![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Earth & environment > Earth sciences > The hydrosphere > Oceanography (seas)
Lithium isotopes are a relatively novel tracer of present and past silicate weathering processes. Given that silicate weathering is the primary long-term method by which CO2 is removed from the atmosphere, Li isotope research is going through an exciting phase. We show the weathering processes that fractionate dissolved and sedimentary Li isotope ratios, focusing on weathering intensity and clay formation. We then discuss the carbonate and silicate archive potential of past seawater 7Li. These archives have been used to examine Li isotope changes across both short and long timescales. The former can demonstrate the rates at which the climate is stabilised from perturbations via weathering, a fundamental piece of the puzzle of the long-term carbon cycle.
In an age of unprecedented exploration and innovation, our oceans remain largely unknown, and endlessly fascinating: full of mystery, danger, beauty, and inspiration. Bill Streever-a longtime deep-sea diver himself-has masterfully woven together the science and history of Earth's last remaining frontier: the sea. In Oceans Deep celebrates the daring pioneers who tested the limits of what the human body can endure under water: free divers able to reach 300 feet on a single breath; engineers and scientists who uncovered the secrets of decompression; teenagers who built their own diving gear from discarded boilers and garden hoses in the 1930s; saturation divers who lived under water for weeks at a time in the 1960s; and the trailblazing men who voluntarily breathed experimental gases at pressures sufficient to trigger insanity.Tracing both the little-known history and exciting future of how we travel and study the depths, Streever's captivating journey includes seventeenth-century leather-hulled submarines, their nuclear-powered descendants, a workshop where luxury submersibles are built for billionaire clients, and robots capable of roving unsupervised between continents, revolutionizing access to the ocean. In this far-flung trip to the wild, night-dark place of shipwrecks, trapped submariners, oil wells, innovative technologies, and people willing to risk their lives while challenging the deep, we discover all the adventures our seas have to offer-and why they are in such dire need of conservation.
This two-volume work presents state-of-the-art mathematical theories and results on infinite-dimensional dynamical systems. Inertial manifolds, approximate inertial manifolds, discrete attractors and the dynamics of small dissipation are discussed in detail. The unique combination of mathematical rigor and physical background makes this work an essential reference for researchers and graduate students in applied mathematics and physics. The main emphasis in the first volume is on the mathematical analysis of attractors and inertial manifolds. This volume deals with the existence of global attractors, inertial manifolds and with the estimation of Hausdorff fractal dimension for some dissipative nonlinear evolution equations in modern physics. Known as well as many new results about the existence, regularity and properties of inertial manifolds and approximate inertial manifolds are also presented in the first volume. The second volume will be devoted to modern analytical tools and methods in infinite-dimensional dynamical systems. Contents Attractor and its dimension estimation Inertial manifold The approximate inertial manifold
In the modern marine environment, barium isotope ( 138Ba) variations are primarily driven by barite cycling-barite incorporates 'light' Ba isotopes from solution, rendering the residual Ba reservoir enriched in 'heavy' Ba isotopes by a complementary amount. Since the processes of barite precipitation and dissolution are vertically segregated and spatially heterogeneous, barite cycling drives systematic variations in the barium isotope composition of seawater and sediments. This Element examines these variations; evaluates their global, regional, local, and geological controls; and, explores how 138Ba can be exploited to constrain the origin of enigmatic sedimentary sulfates and to study marine biogeochemistry over Earth's history.
Diverse and abundant lipid biomarker assemblages have been reported from a variety of Proterozoic marine environments from the careful analysis of well-preserved rocks and oils. These molecular biosignatures have provided unique insights into the communities and the environmental conditions which characterized the Proterozoic marine biosphere. We summarize some of the major temporal patterns evident in Proterozoic lipid biomarkers found to date, whilst emphasizing the scale of local heterogeneity found within Neoproterozoic oceans from region to region, and their relationship with the evolving ecological, climatic and ocean/atmospheric redox conditions. Short commentaries on a selection of papers published from the last 15 years of biomarker literature are given. The focus here is on key studies, highlighted for further reading, which have helped to better constrain the timing of the ecological expansion of eukaryotes in Proterozoic oceans or which have impacted on our knowledge of the biological sources of Proterozoic biomarkers.
Geophysical fluid dynamics examines the dynamics of stratified and turbulent motion of fluids in the ocean and outer core, and of gases in the atmosphere. This book explains key notions and fundamental processes of the dynamics of large- and medium-scale atmospheric and oceanic motions from the unifying viewpoint of the rotating shallow water model. The model plays a distinguished role in geophysical fluid dynamics. It has been used for about a century for conceptual understanding of various phenomena, for elaboration of approaches and methods to be used later in more complete models, for development and testing of numerical codes, and for many other purposes. In spite of its simplicity, the model grasps essential features of the complete "primitive equations" models, being their vertically averaged version, and gives an intuitive representation and clear vision of principal dynamical processes. This book is a combination of a course on geophysical fluid dynamics (Part 1), with explanations and illustrations of fundamentals, and problems, as well as a more advanced treatise of a range of principal dynamical phenomena (Part 2), including recently arisen approaches and applications (Part 3). Mathematics and physics underlying dynamical phenomena are explained, with necessary demonstrations. Yet, an important goal of the book is to develop the reader's physical intuition and qualitative insights.
In one form or another, iron speciation has had a long history as a paleoredox proxy. The technique has been refined considerably over the years, and the most recent scheme is unique in its potential to distinguish three major oceanic redox states - oxygenated, ferruginous and euxinic. This Element covers the theory behind the proxy, methods involved in applying the technique, and potential complications in interpreting Fe speciation data. A series of case studies are also provided, which highlight how more advanced consideration of the data, often in concert with other techniques, can provide unprecedented insight into the redox state of ancient oceans.
Paleosols formed in direct contact with the Earth's atmosphere, so they can record the composition of the atmosphere through weathering processes and products. Herein we critically review a variety of different approaches for reconstructing atmospheric O2 and CO2 over the past three billion years. Paleosols indicate relatively low CO2 over that time, requiring additional greenhouse forcing to overcome the 'faint young Sun' paradox in the Archean and Mesoproterozoic, as well as low O2 levels until the Neoproterozoic. Emerging techniques will revise the history of Earth's atmosphere further and may provide a window into atmospheric evolution on other planets.
The stable chromium (Cr) isotope system has emerged over the past decade as a new tool to track changes in the amount of oxygen in earth's ocean-atmosphere system. Much of the initial foundation for using Cr isotopes ( 53Cr) as a paleoredox proxy has required recent revision. However, the basic idea behind using Cr isotopes as redox tracers is straightforward-the largest isotope fractionations are redox-dependent and occur during partial reduction of Cr(VI). As such, Cr isotopic signatures can provide novel insights into Cr redox cycling in both marine and terrestrial settings. Critically, the Cr isotope system-unlike many other trace metal proxies-can respond to short-term redox perturbations (e.g., on timescales characteristic of Pleistocene glacial-interglacial cycles). The Cr isotope system can also be used to probe the earth's long-term atmospheric oxygenation, pointing towards low but likely dynamic oxygen levels for the majority of Earth's history.
Nitrogen is an essential nutrient for life, and its sources and cycling have varied over earth history. Stable isotope ratios of nitrogen compounds (expressed as 15N, in 0/00) are preserved in the sedimentary record and track these changes, providing important insights into associated biogeochemical feedbacks. Here we review the use of nitrogen stable isotope geochemistry in unravelling the evolution of the global N cycle in deep time. We highlight difficulties with preservation, unambiguous interpretations, and local versus global effects. We end with several case studies illustrating how depositional and stratigraphic context is crucial in reliably interpreting 15N records in ancient marine sediments, both in ancient anoxic (Archean) and more recent well oxygenated (Phanerozoic) environments.
Chemical Oceanography: Element Fluxes in the Sea focuses on the use of chemical distributions to understand mechanisms of physical, chemical, biological, and geological processes in the ocean. After an introduction describing observed chemical concentrations, chapters focus on using chemical tracers to determine fluxes on a variety of time scales. Long-term chemical cycles are dominated by exchanges between seawater and land, sediments, and underwater volcanoes. Biological and ocean mixing processes dominate internal chemical cycles that respond to changes on hundred- to thousand-year time scales. Stable and radioactive isotopes trace the fluxes of nutrients and carbon to quantify the rates and mechanisms of chemical cycles. Anthropogenic influences - which have grown to be of the same magnitude as some natural cycles - are a specific focus throughout the book. Discussion boxes and quantitative problems help instructors to deepen student learning. Appendices enhance the book's utility as a reference text for students and researchers.
Vanadium isotope ratios (51V/50V) have potential to provide information about changes in past ocean oxygen contents. In particular, V isotopes may find utility in tracing variations at non-zero oxygen concentrations because the redox couple that controls V elemental and isotopic abundances in seawater (vanadate-vanadyl) appears to operate around 10M O2. This characteristic sets V isotopes apart from many other metal isotope redox proxies that require more reducing conditions to register significant changes in their isotope budgets. The oxygen abundance sensitivity range of V isotopes suggests that this paleoproxy could be particularly useful in tracing marine oxygenation changes throughout the Phanerozoic and potentially beyond.
Reconstruction of ocean paleoproductivity and paleochemistry is paramount to understanding global biogeochemical cycles such as the carbon, oxygen and sulfur cycles and the responses of these cycles to changes in climate and tectonics. Paleo-reconstruction involves the application of various tracers that record seawater compositions, which in turn may be used to infer oceanic processes. Several important tracers are incorporated into pelagic barite, an authigenic mineral that forms in the water column. Here we summarize the utility of pelagic barite for the reconstruction of export production and as a recorder of seawater S, O, Sr, Ca and Ba.
A NEW STATESMAN BOOK OF THE YEAR AN OBSERVER BEST ART BOOK OF 2021 SHORTLISTED FOR THE RATHBONES FOLIO PRIZE 2022 'This is a wonderful book. A lyrical journey into the natural and unnatural world' Patti Smith 'Everything Philip Hoare writes is bewitching' Olivia Laing An illuminating exploration of the intersection between life, art and the sea from the award-winning author of Leviathan. Albrecht Durer changed the way we saw nature through art. From his prints in 1498 of the plague ridden Apocalypse - the first works mass produced by any artist - to his hyper-real images of animals and plants, his art was a revelation: it showed us who we are but it also foresaw our future. It is a vision that remains startlingly powerful and seductive, even now. In Albert & the Whale, Philip Hoare sets out to discover why Durer's art endures. He encounters medieval alchemists and modernist poets, eccentric emperors and queer soul rebels, ambassadorial whales and enigmatic pop artists. He witnesses the miraculous birth of Durer's fantastical rhinoceros and his hermaphroditic hare, and he traces the fate of the star-crossed leviathan that the artist pursued. And as the author swims from Europe to America and beyond, these prophetic artists and downed angels provoke awkward questions. What is natural or unnatural? Is art a fatal contract? Or does it in fact have the power to save us? With its wild and watery adventures, its witty accounts of amazing cultural lives and its delight in the fragile beauty of the natural world, Albert & the Whale offers glorious, inspiring insights into a great artist, and his unerring, sometimes disturbing gaze.
"Understanding Sea-Level Rise and Variability" identifies the major impacts of sea-level rise, presents up-to-date assessments of past sea-level change, thoroughly explores all of the factors contributing to sea-level rise, and explores how sea-level extreme events might change. It identifies what is known in each area and what research and observations are required to reduce the uncertainties in our understanding of sea-level rise so that more reliable future projections can be made. A synthesis of findings provides a concise summary of past, present and future sea-level rise and its impacts on society. Key Features: Book includes contributions from a range of international sea level experts Multidisciplinary Four color throughout Describes the limits of our understanding of this crucial issue as well as pointing to directions for future research The book is for everyone interested in sea-level rise and its impacts, including policy makers, research funders, scientists, students, coastal managers and engineers. Additional resources for this book can be found at: http: //www.wiley.com/go/church/sealevel.
The use of the trace element content of sedimentary pyrite as a proxy for the trace element composition of past oceans has recently emerged. The pyrite proxy has several potential advantages over bulk sample analysis: preservation through metamorphism; little dilution during analysis (samples are ablated not dissolved, allowing for the less abundant elements commonly held in the sulfide fraction to be investigated as proxies); accurate measurement of several elements simultaneously; the ability to screen sediments for hydrothermal overprint; and the technique can give information regarding trace element availably at multiple stages of diagenesis. Because of these multiple strengths, the pyrite trace element proxy is a valuable potential addition to the paleo-ocean chemistry tool kit.
This open access book serves as a reference for the key elements and their significance of Klaus Hasselmann's work on climate science and on ocean wave research, all based on a rigorous and deeply physical thinking. It summarizes the original articles (mostly from the 1970 and 1980s; some of which are hard to find nowadays) and brings them in a present-day context. From 1975 until 2000, he was (founding) Director of the Max Planck Institute of Meteorology, which he made to one of the world-leading academic institutions. He first made the issue of anthropogenic climate change accessible to analysis and prediction and later transformed climate science into a significant factor in forming public policy. The book is written by co-workers and colleagues of Klaus Hasselmann, who-many under his immediate supervision-joined him in this effort. With this background, they present the key achievements and assess the significance of these for the present state of knowledge and scientific practice.
The TEX86 paleothermometer is based upon the distribution of archaeal membrane lipids ('GDGTs') in marine sediments. GDGTs are ubiquitous, abundant and relatively resistant to degradation; as such, the TEX86 paleothermometer has been used to reconstruct sea surface temperature (SST) during the Cenozoic and early Mesozoic. We review the principles of the TEX86 proxy and developments made over the last two decades. We also discuss its application as a paleotemperature proxy and explore existing challenges and limitations.
The attraction of selenium isotopes as a paleoenvironmental tracer lies in the high redox potential of selenium oxyanions (SeIV and SeVI), the dominant species in the modern ocean. The largest isotopic fractionations occur during oxyanion reduction, which makes selenium isotopes a sensitive proxy for the redox evolution of our planet. As a case study we review existing data from the Neoarchean and Paleoproterozoic, which show that significant isotopic fractionations are absent until 2.5 Ga, and prolonged isotopic deviations only appear around 2.3 Ga. Selenium isotopes have thus begun to reveal complex spatiotemporal redox patterns not reflected in other proxies.
"It came from nowhere, snapping giant ships in two. No one believed the survivors . . . until now" -New Scientist magazine cover, June 30, 2001 Rogue waves are the focus of this book. They are among the waves naturally - served by people on the sea surface that represent an inseparable feature of the Ocean. Rogue waves appear from nowhere, cause danger, and disappear at once. They may occur on the surface of a relatively calm sea and not reach very high amplitudes, but still be fatal for ships and crew due to their unexpectedness and abnormal features. Seamen are known to be unsurpassed authors of exciting and horrifying stories about the sea and sea waves. This could explain why, despite the increasing number of documented cases, that sailors' observations of "walls of - ter" have been considered ctitious for a while. These stories are now addressed again due to the amount of doubtless evidence of the existence of the phenomenon, but still without suf cient information to - able interested researchers and engineers to completely understand it. The billows appear suddenly, exceeding the surrounding waves by two times their size and more, and obtaining many names: abnormal, exceptional, extreme, giant, huge, s- den, episodic, freak, monster, rogue, vicious, killer, mad- or rabid-dog waves, cape rollers, holes in the sea, walls of water, three sisters, etc.
Tracking initial ocean (de)oxygenation is critical to better constrain the coevolution of life and environment. Development of thallium isotopes has provided evidence to track the global manganese oxide burial which responds to early (de)oxygenation for short-term climate events. Modern oxic seawater thallium isotope values are recorded in organic-rich sediments deposited below an anoxic water column. An expansion of reducing conditions decrease manganese oxide burial and shifts the seawater thallium isotope composition more positive. Recent work documents that thallium isotopes are perturbed prior to carbon isotope excursions, suggesting ocean deoxygenation is a precursor for increased organic carbon burial. This Element provides an introduction to the application of thallium isotopes, case studies, and future directions. |
You may like...
World Seas: An Environmental Evaluation…
Charles Sheppard
Paperback
Oceanography of the Mediterranean Sea…
Katrin Schroeder, Jacopo Chiggiato
Paperback
R3,520
Discovery Miles 35 200
Cape Cod Bay - A History of Salt & Sea
Theresa Mitchell Barbo
Paperback
|