![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Numerical analysis
The aim of this book is to extend the application field of 'anomalous diffusion', and describe the newly built models and the simulation techniques to the models.The book first introduces 'anomalous diffusion' from the statistical physics point of view, then discusses the models characterizing anomalous diffusion and its applications, including the Fokker-Planck equation, the Feymann-Kac equations describing the functional distribution of the anomalous trajectories of the particles, and also the microscopic model - Langevin type equation. The second main part focuses on providing the high accuracy schemes for these kinds of models, and the corresponding convergence and stability analysis.
Numerical methods that preserve properties of Hamiltonian systems, reversible systems, differential equations on manifolds and problems with highly oscillatory solutions are the subject of this book. A complete self-contained theory of symplectic and symmetric methods, which include Runge-Kutta, composition, splitting, multistep and various specially designed integrators, is presented and their construction and practical merits are discussed. The long-time behaviour of the numerical solutions is studied using a backward error analysis (modified equations) combined with KAM theory. The book is illustrated by many figures, it treats applications from physics and astronomy and contains many numerical experiments and comparisons of different approaches. The second edition is substantially revised and enlarged, with many improvements in the presentation and additions concerning in particular non-canonical Hamiltonian systems, highly oscillatory mechanical systems, and the dynamics of multistep methods.
Presents easy to understand proofs of some of the most difficult results about polynomials demonstrated by means of applications.
The credit crisis that started in 2007, with the collapse of well-established financial institutions and the bankruptcy of many public corporations, has clearly shown the importance for any company entering the derivative business of modelling, pricing, and hedging its counterparty credit exposure. Building an accurate representation of firm-wide credit exposure, for both risk and trading activities, is a significant challenge from the technical as well as the practical point of view. This volume can be considered as a roadmap to finding practical solutions to the problem of computing counterparty credit exposure for large books of both vanilla and exotic derivatives usually traded by large Investment Banks. It is divided into four parts, (I) Methodology, (II) Architecture and Implementation, (III) Products, and (IV) Hedging and Managing Counterparty Risk. Starting from a generic modelling and simulation framework based on American Monte Carlo techniques, it presents a software architecture, which, with its modular design, allows the computation of credit exposure in a portfolio-aggregated and scenario-consistent way. An essential part of the design is the definition of a programming language, which allows trade representation based on dynamic modelling features. Several chapters are then devoted to the analysis of credit exposure of various products across all asset classes, namely foreign exchange, interest rate, credit derivatives, and equity. Finally it considers how to mitigate and hedge counterparty exposure. The crucial question of dynamic hedging is addressed by constructing a hybrid product, the Contingent-Credit Default Swap.This volume addresses these and other problems, as well as recent developments related to counterparty credit exposure, from a quantitative perspective. Its unique characteristic is the combination of a rigorous but simple mathematical approach with a practical view of the financial problem at hand.
This textbook introduces advanced undergraduate and early-career graduate students to the field of numerical analysis. This field pertains to the design, analysis, and implementation of algorithms for the approximate solution of mathematical problems that arise in applications spanning science and engineering, and are not practical to solve using analytical techniques such as those taught in courses in calculus, linear algebra or differential equations. Topics covered include error analysis, computer arithmetic, solution of systems of linear equations, least squares problems, eigenvalue problems, polynomial interpolation and approximation, numerical differentiation and integration, nonlinear equations, optimization, ordinary differential equations, and partial differential equations. For each problem considered, the presentation includes the derivation of solution techniques, analysis of their efficiency, accuracy and robustness, and details of their implementation, illustrated through the MATLAB programming language. This text is suitable for a year-long sequence in numerical analysis, and can also be used for a one-semester course in numerical linear algebra.
This book paints a fresco of the field of extrapolation and rational approximation over the last several centuries to the present through the works of their primary contributors. It can serve as an introduction to the topics covered, including extrapolation methods, Pade approximation, orthogonal polynomials, continued fractions, Lanczos-type methods etc.; it also provides in depth discussion of the many links between these subjects. A highlight of this book is the presentation of the human side of the fields discussed via personal testimonies from contemporary researchers, their anecdotes, and their exclusive remembrances of some of the "actors." This book shows how research in this domain started and evolved. Biographies of other scholars encountered have also been included. An important branch of mathematics is described in its historical context, opening the way to new developments. After a mathematical introduction, the book contains a precise description of the mathematical landscape of these fields spanning from the 19th century to the first part of the 20th. After an analysis of the works produced after that period (in particular those of Richardson, Aitken, Shanks, Wynn, and others), the most recent developments and applications are reviewed.
Numerical Weather Prediction (NWP) is the current state-of-art methodology to provide weather prediction at different spatial and time scales to serve user community. The NWP uses a modeling system built up adopting the mathematical equations governing atmospheric motion, incorporating the physical processes through parameterization methods, solved applying numerical methods and carrying out large number-crunching calculations on high speed computers. The NWP products have their application in agriculture, aviation, transport, tourism, sports, industry, health, energy and many other social sectors. Several decision support systems of disaster management and risk assessment are dependent on meteorological information from NWP products. The purpose of this book is to present the basics of NWP in lucid form to those who seek an overview of the science of modern weather prediction. Print edition not for sale in South Asia (India, Sri Lanka, Nepal, Bangladesh, Pakistan or Bhutan).
This monograph discusses modeling, adaptive discretisation techniques and the numerical solution of fluid structure interaction. An emphasis in part I lies on innovative discretisation and advanced interface resolution techniques. The second part covers the efficient and robust numerical solution of fluid-structure interaction. In part III, recent advances in the application fields vascular flows, binary-fluid-solid interaction, and coupling to fractures in the solid part are presented. Moreover each chapter provides a comprehensive overview in the respective topics including many references to concurring state-of-the art work. Contents Part I: Modeling and discretization On the implementation and benchmarking of an extended ALE method for FSI problems The locally adapted parametric finite element method for interface problems on triangular meshes An accurate Eulerian approach for fluid-structure interactions Part II: Solvers Numerical methods for unsteady thermal fluid structure interaction Recent development of robust monolithic fluid-structure interaction solvers A monolithic FSI solver applied to the FSI 1,2,3 benchmarks Part III: Applications Fluid-structure interaction for vascular flows: From supercomputers to laptops Binary-fluid-solid interaction based on the Navier-Stokes-Cahn-Hilliard Equations Coupling fluid-structure interaction with phase-field fracture: Algorithmic details
This reference provides an up to date and sound theoretical foundation for finite element methods in computational electromagnetism. The emphasis is on finite element methods for scattering problems that involve the solution of Maxwell's equations on infinite domains, and special attention is given to error analysis of edge FEM that are particularly well suited to Maxwell's equations .
This monograph explores the application of the potential method to three-dimensional problems of the mathematical theories of elasticity and thermoelasticity for multi-porosity materials. These models offer several new possibilities for the study of important problems in engineering and mechanics involving multi-porosity materials, including geological materials (e.g., oil, gas, and geothermal reservoirs); manufactured porous materials (e.g., ceramics and pressed powders); and biomaterials (e.g., bone and the human brain). Proceeding from basic to more advanced material, the first part of the book begins with fundamental solutions in elasticity, followed by Galerkin-type solutions and Green's formulae in elasticity and problems of steady vibrations, quasi-static, and pseudo-oscillations for multi-porosity materials. The next part follows a similar format for thermoelasticity, concluding with a chapter on problems of heat conduction for rigid bodies. The final chapter then presents a number of open research problems to which the results presented here can be applied. All results discussed by the author have not been published previously and offer new insights into these models. Potential Method in Mathematical Theories of Multi-Porosity Media will be a valuable resource for applied mathematicians, mechanical, civil, and aerospace engineers, and researchers studying continuum mechanics. Readers should be knowledgeable in classical theories of elasticity and thermoelasticity.
This book provides a systematic introduction to the fundamental concepts, major challenges, and effective solutions for Quality of Service in Wireless Sensor Networks (WSNs). Unlike other books on the topic, it focuses on the networking aspects of WSNs, discussing the most important networking issues, including network architecture design, medium access control, routing and data dissemination, node clustering, node localization, query processing, data aggregation, transport and quality of service, time synchronization, and network security. Featuring contributions from researchers, this book strikes a balance between fundamental concepts and new technologies, providing readers with unprecedented insights into WSNs from a networking perspective. It is essential reading for a broad audience, including academics, research engineers, and practitioners, particularly postgraduate/postdoctoral researchers and engineers in industry. It is also suitable as a textbook or supplementary reading for graduate computer engineering and computer science courses.
This book disseminates the latest results and envisages new challenges in the application of mathematics to various practical situations in biology, epidemiology, and ecology. It comprises a collection of the main results presented at the Ninth Edition of the International Workshop "Dynamical Systems Applied to Biology and Natural Sciences - DSABNS", held from 7 to 9 February 2018 at the Department of Mathematics, University of Turin, Italy. While the principal focus is ecology and epidemiology, the coverage extends even to waste recycling and a genetic application. The topics covered in the 12 peer-reviewed contributions involve such diverse mathematical tools as ordinary and partial differential equations, delay equations, stochastic equations, control, and sensitivity analysis. The book is intended to help both in disseminating the latest results and in envisaging new challenges in the application of mathematics to various practical situations in biology, epidemiology, and ecology.
Classical harmonic analysis is an important part of modern physics and mathematics, comparable in its significance with calculus. Created in the 18th and 19th centuries as a distinct mathematical discipline it continued to develop, conquering new unexpected areas and producing impressive applications to a multitude of problems. It is widely understood that the explanation of this miraculous power stems from group theoretic ideas underlying practically everything in harmonic analysis. This book is an unusual combination of the general and abstract group theoretic approach with a wealth of very concrete topics attractive to everybody interested in mathematics. Mathematical literature on harmonic analysis abounds in books of more or less abstract or concrete kind, but the lucky combination as in this volume can hardly be found.
Nowadays there is an increasing emphasis on all aspects of adaptively gener ating a grid that evolves with the solution of a PDE. Another challenge is to develop efficient higher-order one-step integration methods which can handle very stiff equations and which allow us to accommodate a spatial grid in each time step without any specific difficulties. In this monograph a combination of both error-controlled grid refinement and one-step methods of Rosenbrock-type is presented. It is my intention to impart the beauty and complexity found in the theoretical investigation of the adaptive algorithm proposed here, in its realization and in solving non-trivial complex problems. I hope that this method will find many more interesting applications. Berlin-Dahlem, May 2000 Jens Lang Acknowledgements I have looked forward to writing this section since it is a pleasure for me to thank all friends who made this work possible and provided valuable input. I would like to express my gratitude to Peter Deuflhard for giving me the oppor tunity to work in the field of Scientific Computing. I have benefited immensly from his help to get the right perspectives, and from his continuous encourage ment and support over several years. He certainly will forgive me the use of Rosenbrock methods rather than extrapolation methods to integrate in time.
This book provides theories on non-parametric shape optimization problems, systematically keeping in mind readers with an engineering background. Non-parametric shape optimization problems are defined as problems of finding the shapes of domains in which boundary value problems of partial differential equations are defined. In these problems, optimum shapes are obtained from an arbitrary form without any geometrical parameters previously assigned. In particular, problems in which the optimum shape is sought by making a hole in domain are called topology optimization problems. Moreover, a problem in which the optimum shape is obtained based on domain variation is referred to as a shape optimization problem of domain variation type, or a shape optimization problem in a limited sense. Software has been developed to solve these problems, and it is being used to seek practical optimum shapes. However, there are no books explaining such theories beginning with their foundations. The structure of the book is shown in the Preface. The theorems are built up using mathematical results. Therefore, a mathematical style is introduced, consisting of definitions and theorems to summarize the key points. This method of expression is advanced as provable facts are clearly shown. If something to be investigated is contained in the framework of mathematics, setting up a theory using theorems prepared by great mathematicians is thought to be an extremely effective approach. However, mathematics attempts to heighten the level of abstraction in order to understand many things in a unified fashion. This characteristic may baffle readers with an engineering background. Hence in this book, an attempt has been made to provide explanations in engineering terms, with examples from mechanics, after accurately denoting the provable facts using definitions and theorems.
The Finite Element Method in Engineering, Sixth Edition, provides a thorough grounding in the mathematical principles behind the Finite Element Analysis technique-an analytical engineering tool originated in the 1960's by the aerospace and nuclear power industries to find usable, approximate solutions to problems with many complex variables. Rao shows how to set up finite element solutions in civil, mechanical and aerospace engineering applications. The new edition features updated real-world examples from MATLAB, Ansys and Abaqus, and a new chapter on additional FEM topics including extended FEM (X-FEM). Professional engineers will benefit from the introduction to the many useful applications of finite element analysis.
The Whole Truth About Whole Numbers is an introduction to the field of Number Theory for students in non-math and non-science majors who have studied at least two years of high school algebra. Rather than giving brief introductions to a wide variety of topics, this book provides an in-depth introduction to the field of Number Theory. The topics covered are many of those included in an introductory Number Theory course for mathematics majors, but the presentation is carefully tailored to meet the needs of elementary education, liberal arts, and other non-mathematical majors. The text covers logic and proofs, as well as major concepts in Number Theory, and contains an abundance of worked examples and exercises to both clearly illustrate concepts and evaluate the students' mastery of the material.
In the past few years, knowledge about methods for the numerical solution of two-point boundary value problems has increased significantly. Important theoretical and practical advances have been made in a number or fronts, although they are not adequately described in any tt'xt currently available. With this in mind, we organized an international workshop, devoted solely to this topic. Tht' workshop took place in Vancouver, B.C., Canada, in July 1()"13, 1984. This volume contains the refereed proceedings of the workshop. Contributions to the workshop were in two formats. There were a small number of invited talks (ten of which are presented in this proceedings); the other contributions were in the rorm or poster sessions, for which there was no parallel activity in the workshop. We had attemptt'd to cover a number of topics and objectives in the talks. As a result, the general review papt'rs of O'Malley and Russell are intended to take a broader perspective, while the other papers are more specific. The contributions in this volume are divided (somewhat arbitrarily) into five groups. The first group concerns fundamental issues like conditioning and decoupling, which have only rect'ntly gained a proper appreciation of their centrality. Understanding of certain aspects or shooting methods ties in with these fundamental concepts. The papers of Russell, dt' Hoog and Mattheij all deal with these issues.
This book, written by the foremost international researchers and practitioners of genetic programming (GP), explores the synergy between theoretical and empirical results on real-world problems, producing a comprehensive view of the state of the art in GP. In this year's edition, the topics covered include many of the most important issues and research questions in the field, such as opportune application domains for GP-based methods, game playing and co-evolutionary search, symbolic regression and efficient learning strategies, encodings and representations for GP, schema theorems, and new selection mechanisms. The book includes several chapters on best practices and lessons learned from hands-on experience. Readers will discover large-scale, real-world applications of GP to a variety of problem domains via in-depth presentations of the latest and most significant results.
This book develops the concepts of various unique optimization techniques in the crisp and fuzzy environment. It provides an extensive overview of geometric programming methods within a unifying framework, and presents an in-depth discussion of the modified geometric programming problem, fuzzy geometric programming, as well as new insights into goal geometric programming. With numerous examples and exercises together with detailed solutions for several problems, the book also addresses fuzzy multi-objective geometric programming techniques. Geometric programming, which falls into the general class of signomial problems, has applications across disciplines, from engineering to economics, and is extremely useful in applications of a variety of optimization problems. Organized into thirteen chapters, this book is a valuable resource for graduate and advanced undergraduate students and researchers in applied mathematics and engineering.
This self-contained textbook discusses all major topics in functional analysis. Combining classical materials with new methods, it supplies numerous relevant solved examples and problems and discusses the applications of functional analysis in diverse fields. The book is unique in its scope, and a variety of applications of functional analysis and operator-theoretic methods are devoted to each area of application. Each chapter includes a set of problems, some of which are routine and elementary, and some of which are more advanced. The book is primarily intended as a textbook for graduate and advanced undergraduate students in applied mathematics and engineering. It offers several attractive features making it ideally suited for courses on functional analysis intended to provide a basic introduction to the subject and the impact of functional analysis on applied and computational mathematics, nonlinear functional analysis and optimization. It introduces emerging topics like wavelets, Gabor system, inverse problems and application to signal and image processing.
Algorithms and Programming is primarily intended for use in a first-year undergraduate course in programming. It is structured in a problem-solution format that requires the student to think through the programming process, thus developing an understanding of the underlying theory. The book is easily readable by a student taking a basic introductory course in computer science as well as useful for a graduate-level course in the analysis of algorithms and/or compiler construction. Each self-contained chapter presents classical and well-known problems supplemented by clear and in-depth explanations. The material covered includes such topics as combinatorics, sorting, searching, queues, grammar and parsing, selected well-known algorithms and much more. Students and teachers will find this both an excellent text for learning programming and a source of problems for a variety of courses.
This contributed volume honors the 80th birthday of Frank Stenger who established new Sinc methods in numerical analysis.The contributions, written independently from each other, show the new developments in numerical analysis in connection with Sinc methods and approximations of solutions for differential equations, boundary value problems, integral equations, integrals, linear transforms, eigenvalue problems, polynomial approximations, computations on polyhedra, and many applications. The approximation methods are exponentially converging compared with standard methods and save resources in computation. They are applicable in many fields of science including mathematics, physics, and engineering.The ideas discussed serve as a starting point in many different directions in numerical analysis research and applications which will lead to new and unprecedented results. This book will appeal to a wide readership, from students to specialized experts.
This book focuses on the theoretical aspects of small strain theory of elastoplasticity with hardening assumptions. It provides a comprehensive and unified treatment of the mathematical theory and numerical analysis. It is divided into three parts, with the first part providing a detailed introduction to plasticity, the second part covering the mathematical analysis of the elasticity problem, and the third part devoted to error analysis of various semi-discrete and fully discrete approximations for variational formulations of the elastoplasticity. This revised and expanded edition includes material on single-crystal and strain-gradient plasticity. In addition, the entire book has been revised to make it more accessible to readers who are actively involved in computations but less so in numerical analysis. Reviews of earlier edition: "The authors have written an excellent book which can be recommended for specialists in plasticity who wish to know more about the mathematical theory, as well as those with a background in the mathematical sciences who seek a self-contained account of the mechanics and mathematics of plasticity theory." (ZAMM, 2002) "In summary, the book represents an impressive comprehensive overview of the mathematical approach to the theory and numerics of plasticity. Scientists as well as lecturers and graduate students will find the book very useful as a reference for research or for preparing courses in this field." (Technische Mechanik) "The book is professionally written and will be a useful reference to researchers and students interested in mathematical and numerical problems of plasticity. It represents a major contribution in the area of continuum mechanics and numerical analysis." (Math Reviews)
This book traces the life of Cholesky (1875-1918), and gives his family history. After an introduction to topography, an English translation of an unpublished paper by him where he explained his method for linear systems is given, studied and replaced in its historical context. His other works, including two books, are also described as well as his involvement in teaching at a superior school by correspondence. The story of this school and its founder, Leon Eyrolles, are addressed. Then, an important unpublished book of Cholesky on graphical calculation is analyzed in detail and compared to similar contemporary publications. The biography of Ernest Benoit, who wrote the first paper where Choleskys method is explained, is provided. Various documents, highlighting the life and the personality of Cholesky, end the book." |
You may like...
Quality Activities in Center-Based…
Dennis H Reid, Marsha B Parsons
Paperback
R831
Discovery Miles 8 310
Classical and Stochastic Laplacian…
Bjoern Gustafsson, Razvan Teodorescu, …
Hardcover
R1,446
Discovery Miles 14 460
The Diversity and Beauty of Applied…
Albrecht Boettcher, Daniel Potts, …
Hardcover
R5,413
Discovery Miles 54 130
Securing the Internet of Things…
Information Reso Management Association
Hardcover
R10,325
Discovery Miles 103 250
Regularization Algorithms for Ill-Posed…
Anatoly B. Bakushinsky, Mikhail M Kokurin, …
Hardcover
R4,341
Discovery Miles 43 410
|