![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Numerical analysis
This volume consists of twenty peer-reviewed papers from the special session on pseudodifferential operators and the special session on generalized functions and asymptotics at the Eighth Congress of ISAAC held at the Peoples' Friendship University of Russia in Moscow on August 22-27, 2011. The category of papers on pseudo-differential operators contains such topics as elliptic operators assigned to diffeomorphisms of smooth manifolds, analysis on singular manifolds with edges, heat kernels and Green functions of sub-Laplacians on the Heisenberg group and Lie groups with more complexities than but closely related to the Heisenberg group, Lp-boundedness of pseudo-differential operators on the torus, and pseudo-differential operators related to time-frequency analysis. The second group of papers contains various classes of distributions and algebras of generalized functions with applications in linear and nonlinear differential equations, initial value problems and boundary value problems, stochastic and Malliavin-type differential equations. This second group of papers are related to the third collection of papers via the setting of Colombeau-type spaces and algebras in which microlocal analysis is developed by means of techniques in asymptotics. The volume contains the synergies of the three areas treated and is a useful complement to volumes 155, 164, 172, 189, 205 and 213 published in the same series in, respectively, 2004, 2006, 2007, 2009, 2010 and 2011.
This book collects the refereed proceedings of the First International Conference onon Algorithms and Discrete Applied Mathematics, CALDAM 2015, held in Kanpur, India, in February 2015. The volume contains 26 full revised papers from 58 submissions along with 2 invited talks presented at the conference. The workshop covered a diverse range of topics on algorithms and discrete mathematics, including computational geometry, algorithms including approximation algorithms, graph theory and computational complexity.
Completely revised and greatly expanded, the new edition of this text takes readers who have been exposed to only basic courses in analysis through the modern general theory of random processes and stochastic integrals as used by systems theorists, electronic engineers and, more recently, those working in quantitative and mathematical finance. Building upon the original release of this title, this text will be of great interest to research mathematicians and graduate students working in those fields, as well as quants in the finance industry. New features of this edition include: End of chapter exercises; New chapters on basic measure theory and Backward SDEs; Reworked proofs, examples and explanatory material; Increased focus on motivating the mathematics; Extensive topical index. "Such a self-contained and complete exposition of stochastic calculus and applications fills an existing gap in the literature. The book can be recommended for first-year graduate studies. It will be useful for all who intend to work with stochastic calculus as well as with its applications."-Zentralblatt (from review of the First Edition)
From the Introduction: " Marston Morse was born in 1892, so that he was 33 years old when in 1925 his paper Relations between the critical points of a real-valued function of n independent variables appeared in the Transactions of the American Mathematical Society. Thus Morse grew to maturity just at the time when the subject of Analysis Situs was being shaped by such masters as Poincare, Veblen, L. E. J. Brouwer, G. D. Birkhoff, Lefschetz and Alexander, and it was Morse's genius and destiny to discover one of the most beautiful and far-reaching relations between this fledgling and Analysis; a relation which is now known as Morse Theory. In retrospect all great ideas take on a certain simplicity and inevitability, partly because they shape the whole subsequent development of the subject. And so to us, today, Morse Theory seems natural and inevitable. This whole flight of ideas was of course acclaimed by the mathematical World...it eventually earned him practically every honor of the mathematical community, over twenty honorary degrees, the National Science Medal, the Legion of Honor of France, ..."
Two-armed response-adaptive clinical trials are modelled as Markov decision problems to pursue two overriding objectives: Firstly, to identify the superior treatment at the end of the trial and, secondly, to keep the number of patients receiving the inferior treatment small. Such clinical trial designs are very important, especially for rare diseases. Thomas Ondra presents the main solution techniques for Markov decision problems and provides a detailed description how to obtain optimal allocation sequences.
Starting from an undergraduate level, this book systematically develops the basics of * Calculus on manifolds, vector bundles, vector fields and differential forms, * Lie groups and Lie group actions, * Linear symplectic algebra and symplectic geometry, * Hamiltonian systems, symmetries and reduction, integrable systems and Hamilton-Jacobi theory. The topics listed under the first item are relevant for virtually all areas of mathematical physics. The second and third items constitute the link between abstract calculus and the theory of Hamiltonian systems. The last item provides an introduction to various aspects of this theory, including Morse families, the Maslov class and caustics. The book guides the reader from elementary differential geometry to advanced topics in the theory of Hamiltonian systems with the aim of making current research literature accessible. The style is that of a mathematical textbook,with full proofs given in the text or as exercises. The material is illustrated by numerous detailed examples, some of which are taken up several times for demonstrating how the methods evolve and interact.
This volume contains a collection of papers dedicated to Professor Eckhard Platen to celebrate his 60th birthday, which occurred in 2009. The contributions have been written by a number of his colleagues and co-authors. All papers have been - viewed and presented as keynote talks at the international conference "Quantitative Methods in Finance" (QMF) in Sydney in December 2009. The QMF Conference Series was initiated by Eckhard Platen in 1993 when he was at the Australian - tional University (ANU) in Canberra. Since joining UTS in 1997 the conference came to be organised on a much larger scale and has grown to become a signi?cant international event in quantitative ?nance. Professor Platen has held the Chair of Quantitative Finance at the University of Technology, Sydney (UTS) jointly in the Faculties of Business and Science since 1997. Prior to this appointment, he was the Founding Head of the Centre for Fin- cial Mathematics at the Institute of Advanced Studies at ANU, a position to which he was appointed in 1994. Eckhard completed a PhD in Mathematics at the Technical University in Dresden in 1975 and in 1985 obtained his Doctor of Science degree (Habilitation degree in the German system) from the Academy of Sciences in Berlin where he headed the Stochastics group at the Weierstrass Institute.
This book focuses on the theoretical aspects of small strain theory of elastoplasticity with hardening assumptions. It provides a comprehensive and unified treatment of the mathematical theory and numerical analysis. It is divided into three parts, with the first part providing a detailed introduction to plasticity, the second part covering the mathematical analysis of the elasticity problem, and the third part devoted to error analysis of various semi-discrete and fully discrete approximations for variational formulations of the elastoplasticity. This revised and expanded edition includes material on single-crystal and strain-gradient plasticity. In addition, the entire book has been revised to make it more accessible to readers who are actively involved in computations but less so in numerical analysis. Reviews of earlier edition: "The authors have written an excellent book which can be recommended for specialists in plasticity who wish to know more about the mathematical theory, as well as those with a background in the mathematical sciences who seek a self-contained account of the mechanics and mathematics of plasticity theory." (ZAMM, 2002) "In summary, the book represents an impressive comprehensive overview of the mathematical approach to the theory and numerics of plasticity. Scientists as well as lecturers and graduate students will find the book very useful as a reference for research or for preparing courses in this field." (Technische Mechanik) "The book is professionally written and will be a useful reference to researchers and students interested in mathematical and numerical problems of plasticity. It represents a major contribution in the area of continuum mechanics and numerical analysis." (Math Reviews)
The purpose of this book is to provide an up-to-date introduction to the time-domain finite element methods for Maxwell's equations involving metamaterials. Since the first successful construction of a metamaterial with both negative permittivity and permeability in 2000, the study of metamaterials has attracted significant attention from researchers across many disciplines. Thanks to enormous efforts on the part of engineers and physicists, metamaterials present great potential applications in antenna and radar design, sub-wavelength imaging, and invisibility cloak design. Hence the efficient simulation of electromagnetic phenomena in metamaterials has become a very important issue and is the subject of this book, in which various metamaterial modeling equations are introduced and justified mathematically. The development and practical implementation of edge finite element methods for metamaterial Maxwell's equations are the main focus of the book. The book finishes with some interesting simulations such as backward wave propagation and time-domain cloaking with metamaterials.
Matrix-analytic and related methods have become recognized as an important and fundamental approach for the mathematical analysis of general classes of complex stochastic models. Research in the area of matrix-analytic and related methods seeks to discover underlying probabilistic structures intrinsic in such stochastic models, develop numerical algorithms for computing functionals (e.g., performance measures) of the underlying stochastic processes, and apply these probabilistic structures and/or computational algorithms within a wide variety of fields. This volume presents recent research results on: the theory, algorithms and methodologies concerning matrix-analytic and related methods in stochastic models; and the application of matrix-analytic and related methods in various fields, which includes but is not limited to computer science and engineering, communication networks and telephony, electrical and industrial engineering, operations research, management science, financial and risk analysis, and bio-statistics. These research studies provide deep insights and understanding of the stochastic models of interest from a mathematics and/or applications perspective, as well as identify directions for future research.
Verena Puchner evaluates and compares statistical matching and selected SAE methods. Due to the fact that poverty estimation at regional level based on EU-SILC samples is not of adequate accuracy, the quality of the estimations should be improved by additionally incorporating micro census data. The aim is to find the best method for the estimation of poverty in terms of small bias and small variance with the aid of a simulated artificial "close-to-reality" population. Variables of interest are imputed into the micro census data sets with the help of the EU-SILC samples through regression models including selected unit-level small area methods and statistical matching methods. Poverty indicators are then estimated. The author evaluates and compares the bias and variance for the direct estimator and the various methods. The variance is desired to be reduced by the larger sample size of the micro census.
Whatdoasupernovaexplosioninouterspace,?owaroundanairfoil and knocking in combustion engines have in common? The physical and chemical mechanisms as well as the sizes of these processes are quite di?erent. So are the motivations for studying them scienti?cally. The super- 8 nova is a thermo-nuclear explosion on a scale of 10 cm. Astrophysicists try to understand them in order to get insight into fundamental properties of the universe. In ?ows around airfoils of commercial airliners at the scale of 3 10 cm shock waves occur that in?uence the stability of the wings as well as fuel consumption in ?ight. This requires appropriate design of the shape and structure of airfoils by engineers. Knocking occurs in combustion, a chemical 1 process, and must be avoided since it damages motors. The scale is 10 cm and these processes must be optimized for e?ciency and environmental conside- tions. The common thread is that the underlying ?uid ?ows may at a certain scale of observation be described by basically the same type of hyperbolic s- tems of partial di?erential equations in divergence form, called conservation laws. Astrophysicists, engineers and mathematicians share a common interest in scienti?c progress on theory for these equations and the development of computational methods for solutions of the equations. Due to their wide applicability in modeling of continua, partial di?erential equationsareamajor?eldofresearchinmathematics. Asubstantialportionof mathematical research is related to the analysis and numerical approximation of solutions to such equations. Hyperbolic conservation laws in two or more spacedimensionsstillposeoneofthemainchallengestomodernmathematics.
Nuclear engineering has undergone extensive progress over the years. In the past century, colossal developments have been made and with specific reference to the mathematical theory and computational science underlying this discipline, advances in areas such as high-order discretization methods, Krylov Methods and Iteration Acceleration have steadily grown. Nuclear Computational Science: A Century in Review addresses these topics and many more; topics which hold special ties to the first half of the century, and topics focused around the unique combination of nuclear engineering, computational science and mathematical theory. Comprising eight chapters, Nuclear Computational Science: A Century in Review incorporates a number of carefully selected issues representing a variety of problems, providing the reader with a wealth of information in both a clear and concise manner. The comprehensive nature of the coverage and the stature of the contributing authors combine to make this a unique landmark publication. Targeting the medium to advanced level academic, this book will appeal to researchers and students with an interest in the progression of mathematical theory and its application to nuclear computational science.
On the occasion of his 60th birthday in October 2009, friends, collaborators, and admirers of Wolfgang Dahmen have organized this volume which touches on va- ous of his research interests. This volume will provide an easy to read excursion into many important topics in applied and computational mathematics. These include nonlinear and adaptive approximation, multivariate splines, subdivision schemes, multiscale and wavelet methods, numerical schemes for partial differential and boundary integral equations, learning theory, and high-dimensional integrals. College Station, Texas, USA Ronald A. DeVore Paderborn, Germany Angela Kunoth June 2009 vii Acknowledgements We are deeply grateful to Dr. Martin Peters and Thanh-Ha Le Thi from Springer for realizing this book project and to Frank Holzwarth for technical support. ix Contents Introduction: Wolfgang Dahmen's mathematical work...1 Ronald A. DeVore and Angela Kunoth 1 Introduction ...1 2 The early years: Classical approximation theory...2 3 Bonn, Bielefeld, Berlin, and multivariate splines ...2 3. 1 Computer aided geometric design ...3 3. 2 Subdivision and wavelets ...4 4 Wavelet and multiscale methods for operator equations...5 4. 1 Multilevel preconditioning ...5 4. 2 Compression of operators...5 5 Adaptive solvers ...6 6 Constructionandimplementation...7 7 Hyperbolic partial differential equations and conservation laws ...8 8 Engineering collaborations ...9 9 Thepresent ...9 10 Finalremarks...10 Publications by Wolfgang Dahmen (as of summer 2009)...10 The way things were in multivariate splines: A personal view...19 Carl de Boor 1 Tensor product spline interpolation...19 2 Quasiinterpolation ...20 3 MultivariateB-splines ...21 4 Kergininterpolation ...
A new starting-point and a new method are requisite, to insure a complete [classi?cation of the Steiner triple systems of order 15]. This method was furnished, and its tedious and di?cult execution und- taken, by Mr. Cole. F. N. Cole, L. D. Cummings, and H. S. White (1917) [129] The history of classifying combinatorial objects is as old as the history of the objects themselves. In the mid-19th century, Kirkman, Steiner, and others became the fathers of modern combinatorics, and their work - on various objects, including (what became later known as) Steiner triple systems - led to several classi?cation results. Almost a century earlier, in 1782, Euler [180] published some results on classifying small Latin squares, but for the ?rst few steps in this direction one should actually go at least as far back as ancient Greece and the proof that there are exactly ?ve Platonic solids. One of the most remarkable achievements in the early, pre-computer era is the classi?cation of the Steiner triple systems of order 15, quoted above. An onerous task that, today, no sensible person would attempt by hand calcu- tion. Because, with the exception of occasional parameters for which com- natorial arguments are e?ective (often to prove nonexistence or uniqueness), classi?cation in general is about algorithms and computation.
The aquatic coastal zone is one of the most challenging targets for environmental remote sensing. Properties such as bottom reflectance, spectrally diverse suspended sediments and phytoplankton communities, diverse benthic communities, and transient events that affect surface reflectance (coastal blooms, runoff, etc.) all combine to produce an optical complexity not seen in terrestrial or open ocean systems. Despite this complexity, remote sensing is proving to be an invaluable tool for "Case 2" waters. This book presents recent advances in coastal remote sensing with an emphasis on applied science and management. Case studies of the operational use of remote sensing in ecosystem studies, monitoring, and interfacing remote sensing/science/management are presented. Spectral signatures of phytoplankton and suspended sediments are discussed in detail with accompanying discussion of why blue water (Case 1) algorithms cannot be applied to Case 2 waters. Audience This book is targeted for scientists and managers interested in using remote sensing in the study or management of aquatic coastal environments. With only limited discussion of optics and theory presented in the book, such researchers might benefit from the detailed presentations of aquatic spectral signatures, and to operational management issues. While not specifically written for remote sensing scientists, it will prove to be a useful reference for this community for the current status of aquatic coastal remote sensing.
This book provides a thorough introduction to the mathematical and algorithmic aspects of certified reduced basis methods for parametrized partial differential equations. Central aspects ranging from model construction, error estimation and computational efficiency to empirical interpolation methods are discussed in detail for coercive problems. More advanced aspects associated with time-dependent problems, non-compliant and non-coercive problems and applications with geometric variation are also discussed as examples.
The standard textbooks on aerodynamics usually omit any discussion of un steady aerodynamics or, at most, consider it only in a single chapter, based on two justifications. The first is that unsteady aerodynamics should be regarded as a specialized subject required "only" in connection with understanding and an alyzing aeroelastic phenomena such as flutter and gust response, and therefore should be dealt with in related specialist books. The second reason appears to be reluctance to discuss aerodynamics with the inclusion of the time-dependent terms in the conservation equations and the boundary conditions for fear that added complications may discourage the reader. We take the opposite view in this book and argue that a full understanding of the physics of lift generation is possible only by considering the unsteady aerody namics of the starting vortex generation process. Furthermore, certain "steady" flows are inherently unsteady in the presence of flow separation, as for example the unsteady flow caused by the Karman vortex shedding downstream of a cylin der and "static" airfoil stall which is an inherently unsteady flow phenomenon. Therefore, it stands to reason that a unified treatment of aerodynamics that yields steady-state aerodynamics as a special case offers advantages. This rea soning is strengthened by the developments in computational fluid dynamics over the past forty years, which showed that accurate steady-state solutions can be obtained efficiently by solving the unsteady flow equations.
Continuamentenasconoifatti 1 aconfusionedelleteorie 2 Carlo Dossi Electromagnetism is withoutany doubt a fascinating area of physics, engineering and mathematics. Since the early pioneeringworks ofAmpere, Faraday, and Maxwell, the scienti?cliteratureon this subject has become immense, and books devoted to almost all of its aspects have been published in the meantime. However, webelievethatthereisstillsomeplacefornew booksdealingwithel- tromagnetism, particularly if they are focused on more speci?c models, or try to mix different levels of analysis: rigorous mathematical results, sound numerical appro- mation schemes, real-life examples from physics and engineering. The complete mathematical description of electromagnetic problems is provided by the celebrated Maxwell equations, a system of partial differential equations - pressed interms ofphysical quantitiesliketheelectric?eld, themagnetic?eld and the currentdensity.Maxwell'scontributiontotheformulationofthese equationsisrelated to the introductionof a speci?c term, called displacement current, that he proposed to add to the set of equations generally assumed to hold at that time, in order to ensure the conservation of the electric charge. The presence of the displacement current permits to describe one of the most - portant phenomenon in electromagnetism, namely, wave propagation; however, in many interesting applications the propagation speed of the wave is very high with respect to the ratio of some typical length and time scale of the considered device, and therefore the dominant aspect becomes the diffusionof the electromagnetic ?elds. When the focus is on diffusioninstead of propagation, from the modelingpointof view this corresponds to neglecting the time derivative of the electric induction (i.e., thedisplacement current introducedby Maxwell)or, alternatively,neglectingthe time derivative of the magnetic induction.
The presence of uncertainty in a system description has always been a critical issue in control. The main objective of Randomized Algorithms for Analysis and Control of Uncertain Systems, with Applications (Second Edition) is to introduce the reader to the fundamentals of probabilistic methods in the analysis and design of systems subject to deterministic and stochastic uncertainty. The approach propounded by this text guarantees a reduction in the computational complexity of classical control algorithms and in the conservativeness of standard robust control techniques. The second edition has been thoroughly updated to reflect recent research and new applications with chapters on statistical learning theory, sequential methods for control and the scenario approach being completely rewritten. Features: * self-contained treatment explaining Monte Carlo and Las Vegas randomized algorithms from their genesis in the principles of probability theory to their use for system analysis; * development of a novel paradigm for (convex and nonconvex) controller synthesis in the presence of uncertainty and in the context of randomized algorithms; * comprehensive treatment of multivariate sample generation techniques, including consideration of the difficulties involved in obtaining identically and independently distributed samples; * applications of randomized algorithms in various endeavours, such as PageRank computation for the Google Web search engine, unmanned aerial vehicle design (both new in the second edition), congestion control of high-speed communications networks and stability of quantized sampled-data systems. Randomized Algorithms for Analysis and Control of Uncertain Systems (second edition) is certain to interest academic researchers and graduate control students working in probabilistic, robust or optimal control methods and control engineers dealing with system uncertainties. The present book is a very timely contribution to the literature. I have no hesitation in asserting that it will remain a widely cited reference work for many years. M. Vidyasagar
This edited volume consists of twelve contributions related to the EU Marie Curie Transfer of Knowledge Project Cooperation of Estonian and Norwegian Scienti c Centres within Mathematics and its Applications, CENS-CMA (2005-2009), - der contract MTKD-CT-2004-013909, which ?nanced exchange visits to and from CENS, the Centre for Nonlinear Studies at the Institute of Cybernetics of Tallinn University of Technology in Estonia. Seven contributions describe research highlights of CENS members, two the work of members of CMA, the Centre of Mathematics for Applications,Univ- sity of Oslo, Norway, as the partner institution of CENS in the Marie Curie project, and three the ?eld of work of foreign research fellows, who visited CENS as part of theproject. Thestructureofthebookre?ectsthedistributionofthetopicsaddressed: Part I Waves in Solids Part II Mesoscopic Theory Part III Exploiting the Dissipation Inequality Part IV Waves in Fluids Part V Mathematical Methods The papers are written in a tutorial style, intended for non-specialist researchers and students, where the authors communicate their own experiences in tackling a problem that is currently of interest in the scienti?c community. The goal was to produce a book, which highlights the importance of applied mathematics and which can be used for educational purposes, such as material for a course or a seminar. To ensure the scienti?c quality of the contributions, each paper was carefully - viewed by two international experts. Special thanks go to all authors and referees, without whom making this book would not have been possible.
Gathering and updating results scattered in journal articles over thirty years, this self-contained monograph gives a comprehensive introduction to the subject. Its goal is to: - motivate and explain the method for general Lie groups, reducing the proof of deep results in invariant analysis to the verification of two formal Lie bracket identities related to the Campbell-Hausdorff formula (the "Kashiwara-Vergne conjecture"); - give a detailed proof of the conjecture for quadratic and solvable Lie algebras, which is relatively elementary; - extend the method to symmetric spaces; here an obstruction appears, embodied in a single remarkable object called an "e-function"; - explain the role of this function in invariant analysis on symmetric spaces, its relation to invariant differential operators, mean value operators and spherical functions; - give an explicit e-function for rank one spaces (the hyperbolic spaces); - construct an e-function for general symmetric spaces, in the spirit of Kashiwara and Vergne's original work for Lie groups. The book includes a complete rewriting of several articles by the author, updated and improved following Alekseev, Meinrenken and Torossian's recent proofs of the conjecture. The chapters are largely independent of each other. Some open problems are suggested to encourage future research. It is aimed at graduate students and researchers with a basic knowledge of Lie theory.
? DoesP=NP. In just ?ve symbols Dick Karp -in 1972-captured one of the deepest and most important questions of all time. When he ?rst wrote his famous paper, I think it's fair to say he did not know the depth and importance of his question. Now over three decades later, we know P=NP is central to our understanding of compu- tion, it is a very hard problem, and its resolution will have potentially tremendous consequences. This book is a collection of some of the most popular posts from my blog- Godel Lost Letter andP=NP-which I started in early 2009. The main thrust of the blog, especially when I started, was to explore various aspects of computational complexity around the famousP=NP question. As I published posts I branched out and covered additional material, sometimes a timely event, sometimes a fun idea, sometimes a new result, and sometimes an old result. I have always tried to make the posts readable by a wide audience, and I believe I have succeeded in doing this.
Research in Bayesian analysis and statistical decision theory is rapidly expanding and diversifying, making it increasingly more difficult for any single researcher to stay up to date on all current research frontiers. This book provides a review of current research challenges and opportunities. While the book can not exhaustively cover all current research areas, it does include some exemplary discussion of most research frontiers. Topics include objective Bayesian inference, shrinkage estimation and other decision based estimation, model selection and testing, nonparametric Bayes, the interface of Bayesian and frequentist inference, data mining and machine learning, methods for categorical and spatio-temporal data analysis and posterior simulation methods. Several major application areas are covered: computer models, Bayesian clinical trial design, epidemiology, phylogenetics, bioinformatics, climate modeling and applications in political science, finance and marketing. As a review of current research in Bayesian analysis the book presents a balance between theory and applications. The lack of a clear demarcation between theoretical and applied research is a reflection of the highly interdisciplinary and often applied nature of research in Bayesian statistics. The book is intended as an update for researchers in Bayesian statistics, including non-statisticians who make use of Bayesian inference to address substantive research questions in other fields. It would also be useful for graduate students and research scholars in statistics or biostatistics who wish to acquaint themselves with current research frontiers.
The Third Conference on Applied Mathematics and Scienti?c Computing took place June 23-27, 2003 on island of Brijuni, Croatia. The main goal of the conference was to interchange ideas among applied mathematicians in the broadest sense both from and outside academia, as well as experts from other areas who apply different mathematical techniques. During the meeting there were invited and contributed talksand software presentations. Invited presentations were given by active researchers from the ?eldsof approximation theory, numerical methods for differential equations and numericallinear algebra. These proceedings contain research and review papers by invited speakers and selected contributed papers from the ?elds of applied and numerical mathematics. A particular aim of the conference was to encourage young scientists to present results of their research. Traditionally, the best presentation given by PhD student was rewarded. This year awardee was Luka Grubisi ? c ' (University of Hagen, Hagen, Germany) and we congratulate him for this achievement. It would be hard to organize the conference without generous support of the Croatian Ministry of Science and Technology and we acknowledge it. We are also indebted to themainorganizer, Department of Mathematics, University of Zagreb.Motivating beautiful nature should bealso mentioned.And,attheend, we are thankful to Drs. JosipTambaca ? and Ivica Nakic ' for giving this book its ?nal shape. |
![]() ![]() You may like...
A Practical Guide to Teaching Foreign…
Norbert Pachler, Ana Redondo
Paperback
R1,365
Discovery Miles 13 650
Network+ Guide to Networks
Jill West, Jean Andrews, …
Paperback
Modeling in Mathematics - Proceedings of…
Johan Gielis, Paolo Emilio Ricci, …
Hardcover
R3,701
Discovery Miles 37 010
Advances in Pure and Applied Algebra…
Ratnesh Kumar Mishra, Manoj Kumar Patel, …
Hardcover
R5,069
Discovery Miles 50 690
Electroencephalography and…
George Dassios, Athanassios S. Fokas
Hardcover
R4,443
Discovery Miles 44 430
Strip-Method for Image and Signal…
Leonid A Mironovsky, Valery A Slaev
Hardcover
R4,215
Discovery Miles 42 150
|