each paper focuses on techniques for solving complex optimization problems in different application areas and recent developments in optimization theory and methods. Open problems in optimization, game theory and control theory are included in this collection which will interest engineers and researchers working with efficient algorithms and software for solving optimization problems in market and data analysis. Theoreticians in operations research, applied mathematics, algorithm design, artificial intelligence, machine learning, and software engineering will find this book useful and graduate students will find the state-of-the-art research valuable.
The focus of these conference proceedings is on research, development, and applications in the fields of numerical geometry, scientific computing and numerical simulation, particularly in mesh generation and related problems. In addition, this year's special focus is on Voronoi diagrams and their applications, celebrating the 150th birthday of G.F. Voronoi. In terms of content, the book strikes a balance between engineering algorithms and mathematical foundations. It presents an overview of recent advances in numerical geometry, grid generation and adaptation in terms of mathematical foundations, algorithm and software development and applications. The specific topics covered include: quasi-conformal and quasi-isometric mappings, hyperelastic deformations, multidimensional generalisations of the equidistribution principle, discrete differential geometry, spatial and metric encodings, Voronoi-Delaunay theory for tilings and partitions, duality in mathematical programming and numerical geometry, mesh-based optimisation and optimal control methods. Further aspects examined include iterative solvers for variational problems and algorithm and software development. The applications of the methods discussed are multidisciplinary and include problems from mathematics, physics, biology, chemistry, material science, and engineering.
This edited volume highlights the scientific contributions of Volker Mehrmann, a leading expert in the area of numerical (linear) algebra, matrix theory, differential-algebraic equations and control theory. These mathematical research areas are strongly related and often occur in the same real-world applications. The main areas where such applications emerge are computational engineering and sciences, but increasingly also social sciences and economics. This book also reflects some of Volker Mehrmann's major career stages. Starting out working in the areas of numerical linear algebra (his first full professorship at TU Chemnitz was in "Numerical Algebra," hence the title of the book) and matrix theory, Volker Mehrmann has made significant contributions to these areas ever since. The highlights of these are discussed in Parts I and II of the present book. Often the development of new algorithms in numerical linear algebra is motivated by problems in system and control theory. These and his later major work on differential-algebraic equations, to which he together with Peter Kunkel made many groundbreaking contributions, are the topic of the chapters in Part III. Besides providing a scientific discussion of Volker Mehrmann's work and its impact on the development of several areas of applied mathematics, the individual chapters stand on their own as reference works for selected topics in the fields of numerical (linear) algebra, matrix theory, differential-algebraic equations and control theory.
Scientists and engineers are mainly using Richardson extrapolation as a computational tool for increasing the accuracy of various numerical algorithms for the treatment of systems of ordinary and partial differential equations and for improving the computational efficiency of the solution process by the automatic variation of the time-stepsizes. A third issue, the stability of the computations, is very often the most important one and, therefore, it is the major topic studied in all chapters of this book. Clear explanations and many examples make this text an easy-to-follow handbook for applied mathematicians, physicists and engineers working with scientific models based on differential equations. Contents The basic properties of Richardson extrapolation Richardson extrapolation for explicit Runge-Kutta methods Linear multistep and predictor-corrector methods Richardson extrapolation for some implicit methods Richardson extrapolation for splitting techniques Richardson extrapolation for advection problems Richardson extrapolation for some other problems General conclusions
The aim of this monograph is to present a self-contained introduction to some geometric and analytic aspects of the Yamabe problem. The book also describes a wide range of methods and techniques that can be successfully applied to nonlinear differential equations in particularly challenging situations. Such situations occur where the lack of compactness, symmetry and homogeneity prevents the use of more standard tools typically used in compact situations or for the Euclidean setting. The work is written in an easy style that makes it accessible even to non-specialists. After a self-contained treatment of the geometric tools used in the book, readers are introduced to the main subject by means of a concise but clear study of some aspects of the Yamabe problem on compact manifolds. This study provides the motivation and geometrical feeling for the subsequent part of the work. In the main body of the book, it is shown how the geometry and the analysis of nonlinear partial differential equations blend together to give up-to-date results on existence, nonexistence, uniqueness and a priori estimates for solutions of general Yamabe-type equations and inequalities on complete, non-compact Riemannian manifolds.
"Intelligent Routines II: Solving Linear Algebra and Differential Geometry with Sage" contains numerous of examples and problems as well as many unsolved problems. This book extensively applies the successful software Sage, which can be found free online http: //www.sagemath.org/. Sage is a recent and popular software for mathematical computation, available freely and simple to use. This book is useful to all applied scientists in mathematics, statistics and engineering, as well for late undergraduate and graduate students of above subjects. It is the first such book in solving symbolically with Sage problems in Linear Algebra and Differential Geometry. Plenty of SAGE applications are given at each step of the exposition.
In this book, Denis Serre begins by providing a clean and concise introduction to the basic theory of matrices. He then goes on to give many interesting applications of matrices to different aspects of mathematics and also other areas of science and engineering. With forty percent new material, this second edition is significantly different from the first edition. Newly added topics include: * Dunford decomposition, * tensor and exterior calculus, polynomial identities, * regularity of eigenvalues for complex matrices, * functional calculus and the Dunford-Taylor formula, * numerical range, * Weyl's and von Neumann's inequalities, and * Jacobi method with random choice. The book mixes together algebra, analysis, complexity theory and numerical analysis. As such, this book will provide many scientists, not just mathematicians, with a useful and reliable reference. It is intended for advanced undergraduate and graduate students with either applied or theoretical goals. This book is based on a course given by the author at the Ecole Normale Superieure de Lyon.
The central object of this book is the measure of geometric quantities describing N a subset of the Euclidean space (E ,), endowed with its standard scalar product. Let us state precisely what we mean by a geometric quantity. Consider a subset N S of points of the N-dimensional Euclidean space E , endowed with its standard N scalar product. LetG be the group of rigid motions of E . We say that a 0 quantity Q(S) associated toS is geometric with respect toG if the corresponding 0 quantity Q[g(S)] associated to g(S) equals Q(S), for all g?G . For instance, the 0 diameter ofS and the area of the convex hull ofS are quantities geometric with respect toG . But the distance from the origin O to the closest point ofS is not, 0 since it is not invariant under translations ofS. It is important to point out that the property of being geometric depends on the chosen group. For instance, ifG is the 1 N group of projective transformations of E , then the property ofS being a circle is geometric forG but not forG , while the property of being a conic or a straight 0 1 line is geometric for bothG andG . This point of view may be generalized to any 0 1 subsetS of any vector space E endowed with a groupG acting on it.
This work gathers a selection of outstanding papers presented at the 25th Conference on Differential Equations and Applications / 15th Conference on Applied Mathematics, held in Cartagena, Spain, in June 2017. It supports further research into both ordinary and partial differential equations, numerical analysis, dynamical systems, control and optimization, trending topics in numerical linear algebra, and the applications of mathematics to industry. The book includes 14 peer-reviewed contributions and mainly addresses researchers interested in the applications of mathematics, especially in science and engineering. It will also greatly benefit PhD students in applied mathematics, engineering and physics.
Any researchers in the field of meshless methods who want to keep up to date with the latest work in the field will find this an essential text.In recent years meshless/meshfree methods have gained considerable attention in engineering and applied mathematics.The variety of problems that are now being addressed by these techniques continues to expand and the quality of the results obtained demonstrates the effectiveness of many of the methods currently available.This means that engineers in general, applied mathematicians, physicists, and those active in computational mechanics will all find this book a useful reference tool as well. The book collects extended original contributions presented at the first ECCOMAS Conference on Meshless Methods held in 2005 in Lisbon. |
You may like...
Oracle Database 11g Release 2 High…
Scott Jesse, Bill Burton, …
Paperback
Oracle Solaris and Veritas Cluster : An…
Vijay Shankar Upreti
Paperback
R1,894
Discovery Miles 18 940
Expert Oracle Indexing and Access Paths…
Darl Kuhn, Sam R. Alapati, …
Paperback
R2,853
Discovery Miles 28 530
Promethean Oracle
Sophia Shultz, Mark Cogan
Miscellaneous printed matter
|