![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Numerical analysis
In this monograph the theory and methods of solving inverse Stefan problems for quasilinear parabolic equations in regions with free boundaries are developed. The study of this new class of ill-posed problems is motivated by the needs of the mod eling and control of nonlinear processes with phase transitions in thermophysics and mechanics of continuous media. Inverse Stefan problems are important for the perfection of technologies both in high temperature processes (e.g., metallurgy, the aircraft industry, astronautics and power engineering) and in hydrology, exploitation of oil-gas fields, etc. The proposed book will complete a gap in these subjects in the preceding re searches of ill-posed problems. It contains the new theoretical and applied studies of a wide class of inverse Stefan problems. The statements of such problems on the determination of boundary functions and coefficients of the equation are considered for different types of additional information about their solution. The variational method of obtaining stable approximate solutions is proposed and established. It is implemented by an efficient computational scheme of descriptive regularization. This algorithm utilizes a priori knowledge of the qualitative structure of the sought solution and ensures a substantial saving in computational costs. It is tested on model and applied problems in nonlinear thermophysics. In particular, the results of calculations for important applications in continuous casting of ingots and in the melting of a plate with the help of laser technology are presented."
Reversible grammar allows computational models to be built that are equally well suited for the analysis and generation of natural language utterances. This task can be viewed from very different perspectives by theoretical and computational linguists, and computer scientists. The papers in this volume present a broad range of approaches to reversible, bi-directional, and non-directional grammar systems that have emerged in recent years. This is also the first collection entirely devoted to the problems of reversibility in natural language processing. Most papers collected in this volume are derived from presentations at a workshop held at the University of California at Berkeley in the summer of 1991 organised under the auspices of the Association for Computational Linguistics. This book will be a valuable reference to researchers in linguistics and computer science with interests in computational linguistics, natural language processing, and machine translation, as well as in practical aspects of computability.
In this volume, designed for engineers and scientists working in the area of Computational Fluid Dynamics (CFD), experts offer assessments of the capabilities of CFD, highlight some fundamental issues and barriers, and propose novel approaches to overcome these problems. They also offer new avenues for research in traditional and non-traditional disciplines. The scope of the papers ranges from the scholarly to the practical. This book is distinguished from earlier surveys by its emphasis on the problems facing CFD and by its focus on non-traditional applications of CFD techniques. There have been several significant developments in CFD since the last workshop held in 1990 and this book brings together the key developments in a single unified volume.
The application of PDE-based control theory and the corresponding numerical algorithms to industrial problems have become increasingly important in recent years. This volume offers a wide spectrum of aspects of the discipline, and is of interest to mathematicians and scientists working in the field.
One service methematics has rendered 'Et moi, ..., si j'avait su comment en revenir, je n'y serais point alle.' the human race. It has put common sense JulesVerne back where it belongs, on the topmost shelf next to the dusty canister labelled The series is divergent; therefore we may 'discarded nonsecse'. be able to do something with it. Eric T. Bell O.Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and nonlinearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics ... '; 'One service logic has rendered computer science ... '; 'One service category theory has rendered mathematics ... '. All arguable true. And all statements obtainable this way form part of the raison d'etre of this series.
In the study of integrable systems, two different approaches in particular have attracted considerable attention during the past twenty years. (1) The inverse scattering transform (IST), using complex function theory, which has been employed to solve many physically significant equations, the `soliton' equations. (2) Twistor theory, using differential geometry, which has been used to solve the self-dual Yang--Mills (SDYM) equations, a four-dimensional system having important applications in mathematical physics. Both soliton and the SDYM equations have rich algebraic structures which have been extensively studied. Recently, it has been conjectured that, in some sense, all soliton equations arise as special cases of the SDYM equations; subsequently many have been discovered as either exact or asymptotic reductions of the SDYM equations. Consequently what seems to be emerging is that a natural, physically significant system such as the SDYM equations provides the basis for a unifying framework underlying this class of integrable systems, i.e. `soliton' systems. This book contains several articles on the reduction of the SDYM equations to soliton equations and the relationship between the IST and twistor methods. The majority of nonlinear evolution equations are nonintegrable, and so asymptotic, numerical perturbation and reduction techniques are often used to study such equations. This book also contains articles on perturbed soliton equations. Painleve analysis of partial differential equations, studies of the Painleve equations and symmetry reductions of nonlinear partial differential equations. (ABSTRACT) In the study of integrable systems, two different approaches in particular have attracted considerable attention during the past twenty years; the inverse scattering transform (IST), for `soliton' equations and twistor theory, for the self-dual Yang--Mills (SDYM) equations. This book contains several articles on the reduction of the SDYM equations to soliton equations and the relationship between the IST and twistor methods. Additionally, it contains articles on perturbed soliton equations, Painleve analysis of partial differential equations, studies of the Painleve equations and symmetry reductions of nonlinear partial differential equations.
A new translation makes this classic and important text more generally accessible. The text is placed in its contemporary context, but also related to the interests of practising mathematicians today. This book will be of interest to mathematical historians, researchers, and numerical analysts.
This special volume focuses on optimization and control of processes governed by partial differential equations. The contributors are mostly participants of the DFG-priority program 1253: Optimization with PDE-constraints which is active since 2006. The book is organized in sections which cover almost the entire spectrum of modern research in this emerging field. Indeed, even though the field of optimal control and optimization for PDE-constrained problems has undergone a dramatic increase of interest during the last four decades, a full theory for nonlinear problems is still lacking. The contributions of this volume, some of which have the character of survey articles, therefore, aim at creating and developing further new ideas for optimization, control and corresponding numerical simulations of systems of possibly coupled nonlinear partial differential equations. The research conducted within this unique network of groups in more than fifteen German universities focuses on novel methods of optimization, control and identification for problems in infinite-dimensional spaces, shape and topology problems, model reduction and adaptivity, discretization concepts and important applications. Besides the theoretical interest, the most prominent question is about the effectiveness of model-based numerical optimization methods for PDEs versus a black-box approach that uses existing codes, often heuristic-based, for optimization.
"Approximate Global Convergence and Adaptivity for Coefficient
Inverse Problems" is the first book in which two new concepts of
numerical solutions of multidimensional Coefficient Inverse
Problems (CIPs) for a hyperbolic Partial Differential Equation
(PDE) are presented: Approximate Global Convergence and the
Adaptive Finite Element Method (adaptivity for brevity).
The International Symposium on Computational & Applied PDEs was held at Zhangjiajie National Park of China from July 1-7, 2001. The main goal of this conference is to bring together computational, applied and pure mathematicians on different aspects of partial differential equations to exchange ideas and to promote collaboration. Indeed, it attracted a number of leading scientists in computational PDEs including Doug Arnold (Minnesota), Jim Bramble (Texas A & M), Achi Brandt (Weizmann), Franco Brezzi (Pavia), Tony Chan (UCLA), Shiyi Chen (John Hopkins), Qun Lin (Chinese Academy of Sciences), Mitch Luskin (Minnesota), Tom Manteuffel (Colorado), Peter Markowich (Vienna), Mary Wheeler (Texas Austin) and Jinchao Xu (Penn State); in applied and theoretical PDEs including Weinan E (Princeton), Shi Jin (Wisconsin), Daqian Li (Fudan) and Gang Tian (MIT). It also drew an international audience of size 100 from Austria, China, Germany, Hong Kong, Iseael, Italy, Singapore and the United States. The conference was organized by Yunqing Huang of Xiangtan University, Jinchao Xu of Penn State University, and Tony Chan of UCLA through ICAM (Institute for Computational and Applied Mathematics) of Xiangtan university which was founded in January 1997 and directed by Jinchao Xu. The scientific committee of this conference consisted of Randy Bank of UCSD, Tony Chan of UCLA, K. C.
Drug research and discovery are of critical importance in human health care. Computational approaches for drug lead discovery and optimization have proven successful in many recent research programs. These methods have grown in their effectiveness not only because of improved understanding of the basic science - the biological events and molecular interactions that define a target for therapeutic intervention - but also because of advances in algorithms, representations, and mathematical procedures for studying such processes. This volume surveys some of those advances. A broad landscape of high-profile topics in computer-assisted molecular design (CAMD) directed to drug design are included. Subject areas represented in the volume include receptor-based applications such as binding energy approximations, molecular docking, and de novo design; non-receptor-based applications such as molecular similarity; molecular dynamics simulations; solvation and partitioning of a solute between aqueous and nonpolar media; graph theory; non-linear multidimensional optimization, processing of information obtained from simulation studies, global optimization and search strategies, and performance enhancement through parallel computing.
Presents a discrete in time-space universal map of relative dynamics that is used to unfold an extensive catalogue of dynamic events not previously discussed in mathematical or social science literature. With emphasis on the chaotic dynamics that may ensue, the book describes the evolution on the basis of temporal and locational advantages. It explains nonlinear discrete time dynamic maps primarily through numerical simulations. These very rich qualitative dynamics are linked to evolution processes in socio-spatial systems. Important features include: The analytical properties of the one-stock, two- and three-location map; the numerical results from the one- and two-stock, two- and three-location dynamics; and the demonstration of the map's potential applicability in the social sciences through simulating population dynamics of the U.S. Regions over a two-century period. In addition, this book includes new findings: the Hopf equivalent discrete time dynamics bifurcation; the Feigenbaum slope-sequences; the presence of strange local attractors and containers; switching of extreme states; the presence of different types of turbulence; local and global turbulence. Intended for researchers and advanced graduate students in applied mathematics and an interest in dynamics and chaos. Mathematical social scientists in many other fields will also find this book useful.
This book presents a substantial part of matrix analysis that is functional analytic in spirit. Topics covered include the theory of majorization, variational principles for eigenvalues, operator monotone and convex functions, and perturbation of matrix functions and matrix inequalities. The book offers several powerful methods and techniques of wide applicability, and it discusses connections with other areas of mathematics.
Advances in microelectronic technology have made massively parallel computing a reality and triggered an outburst of research activity in parallel processing architectures and algorithms. Distributed memory multiprocessors - parallel computers that consist of microprocessors connected in a regular topology - are increasingly being used to solve large problems in many application areas. In order to use these computers for a specific application, existing algorithms need to be restructured for the architecture and new algorithms developed. The performance of a computation on a distributed memory multiprocessor is affected by the node and communication architecture, the interconnection network topology, the I/O subsystem, and the parallel algorithm and communication protocols. Each of these parametersis a complex problem, and solutions require an understanding of the interactions among them. This book is based on the papers presented at the NATO Advanced Study Institute held at Bilkent University, Turkey, in July 1991. The book is organized in five parts: Parallel computing structures and communication, Parallel numerical algorithms, Parallel programming, Fault tolerance, and Applications and algorithms.
In the modern age of almost universal computer usage, practically every individual in a technologically developed society has routine access to the most up-to-date cryptographic technology that exists, the so-called RSA public-key cryptosystem. A major component of this system is the factorization of large numbers into their primes. Thus an ancient number-theory concept now plays a crucial role in communication among millions of people who may have little or no knowledge of even elementary mathematics. The independent structure of each chapter of the book makes it highly readable for a wide variety of mathematicians, students of applied number theory, and others interested in both study and research in number theory and cryptography.
With contributions by specialists in optimization and practitioners in the fields of aerospace engineering, chemical engineering, and fluid and solid mechanics, the major themes include an assessment of the state of the art in optimization algorithms as well as challenging applications in design and control, in the areas of process engineering and systems with partial differential equation models.
Nonlinear programming provides an excellent opportunity to explore an interesting variety of pure and solidly applicable mathematics, numerical analysis, and computing. This text develops some of the ideas and techniques involved in the optimization methods using calculus, leading to the study of convexity. This is followed by material on basic numerical methods, least squares, the Karush-Kuhn-Tucker theorem, penalty functions, and Lagrange multipliers. The authors have aimed their presentation at the student who has a working knowledge of matrix algebra and advanced calculus, but has had no previous exposure to optimization.
In succesion to former international meetings on differential geometry held in Hungary and also as a satellite conference of ECM96, the European Mathematical Congress, a Conference on Differential Geometry took place in Budapest from July 27 to July 30, 1996. The host of the Conference was Lorand Eotvos University. The Conference had the following Programme Committee: D.V. Alekseevsky, J.J. Duistermaat, J. Eells, A. Haefliger, O. Kowalski, S. Marchifava, J. Szenthe, L. Tamassy, L. Vanhecke. The participants came mainly from Europe and their total number was 190. The programme included plenary lectures by J. Eliashberg, S. Gallot, O. Kowalski, B. Leeb, and also 135 lectures in 4 sections. The social events, an opening reception and a farewel party, presented inspiring atmosphere to create scientific contacts and also for fruitful discussions. In preparation of the Conference and during it B. Csikos and G. Moussong were constanly ready to help. The present volume contains detailed versions of lectures presented at the Conference and also a list of participants. The subjects cover a wide variety of topics in differential geometry and its applications and all of them contain essential new developments in their respective subjects. It is my pleasant duty to thank the participants who contributed to the success of the Conference, especially those who offered us their manuscripts for publication and also the referees who made several important observa- tions. The preparation of the volume was managed with the assistance of E. Daroczy-Kiss.
This scholarly text provides an introduction to the numerical methods used to model partial differential equations, with focus on atmospheric and oceanic flows. The book covers both the essentials of building a numerical model and the more sophisticated techniques that are now available. Finite difference methods, spectral methods, finite element method, flux-corrected methods and TVC schemes are all discussed. Throughout, the author keeps to a middle ground between the theorem-proof formalism of a mathematical text and the highly empirical approach found in some engineering publications. The book establishes a concrete link between theory and practice using an extensive range of test problems to illustrate the theoretically derived properties of various methods. From the reviews: "...the books unquestionable advantage is the clarity and simplicity in presenting virtually all basic ideas and methods of numerical analysis currently actively used in geophysical fluid dynamics." Physics of Atmosphere and Ocean
This text gives a clear introduction to the ideas and methods of wavelet analysis, making concepts understandable by relating them to methods in mathematics and engineering. It shows how to apply wavelet analysis to digital signal processing and presents a wide variety of applications.
* Metivier is an expert in the field of pdes/math physics, with a particular emphasis on shock waves. * New monograph focuses on mathematical methods, models, and applications of boundary layers, present in many problems of physics, engineering, fluid mechanics. * Metivier has good Birkhauser track record: one of the main authors of "Advances in the Theory of Shock Waves" (Freistuehler/Szepessy, eds, 4187-4). * Manuscript endorsed by N. Bellomo, MSSET series editor...should be a good sell to members of MSSET community, who by-in-large are based in Europe. * Included are self-contained introductions to different topics such as hyperbolic boundary value problems, parabolic systems, WKB methods, construction of profiles, introduction to the theory of Evans' functions, and energy methods with Kreiss' symmetrizers.
In a coherent, exhaustive and progressive way, this book presents the tools for studying local bifurcations of limit cycles in families of planar vector fields. A systematic introduction is given to such methods as division of an analytic family of functions in its ideal of coefficients, and asymptotic expansion of non-differentiable return maps and desingularisation. The exposition moves from classical analytic geometric methods applied to regular limit periodic sets to more recent tools for singular limit sets. The methods can be applied to theoretical problems such as Hilbert's 16th problem, but also for the purpose of establishing bifurcation diagrams of specific families as well as explicit computations. - - - "The book as a whole is awell-balanced exposition that can be
recommended to all those who want to gain a thorough understanding
and proficiency in therecently developed methods. The book,
reflecting the currentstate of the art, can also be used for
teaching special courses."
This book constitutes the refereed proceedings of the First International Conference on Applied Algorithms, ICAA 2014, held in Kolkata, India, in January 2014. ICAA is a new conference series with a mission to provide a quality forum for researchers working in applied algorithms. Papers presenting original contributions related to the design, analysis, implementation and experimental evaluation of efficient algorithms and data structures for problems with relevant real-world applications were sought, ideally bridging the gap between academia and industry. The 21 revised full papers presented together with 7 short papers were carefully reviewed and selected from 122 submissions.
This book contains cutting-edge research material presented by researchers, engineers, developers, and practitioners from academia and industry at the International Conference on Computational Intelligence, Cyber Security and Computational Models (ICC3) organized by PSG College of Technology, Coimbatore, India during December 19-21, 2013. The materials in the book include theory and applications to provide design, analysis, and modeling of the key areas. The book will be useful material for students, researchers, professionals, as well academicians in understanding current research trends and findings and future scope of research in computational intelligence, cyber security, and computational models.
"D. Walnut's lovely book aims at the upper undergraduate level, and so it includes relatively more preliminary material . . . than is typically the case in a graduate text. It goes from Haar systems to multiresolutions, and then the discrete wavelet transform . . . The applications to image compression are wonderful, and the best I have seen in books at this level. I also found the analysis of the best choice of basis, and wavelet packet, especially attractive. The later chapters include MATLAB codes. Highly recommended " Bulletin of the AMS An Introduction to Wavelet Analysis provides a comprehensive presentation of the conceptual basis of wavelet analysis, including the construction and application of wavelet bases. The book develops the basic theory of wavelet bases and transforms without assuming any knowledge of Lebesgue integration or the theory of abstract Hilbert spaces. The book elucidates the central ideas of wavelet theory by offering a detailed exposition of the Haar series, and then shows how a more abstract approach allows one to generalize and improve upon the Haar series. Once these ideas have been established and explored, variations and extensions of Haar construction are presented. The mathematical prerequisites for the book are a course in advanced calculus, familiarity with the language of formal mathematical proofs, and basic linear algebra concepts. Features: * Rigorous proofs with consistent assumptions about the mathematical background of the reader (does not assume familiarity with Hilbert spaces or Lebesgue measure). * Complete background material on is offered on Fourier analysis topics. * Wavelets are presented first on the continuous domain and later restricted to the discrete domain for improved motivation and understanding of discrete wavelet transforms and applications. * Special appendix, "Excursions in Wavelet Theory, " provides a guide to current literature on the topic. * Over 170 exercises guide the reader through the text. An Introduction to Wavelet Analysis is an ideal text/reference for a broad audience of advanced students and researchers in applied mathematics, electrical engineering, computational science, and physical sciences. It is also suitable as a self-study reference guide for professionals." |
You may like...
Genomics, Physiology and Behaviour of…
Amro Zayed, Clement Kent
Hardcover
R3,596
Discovery Miles 35 960
Insect Pests of Potato - Global…
Andrei Alyokhin, Silvia I Rondon, …
Paperback
R3,505
Discovery Miles 35 050
Insect Genomics - Methods and Protocols
Susan J. Brown, Michael E. Pfrender
Hardcover
R4,058
Discovery Miles 40 580
Integrated Management of Arthropod Pests…
Aurelio Ciancio, K.G. Mukerji
Hardcover
R4,076
Discovery Miles 40 760
|