Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Numerical analysis
This book focuses on the theoretical aspects of small strain theory of elastoplasticity with hardening assumptions. It provides a comprehensive and unified treatment of the mathematical theory and numerical analysis. It is divided into three parts, with the first part providing a detailed introduction to plasticity, the second part covering the mathematical analysis of the elasticity problem, and the third part devoted to error analysis of various semi-discrete and fully discrete approximations for variational formulations of the elastoplasticity. This revised and expanded edition includes material on single-crystal and strain-gradient plasticity. In addition, the entire book has been revised to make it more accessible to readers who are actively involved in computations but less so in numerical analysis. Reviews of earlier edition: "The authors have written an excellent book which can be recommended for specialists in plasticity who wish to know more about the mathematical theory, as well as those with a background in the mathematical sciences who seek a self-contained account of the mechanics and mathematics of plasticity theory." (ZAMM, 2002) "In summary, the book represents an impressive comprehensive overview of the mathematical approach to the theory and numerics of plasticity. Scientists as well as lecturers and graduate students will find the book very useful as a reference for research or for preparing courses in this field." (Technische Mechanik) "The book is professionally written and will be a useful reference to researchers and students interested in mathematical and numerical problems of plasticity. It represents a major contribution in the area of continuum mechanics and numerical analysis." (Math Reviews)
Verena Puchner evaluates and compares statistical matching and selected SAE methods. Due to the fact that poverty estimation at regional level based on EU-SILC samples is not of adequate accuracy, the quality of the estimations should be improved by additionally incorporating micro census data. The aim is to find the best method for the estimation of poverty in terms of small bias and small variance with the aid of a simulated artificial "close-to-reality" population. Variables of interest are imputed into the micro census data sets with the help of the EU-SILC samples through regression models including selected unit-level small area methods and statistical matching methods. Poverty indicators are then estimated. The author evaluates and compares the bias and variance for the direct estimator and the various methods. The variance is desired to be reduced by the larger sample size of the micro census.
Stochastic instantaneous volatility models such as Heston, SABR or SV-LMM have mostly been developed to control the shape and joint dynamics of the implied volatility surface. In principle, they are well suited for pricing and hedging vanilla and exotic options, for relative value strategies or for risk management. In practice however, most SV models lack a closed form valuation for European options. This book presents the recently developed Asymptotic Chaos Expansions methodology (ACE) which addresses that issue. Indeed its generic algorithm provides, for any regular SV model, the pure asymptotes at any order for both the static and dynamic maps of the implied volatility surface. Furthermore, ACE is programmable and can complement other approximation methods. Hence it allows a systematic approach to designing, parameterising, calibrating and exploiting SV models, typically for Vega hedging or American Monte-Carlo. "Asymptotic Chaos Expansions in Finance" illustrates the ACE approach for single underlyings (such as a stock price or FX rate), baskets (indexes, spreads) and term structure models (especially SV-HJM and SV-LMM). It also establishes fundamental links between the Wiener chaos of the instantaneous volatility and the small-time asymptotic structure of the stochastic implied volatility framework. It is addressed primarily to financial mathematics researchers and graduate students, interested in stochastic volatility, asymptotics or market models. Moreover, as it contains many self-contained approximation results, it will be useful to practitioners modelling the shape of the smile and its evolution.
Whatdoasupernovaexplosioninouterspace,?owaroundanairfoil and knocking in combustion engines have in common? The physical and chemical mechanisms as well as the sizes of these processes are quite di?erent. So are the motivations for studying them scienti?cally. The super- 8 nova is a thermo-nuclear explosion on a scale of 10 cm. Astrophysicists try to understand them in order to get insight into fundamental properties of the universe. In ?ows around airfoils of commercial airliners at the scale of 3 10 cm shock waves occur that in?uence the stability of the wings as well as fuel consumption in ?ight. This requires appropriate design of the shape and structure of airfoils by engineers. Knocking occurs in combustion, a chemical 1 process, and must be avoided since it damages motors. The scale is 10 cm and these processes must be optimized for e?ciency and environmental conside- tions. The common thread is that the underlying ?uid ?ows may at a certain scale of observation be described by basically the same type of hyperbolic s- tems of partial di?erential equations in divergence form, called conservation laws. Astrophysicists, engineers and mathematicians share a common interest in scienti?c progress on theory for these equations and the development of computational methods for solutions of the equations. Due to their wide applicability in modeling of continua, partial di?erential equationsareamajor?eldofresearchinmathematics. Asubstantialportionof mathematical research is related to the analysis and numerical approximation of solutions to such equations. Hyperbolic conservation laws in two or more spacedimensionsstillposeoneofthemainchallengestomodernmathematics.
This book distinguishes itself from the many other textbooks on the topic of linear algebra by including mathematical and computational chapters along with examples and exercises with Matlab. In recent years, the use of computers in many areas of engineering and science has made it essential for students to get training in numerical methods and computer programming. Here, the authors use both Matlab and SciLab software as well as covering core standard material. It is intended for libraries; scientists and researchers; pharmaceutical industry.
Nuclear engineering has undergone extensive progress over the years. In the past century, colossal developments have been made and with specific reference to the mathematical theory and computational science underlying this discipline, advances in areas such as high-order discretization methods, Krylov Methods and Iteration Acceleration have steadily grown. Nuclear Computational Science: A Century in Review addresses these topics and many more; topics which hold special ties to the first half of the century, and topics focused around the unique combination of nuclear engineering, computational science and mathematical theory. Comprising eight chapters, Nuclear Computational Science: A Century in Review incorporates a number of carefully selected issues representing a variety of problems, providing the reader with a wealth of information in both a clear and concise manner. The comprehensive nature of the coverage and the stature of the contributing authors combine to make this a unique landmark publication. Targeting the medium to advanced level academic, this book will appeal to researchers and students with an interest in the progression of mathematical theory and its application to nuclear computational science.
On the occasion of his 60th birthday in October 2009, friends, collaborators, and admirers of Wolfgang Dahmen have organized this volume which touches on va- ous of his research interests. This volume will provide an easy to read excursion into many important topics in applied and computational mathematics. These include nonlinear and adaptive approximation, multivariate splines, subdivision schemes, multiscale and wavelet methods, numerical schemes for partial differential and boundary integral equations, learning theory, and high-dimensional integrals. College Station, Texas, USA Ronald A. DeVore Paderborn, Germany Angela Kunoth June 2009 vii Acknowledgements We are deeply grateful to Dr. Martin Peters and Thanh-Ha Le Thi from Springer for realizing this book project and to Frank Holzwarth for technical support. ix Contents Introduction: Wolfgang Dahmen's mathematical work...1 Ronald A. DeVore and Angela Kunoth 1 Introduction ...1 2 The early years: Classical approximation theory...2 3 Bonn, Bielefeld, Berlin, and multivariate splines ...2 3. 1 Computer aided geometric design ...3 3. 2 Subdivision and wavelets ...4 4 Wavelet and multiscale methods for operator equations...5 4. 1 Multilevel preconditioning ...5 4. 2 Compression of operators...5 5 Adaptive solvers ...6 6 Constructionandimplementation...7 7 Hyperbolic partial differential equations and conservation laws ...8 8 Engineering collaborations ...9 9 Thepresent ...9 10 Finalremarks...10 Publications by Wolfgang Dahmen (as of summer 2009)...10 The way things were in multivariate splines: A personal view...19 Carl de Boor 1 Tensor product spline interpolation...19 2 Quasiinterpolation ...20 3 MultivariateB-splines ...21 4 Kergininterpolation ...
This book provides a comprehensive introduction to the theory of ordinary differential equations with a focus on mechanics and dynamical systems as important applications of the theory. The text is written to be used in the traditional way or in a more applied way. In addition to its use in a traditional one or two semester graduate course in mathematics, the book is organized to be used for interdisciplinary courses in applied mathematics, physics, and engineering.
A new starting-point and a new method are requisite, to insure a complete [classi?cation of the Steiner triple systems of order 15]. This method was furnished, and its tedious and di?cult execution und- taken, by Mr. Cole. F. N. Cole, L. D. Cummings, and H. S. White (1917) [129] The history of classifying combinatorial objects is as old as the history of the objects themselves. In the mid-19th century, Kirkman, Steiner, and others became the fathers of modern combinatorics, and their work - on various objects, including (what became later known as) Steiner triple systems - led to several classi?cation results. Almost a century earlier, in 1782, Euler [180] published some results on classifying small Latin squares, but for the ?rst few steps in this direction one should actually go at least as far back as ancient Greece and the proof that there are exactly ?ve Platonic solids. One of the most remarkable achievements in the early, pre-computer era is the classi?cation of the Steiner triple systems of order 15, quoted above. An onerous task that, today, no sensible person would attempt by hand calcu- tion. Because, with the exception of occasional parameters for which com- natorial arguments are e?ective (often to prove nonexistence or uniqueness), classi?cation in general is about algorithms and computation.
"The book is outstanding and admirable in many respects. ... is necessary reading for all kinds of readers from undergraduate students to top authorities in the field." Journal of Symbolic Logic Written by two experts in the field, this is the only comprehensive and unified treatment of the central ideas and applications of Kolmogorov complexity. The book presents a thorough treatment of the subject with a wide range of illustrative applications. Such applications include the randomness of finite objects or infinite sequences, Martin-Loef tests for randomness, information theory, computational learning theory, the complexity of algorithms, and the thermodynamics of computing. It will be ideal for advanced undergraduate students, graduate students, and researchers in computer science, mathematics, cognitive sciences, philosophy, artificial intelligence, statistics, and physics. The book is self-contained in that it contains the basic requirements from mathematics and computer science. Included are also numerous problem sets, comments, source references, and hints to solutions of problems. New topics in this edition include Omega numbers, Kolmogorov-Loveland randomness, universal learning, communication complexity, Kolmogorov's random graphs, time-limited universal distribution, Shannon information and others.
The aquatic coastal zone is one of the most challenging targets for environmental remote sensing. Properties such as bottom reflectance, spectrally diverse suspended sediments and phytoplankton communities, diverse benthic communities, and transient events that affect surface reflectance (coastal blooms, runoff, etc.) all combine to produce an optical complexity not seen in terrestrial or open ocean systems. Despite this complexity, remote sensing is proving to be an invaluable tool for "Case 2" waters. This book presents recent advances in coastal remote sensing with an emphasis on applied science and management. Case studies of the operational use of remote sensing in ecosystem studies, monitoring, and interfacing remote sensing/science/management are presented. Spectral signatures of phytoplankton and suspended sediments are discussed in detail with accompanying discussion of why blue water (Case 1) algorithms cannot be applied to Case 2 waters. Audience This book is targeted for scientists and managers interested in using remote sensing in the study or management of aquatic coastal environments. With only limited discussion of optics and theory presented in the book, such researchers might benefit from the detailed presentations of aquatic spectral signatures, and to operational management issues. While not specifically written for remote sensing scientists, it will prove to be a useful reference for this community for the current status of aquatic coastal remote sensing.
The standard textbooks on aerodynamics usually omit any discussion of un steady aerodynamics or, at most, consider it only in a single chapter, based on two justifications. The first is that unsteady aerodynamics should be regarded as a specialized subject required "only" in connection with understanding and an alyzing aeroelastic phenomena such as flutter and gust response, and therefore should be dealt with in related specialist books. The second reason appears to be reluctance to discuss aerodynamics with the inclusion of the time-dependent terms in the conservation equations and the boundary conditions for fear that added complications may discourage the reader. We take the opposite view in this book and argue that a full understanding of the physics of lift generation is possible only by considering the unsteady aerody namics of the starting vortex generation process. Furthermore, certain "steady" flows are inherently unsteady in the presence of flow separation, as for example the unsteady flow caused by the Karman vortex shedding downstream of a cylin der and "static" airfoil stall which is an inherently unsteady flow phenomenon. Therefore, it stands to reason that a unified treatment of aerodynamics that yields steady-state aerodynamics as a special case offers advantages. This rea soning is strengthened by the developments in computational fluid dynamics over the past forty years, which showed that accurate steady-state solutions can be obtained efficiently by solving the unsteady flow equations.
Continuamentenasconoifatti 1 aconfusionedelleteorie 2 Carlo Dossi Electromagnetism is withoutany doubt a fascinating area of physics, engineering and mathematics. Since the early pioneeringworks ofAmpere, Faraday, and Maxwell, the scienti?cliteratureon this subject has become immense, and books devoted to almost all of its aspects have been published in the meantime. However, webelievethatthereisstillsomeplacefornew booksdealingwithel- tromagnetism, particularly if they are focused on more speci?c models, or try to mix different levels of analysis: rigorous mathematical results, sound numerical appro- mation schemes, real-life examples from physics and engineering. The complete mathematical description of electromagnetic problems is provided by the celebrated Maxwell equations, a system of partial differential equations - pressed interms ofphysical quantitiesliketheelectric?eld, themagnetic?eld and the currentdensity.Maxwell'scontributiontotheformulationofthese equationsisrelated to the introductionof a speci?c term, called displacement current, that he proposed to add to the set of equations generally assumed to hold at that time, in order to ensure the conservation of the electric charge. The presence of the displacement current permits to describe one of the most - portant phenomenon in electromagnetism, namely, wave propagation; however, in many interesting applications the propagation speed of the wave is very high with respect to the ratio of some typical length and time scale of the considered device, and therefore the dominant aspect becomes the diffusionof the electromagnetic ?elds. When the focus is on diffusioninstead of propagation, from the modelingpointof view this corresponds to neglecting the time derivative of the electric induction (i.e., thedisplacement current introducedby Maxwell)or, alternatively,neglectingthe time derivative of the magnetic induction.
The Bialowieza workshops on Geometric Methods in Physics are among the most important meetings in the field. Every year some 80 to 100 participants from both mathematics and physics join to discuss new developments and to interchange ideas. This volume contains contributions by selected speakers at the XXX meeting in 2011 as well as additional review articles and shows that the workshop remains at the cutting edge of ongoing research. The 2011 workshop focussed on the works of the late Felix A. Berezin (1931-1980) on the occasion of his 80th anniversary as well as on Bogdan Mielnik and Stanislaw Lech Woronowicz on their 75th and 70th birthday, respectively. The groundbreaking work of Berezin is discussed from today's perspective by presenting an overview of his ideas and their impact on further developments. He was, among other fields, active in representation theory, general concepts of quantization and coherent states, supersymmetry and supermanifolds. Another focus lies on the accomplishments of Bogdan Mielnik and Stanislaw Lech Woronowicz. Mielnik's geometric approach to the description of quantum mixed states, the method of quantum state manipulation and their important implications for quantum computing and quantum entanglement are discussed as well as the intricacies of the quantum time operator. Woronowicz' fruitful notion of a compact quantum group and related topics are also addressed.
The presence of uncertainty in a system description has always been a critical issue in control. The main objective of Randomized Algorithms for Analysis and Control of Uncertain Systems, with Applications (Second Edition) is to introduce the reader to the fundamentals of probabilistic methods in the analysis and design of systems subject to deterministic and stochastic uncertainty. The approach propounded by this text guarantees a reduction in the computational complexity of classical control algorithms and in the conservativeness of standard robust control techniques. The second edition has been thoroughly updated to reflect recent research and new applications with chapters on statistical learning theory, sequential methods for control and the scenario approach being completely rewritten. Features: * self-contained treatment explaining Monte Carlo and Las Vegas randomized algorithms from their genesis in the principles of probability theory to their use for system analysis; * development of a novel paradigm for (convex and nonconvex) controller synthesis in the presence of uncertainty and in the context of randomized algorithms; * comprehensive treatment of multivariate sample generation techniques, including consideration of the difficulties involved in obtaining identically and independently distributed samples; * applications of randomized algorithms in various endeavours, such as PageRank computation for the Google Web search engine, unmanned aerial vehicle design (both new in the second edition), congestion control of high-speed communications networks and stability of quantized sampled-data systems. Randomized Algorithms for Analysis and Control of Uncertain Systems (second edition) is certain to interest academic researchers and graduate control students working in probabilistic, robust or optimal control methods and control engineers dealing with system uncertainties. The present book is a very timely contribution to the literature. I have no hesitation in asserting that it will remain a widely cited reference work for many years. M. Vidyasagar
This edited volume consists of twelve contributions related to the EU Marie Curie Transfer of Knowledge Project Cooperation of Estonian and Norwegian Scienti c Centres within Mathematics and its Applications, CENS-CMA (2005-2009), - der contract MTKD-CT-2004-013909, which ?nanced exchange visits to and from CENS, the Centre for Nonlinear Studies at the Institute of Cybernetics of Tallinn University of Technology in Estonia. Seven contributions describe research highlights of CENS members, two the work of members of CMA, the Centre of Mathematics for Applications,Univ- sity of Oslo, Norway, as the partner institution of CENS in the Marie Curie project, and three the ?eld of work of foreign research fellows, who visited CENS as part of theproject. Thestructureofthebookre?ectsthedistributionofthetopicsaddressed: Part I Waves in Solids Part II Mesoscopic Theory Part III Exploiting the Dissipation Inequality Part IV Waves in Fluids Part V Mathematical Methods The papers are written in a tutorial style, intended for non-specialist researchers and students, where the authors communicate their own experiences in tackling a problem that is currently of interest in the scienti?c community. The goal was to produce a book, which highlights the importance of applied mathematics and which can be used for educational purposes, such as material for a course or a seminar. To ensure the scienti?c quality of the contributions, each paper was carefully - viewed by two international experts. Special thanks go to all authors and referees, without whom making this book would not have been possible.
This volume represents the refereed proceedings of the Eighth International C- ference on Monte Carlo and Quasi-Monte Carlo Methods in Scienti c Computing, which was held at the University of Montreal, from 6-11 July, 2008. It contains a limited selection of articles based on presentations made at the conference. The program was arranged with the help of an international committee consisting of: Ronald Cools, Katholieke Universiteit Leuven Luc Devroye, McGill University Henri Faure, CNRS Marseille Paul Glasserman, Columbia University Peter W. Glynn, Stanford University Stefan Heinrich, University of Kaiserslautern Fred J. Hickernell, Illinois Institute of Technology Aneta Karaivanova, Bulgarian Academy of Science Alexander Keller, mental images GmbH, Berlin Adam Kolkiewicz, University of Waterloo Frances Y. Kuo, University of New South Wales Christian Lecot, Universite de Savoie, Chambery Pierre L'Ecuyer, Universite de Montreal (Chair and organizer) Jun Liu, Harvard University Peter Mathe, Weierstrass Institute Berlin Makoto Matsumoto, Hiroshima University Thomas Muller-Gronbach, Otto von Guericke Universitat Harald Niederreiter, National University of Singapore Art B. Owen, Stanford University Gilles Pages, Universite Pierre et Marie Curie (Paris 6) Klaus Ritter, TU Darmstadt Karl Sabelfeld, Weierstrass Institute Berlin Wolfgang Ch. Schmid, University of Salzburg Ian H. Sloan, University of New South Wales Jerome Spanier, University of California, Irvine Bruno Tuf n, IRISA-INRIA, Rennes Henryk Wozniak ' owski, Columbia University. v vi Preface The local arrangements (program production, publicity, web site, registration, social events, etc.
This volume is an attempt to provide a graduate level introduction to various aspects of stochastic geometry, spatial statistics and random fields, with special emphasis placed on fundamental classes of models and algorithms as well as on their applications, e.g. in materials science, biology and genetics. This book has a strong focus on simulations and includes extensive codes in Matlab and R which are widely used in the mathematical community. It can be seen as a continuation of the recent volume 2068 of Lecture Notes in Mathematics, where other issues of stochastic geometry, spatial statistics and random fields were considered with a focus on asymptotic methods.
Continuing the tradition established with the 1992 volume, 1993's Acta Numerica presents six invited papers on a broad range of topics from numerical analysis. Papers treat each topic at a level intelligible by any numerical analyst from graduate student to professional. Highlights include advances in numerical techniques such as finite elements and multigrid methods, stability analysis for initial value problems, graphical problems such as path following and multivariate splines, and a lengthy paper on parallel methods in linear algebra. This volume will be an essential reference for any practising numerical analyst.
Numerical analysis is the subject of applied mathematics concerned mainly with using computers in evaluating or approximating mathematical models. As such, it is crucial to all applications of mathematics in science and engineering, as well as being an important discipline on its own. Acta Numerica surveys annually the most important developments in numerical analysis and scientific computing. The subjects and authors of the substantive survey articles are chosen by a distinguished international editorial board so as to report the most important developments in the subject in a manner accessible to the wider community of professionals with an interest in scientific computing.
Acta Numerica surveys annually the most important developments in numerical mathematics and scientific computing. The subjects and authors of the substantive survey articles are chosen by a distinguished international editorial board so as to report the most important and timely developments in a manner accessible to the wider community of professionals with an interest in scientific computing. Acta Numerica volumes have proved to be a valuable tool not only for researchers and professionals wishing to develop their understanding of numerical techniques and algorithms and follow new developments, but also as an advanced teaching aid at colleges and universities. Many of the original articles have been used as the prime resource for graduate courses. This particular volume was originally published in 2004.
Acta Numerica is an annual publication containing invited survey papers by leading researchers in numerical mathematics and scientific computing. The papers present overviews of recent developments in their area and provide 'state of the art' techniques and analysis. This volume was originally published in 2010.
This book deals with the computational complexity of mathematical problems for which available information is partial, noisy and priced. The author develops a general theory of computational complexity of continuous problems with noisy information and gives a number of applications; he considers deterministic as well as stochastic noise. He also presents optimal algorithms, optimal information, and complexity bounds in different settings: worst case, average case, mixed worst-average, average-worst, and asymptotic. Particular topics include: the existence of optimal linear (affine) algorithms, optimality properties of smoothing spline, regularization and least squares algorithms (with the optimal choice of the smoothing and regularization parameters), adaption versus nonadaption, and relations between different settings. The book integrates the work of researchers over the past decade in such areas as computational complexity, approximation theory, and statistics, and includes many new results as well. The author supplies two hundred exercises to increase the reader's understanding of the subject.
The papers in this volume were selected for presentation at the 15th International Meshing Roundtable, held September 17-20, 2006 in Birmingham, Alabama, U.S.A.. The conference was started by Sandia National Laboratories in 1992 as a small meeting of organizations striving to establish a common focus for research and development in the field of mesh generation. Now after 15 consecutive years, the International Meshing Roundtable has become recognized as an international focal point annually attended by researchers and developers from dozens of countries around the world. The 15th International Meshing Roundtable consists of technical presentations from contributed papers, keynote and invited talks, short course presentations, and a poster session and competition. The Program Committee would like to express its appreciation to all who participate to make the IMR a successful and enriching experience. The papers in these proceedings were selected from among 42 submissions by the Program Committee. Based on input from peer reviews, the committee selected these papers for their perceived quality, originality, and appropriateness to the theme of the International Meshing Roundtable. The Program Committee would like to thank all who submitted papers. We would also like to thank the colleagues who provided reviews of the submitted papers. The names of the reviewers are acknowledged in the following pages. As Program Chair, I would like to extend special thanks to the Program Committee and to the Conference Coordinators for their time and effort to make the 15th IMR another outstanding conference.
Gathering and updating results scattered in journal articles over thirty years, this self-contained monograph gives a comprehensive introduction to the subject. Its goal is to: - motivate and explain the method for general Lie groups, reducing the proof of deep results in invariant analysis to the verification of two formal Lie bracket identities related to the Campbell-Hausdorff formula (the "Kashiwara-Vergne conjecture"); - give a detailed proof of the conjecture for quadratic and solvable Lie algebras, which is relatively elementary; - extend the method to symmetric spaces; here an obstruction appears, embodied in a single remarkable object called an "e-function"; - explain the role of this function in invariant analysis on symmetric spaces, its relation to invariant differential operators, mean value operators and spherical functions; - give an explicit e-function for rank one spaces (the hyperbolic spaces); - construct an e-function for general symmetric spaces, in the spirit of Kashiwara and Vergne's original work for Lie groups. The book includes a complete rewriting of several articles by the author, updated and improved following Alekseev, Meinrenken and Torossian's recent proofs of the conjecture. The chapters are largely independent of each other. Some open problems are suggested to encourage future research. It is aimed at graduate students and researchers with a basic knowledge of Lie theory. |
You may like...
Linear and Generalized Linear Mixed…
Jiming Jiang, Thuan Nguyen
Hardcover
R3,315
Discovery Miles 33 150
Recent Trends in Mathematical Modeling…
Vinai K. Singh, Yaroslav D. Sergeyev, …
Hardcover
R6,226
Discovery Miles 62 260
Computational and Experimental…
Satya N Atluri, Igor Vusanovic
Hardcover
R4,263
Discovery Miles 42 630
Schwarz Methods and Multilevel…
Ernst P. Stephan, Thanh Tran
Hardcover
R4,624
Discovery Miles 46 240
Frontiers in Molecular Design and…
Rachelle J. Bienstock, Veerabahu Shanmugasundaram, …
Hardcover
R4,794
Discovery Miles 47 940
|