![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Earth & environment > Earth sciences > The hydrosphere > Oceanography (seas)
Early in 1979, a group of wave researchers proposed a wave model inter comparison study to clarify the interrelations existing among the various wave models which have been developed in past years for real-time wave forecasting, wave statistics compilations, or hindcast case studies. The idea was immediately welcomed by the wave modeling community, and, finally, nine wave modeling groups from the United States, Japan, and Europe participated in the exercise. The principal results of this work are presented here jointly by the Sea Wave Modeling Project (swAMP) Group (the members of which are listed in Appendix A). Descriptions of the models used in the study are given in Part II of this volume. A more complete documentation of the entire set of numerical experiments is given in Part 2 of the Sea Wave Modeling Project (SWAMP group, 1982). The main purpose of the intercomparison study was to test our present understanding of the physics of . wind-generated surface waves from the viewpoint of wave modeling. Specifically, we wished to clarify the basic interdependence between understanding the physics of surface waves, repre senting the physics numerically, and predicting quantitatively the detailed space-time evolution of a two-dimensional surface wave spectrum for a given wind field. It was not our intent to carry out a model competition. In this sense there were no winners or losers: all models could claim specific strong points, and all displayed weaknesses in some areas.
The Second Edition of The Drift of Sea Ice presents the fundamental laws of sea ice drift which come from the material properties of sea ice and the basic laws of mechanics. The resulting system of equations is analysed for the general properties of sea ice drift, the free drift model and analytical models for ice drift in the presence of internal friction, and the construction of numerical ice drift models is detailed. This second edition of a much lauded work, unique on this topic in the English language, has been revised, updated and expanded with much new information and outlines recent results, in particular in relation to the climate problem, mathematical modelling and ice engineering applications. The current book presents the theory, observations, mathematical modelling techniques, and applications of sea ice drift science. The theory is presented from the beginning on a graduate student level, so that students and researchers coming from other fields such as physical oceanography, meteorology, physics, engineering, environmental sciences or geography can use the book as a source book or self-study material. First the drift ice material is presented ending with the concept of 'ice state' - the relevant properties in sea ice dynamics. Ice kinematics observations are widely presented with the mathematical analysis methods, and thereafter come drift ice rheology - to close the triangle material - kinematics - stress. The momentum equation of sea ice is derived in detail and its general properties are carefully analysed. Then follow two chapters on analytical models: free drift and drift in the presence of internal friction: These are very important tools in understanding the dynamical behaviour of sea ice. The last topical chapter is numerical models, which are the modern tool to solve ice dynamics problem in short term and long term problems. The closing chapter summarises sea ice dynamics applications and the need of sea ice dynamic knowledge and gives some final remarks on the future of this branch of science.
This monograph develops the theory of noise mechanisms and measurements, and describes general noise characteristics and computational methods. The vast ambient noise literature is concisely summarized using theory combined with key representative results. The air sea boundary interaction zone is described in terms of nondimensional variables requisite for future experiments. Noise field coherency, rare directional measurements, and unique basin scale computations and methods are presented. The use of satellite measurements in these basin scale models is demonstrated. A series of appendices provides in-depth mathematical treatments which will be of interest to graduate students and active researchers.
This book gives a comprehensive overview of our present understanding of the Earth's cryosphere, its changes and their consequences for mean sea level changes. Since the middle of the 19th century there has been an increase of sea level height by 20-25 cm. Some 8-10 cm of this is due to net losses from glaciers, the remainder being due to mass losses from land ice and thermal expansion of the oceans. The mean sea level rise is slowly accelerating; at present it is some 3 mm/year. Recent space observations made by the GRACE satellite combined with ocean temperature and volume measurements have enabled the separate contributions to sea level rise from melting ice and from thermal expansion to be better estimated. The estimation of mean sea level change is complicated by changes in land level due to tectonic effects and to ongoing changes following the latest major glaciation. The book gives an up-to-date survey of our present knowledge of this crucial subject.
The Baltic Sea is an area extensively explored by the oceanographers. Hence it is one of the most often described marine areas in the scientific literature. However, there are still several fields which are poorly investigated and reported by scientists. One of them is the carbon cycle of the Baltic Sea. Although it is believed the shelf seas are responsible for about 20% of all marine carbon dioxide uptake, while they constitute only 7% of the whole sea surface, still a scientific debate exists on the role of the Baltic Sea in the global carbon cycle. "Carbon cycle of the Baltic Sea" is intended to be a comprehensive presentation and discussion of state of the art research by biogeochemists involved in the Baltic Sea carbon cycle research. This work presents both qualitative and quantitative descriptions of the main carbon flows in the Baltic Sea as well as their possible shifts induced by climatic and global change.
The dynamics of flows in density-stratified fluids has been and remains now an important topic for scientific enquiry. Such flows arise in many contexts, ranging from industrial settings to the oceanic and atmospheric environments. It is the latter topic which is the focus of this book. Both the ocean and atmosphere are characterised by the basic vertical density stratification, and this feature can affect the dynamics on all scales ranging from the micro-scale to the planetary scale. The aim of this book is to provide a "state-of-the-art" account of stratified flows as they are relevant to the ocean and atmosphere with a primary focus on meso-scale phenomena; that is, on phenomena whose time and space scales are such that the density stratification is a dominant effect, so that frictional and diffusive effects on the one hand and the effects of the earth's rotation on the other hand can be regarded as of less importance. This in turn leads to an emphasis on internal waves.
In recent years, rapid scientific advances have been shattering classical concepts of oceanic trace metals concentrations. Most of the data gathered before the mid-1970s have had to be discarded. Possible associations of organic and inorganic ligands with the metals were throwing views of metal speciation into great uncertainty. Biological effects of metals need to be re-examined after recent revelations of unsuspected metal contaminations in methodology. The investigations appear chaotic, yet exciting. It implies that a new order is going to replace the past. Now, an opportunity opens its door to a brave new world for the young generation of scientists to put metal chemistries in the oceans into perspectiveo This N. AoToO. International Conference on "Trace Metals in Sea Water" hoped to catalyze this exciting process of unifying various aspects of trace metals in sea water in future years o The Conference, in the form of an Advanced Research Institute supported by the Scientific Affairs Division of NoAoT. O. supple mented by further assistance of the UoS. Office of Naval "Research, was held at the "Ettore Majorana" Center for Scientific Culture in the medieval town of Erice on the island of Sicily, Italy from March 30 to April 3, 1981. It was the first organized gathering of international scientists in this specialized field. Seventy scientists with various expertise in different aspects of the subject were present: including those from NoAoT. Oo countries (Canada, France, F. R. Germany, Greece, Iceland, Italy, U. K.
Against the backdrop of the environmental setting of the subequatorial NE Pacific abyssal plain, the book will characterise the meiobenthos as an ecological category in the deep sea and introduce research lines meiobenthic studies are applied to, including environmental assessments of human-induced disturbance of the deep seafloor. It will proceed to present an overview of the current knowledge on the meiobenthos of the area of concern and will discuss general considerations regarding the use of meiobenthos as indicator of seafloor disturbance. It will address the question of deep-sea mineral resources development versus benthic communities and will present an overview of field studies ("experiments") aimed at assessing the magnitude of potential impact associated with seafloor resources development (polymetallic nodule mining in particular) in the Pacific.
This trip backward in time capsulizes in a general way the geologic development of the area that is now northern Alaska. The Cretaceous through Recent history is predominantly one of erosion of the ancient Brooks Range and filling of the Colville Geosyncline under processes like those in Operation today. All the rocks older than Jurassic, however, were deposited far from their present sites. One of the intriguing tectonic puzzles involves the geographic positions and relative timing of events that occurred during the orogeny that built the Brooks Range. I suggest that pre-Cretaceous deposition took place far to the north along the western margin of the Caledonides. Subsequently, the region that is now northern Alaska moved southward and impinged upon a northward moving plate, or plates, from the Pacific region. Interactions between these two major parts of the earth's crust produced the Brooks Range during the Jurassic. Later developments reflect continuing readjustments of the northern third of of thrust Alaska as southward movement was dissipated in diverse systems faulting and lateral displacement. ACKNOWLEDGMENTS I am indebted to many colleagues who, during the past 30 years, shared with me the excitement and pleasures of exploring the geology of northern Alaska. Among these are W. P. Brosge, H. N. Reiser, R. L. Detterman, A. K. Armstrong, A. L. Bowsher, E. G. Sable, I. L. Tailleur, C. G. Mull, M. D. Mangus, A. H. Lachenbruch, M. C. Lachenbruch, R. L. Morris, C. J.
This IMA Volume in Mathematics and its Applications NONLINEAR PHENOMENA IN ATMOSPHERIC AND OCEANIC SCIENCES is based on the proceedings of a workshop which was an integral part of the 1989-90 IMA program on "Dynamical Systems and their Applications". The aim of this workshop was to promote cross-fertilization of ideas between investigators who are using nonlinear dynamical systems and numerical simulations to study the earth's atmosphere and oceans. We thank George F. Carnevale, Shui-Nee Chow, Martin Golubitsky, Richard McGehee, Raymond Pierrehumbert and George R. Sell for organizing the meeting. We especially thank George F. Carnevale and Raymond Pierrehumbert for editing the proceedings. We also take this opportunity to thank those agencies whose financial support made the workshop possible: the Army Research Office, the Minnesota Supercom puter Institute, the National Science Foundation, and the Office of Naval Research. A vner Friedman Willard Miller, Jr. PREFACE When we took on this project, we did not realize we were organizing a workshop on two-dimensional fluid dynamics. The participants who were invited had been working on a broad range of mathematically challenging problems related to atmo spheric and oceanic phenomena, and they were given carte blanche to talk about their current interests. With few exceptions, the favored subject involved one or another aspect of fluid flow in two dimensions.
The text of the Persian poet Rum - - ?, written some eight centuries ago, and reproduced at the beginning of this book is still relevant to many of our pursuits of knowledge, not least of turbulence. The text illustrates the inability people have in seeing the whole thing, the 'big picture'. Everybody looks into the problem from his/her vi- point, and that leads to disagreement and controversy. If we could see the whole thing, our understanding would become complete and there would be no cont- versy. The turbulent motion of the atmosphere and oceans, at the heart of the observed general circulation, is undoubtedly very complex and dif?cult to understand in its entirety. Even 'bare' turbulence, without rotation and strati?cation whose effects are paramount in the atmosphere and oceans, still poses great fundamental ch- lenges for understanding after a century of research. Rotating strati?ed turbulence is a relatively new research topic. It is also far richer, exhibiting a host of distinct wave types interacting in a complicated and often subtle way with long-lived - herent structures such as jets or currents and vortices. All of this is tied together by basic ?uid-dynamical nonlinearity, and this gives rise to a multitude of phen- ena: spontaneous wave emission, wave-induced transport, both direct and inverse energy scale cascades, lateral and vertical anisotropy, fronts and transport barriers, anomalous transport in coherent vortices, and a very wide range of dynamical and thermodynamical instabilities.
Although there are some biological processes that are supported by
UV radiation, most organisms are stressed by it in various ways,
e.g. through DNA damage.
While various volumes havepreviously been de- bable, answer to this question lies in the obser- vation that while whitecaps are some of the voted to such topics as droplets and bubbles, it is our conceit that this is the first volume dedi- most apparent features associated with high sea cated to the description of the phenomenon states, they have also pro\'ed to be someofthe of oceanic whitecapping, and to a considera- most difficult objects to measure and describe tion of the role these whitecapsplay in satellite quantitatively, and while scientists as a group marine remote sensing, in sea-salt aerosol gene- may like to tackle difficult problems, we ration, and in a broad range ofother sea surface should not be accused ofundue modesty when processes. This observation, reOecting in part we observe that as a group we also have a finite the relatively modest attention paid until re- tolerance for frustration and ahuman,perhaps cently by the scientific community to white- aesthetic, prejudice in favour ofnatural pheno- caps, is noteworthy when one considers that mena that are amcnable to detailed description. collectively whitecaps are to thegeneral public It is appropriate to note that Professor Wood- one of the most striking features of the sea- cock, to whom this volume is dedicated, ap- scape.
This first volume in the treatise on the Physics of Lakes deals with the formulation of the mathematical and physical background. A large number of lakes on Earth are described, presenting their morphology as well as the causes of their response to the driving environment. Because the physics of lakes cannot be described without the language used in mathematics, these subjects are introduced first by using the simplest approach and with utmost care, assuming only a limited college knowledge of classical Newtonian physics, and continues with increasing complexity and elegance, starting with the fundamental equations of Lake Hydrodynamics in the form of 'primitive equations' and leading to a detailed treatment of angular momentum and vorticity. Following the presentation of these fundamentals turbulence modeling is introduced with Reynolds, Favre and other non-ergodic filters. The derivation of averaged field equations is presented with different closure schemes, including the k- model for a Boussinesq fluid and early anisotropic closure schemes. This is followed by expositions of surface gravity waves without rotation and an analysis of the role played by the distribution of mass within water bodies on the Earth, leading to a study of internal waves. The vertical structure of wind-induced currents in homogeneous and stratified waters and the Ekman theory and some of its extensions close this first volume of Physics of Lakes. The last chapter collects formulas for the phenomenological coefficients of water.
The. Advanced Research Inst i tute (ARI) on Dynamic Processes in the Chemistry of the Upper OCean had its origins in discussions by the NATO Special Programme Panel on Marine Sciences during 1978 when a wide range of topics for future ARIs was being considered. What was then envisaged was a workshop on chemical aspects of the oceanic mixed layer, at which consider ation would be given to the inputs, cycling and removal of material, and the problems involved in the quantitative assessment of fluxes. It was realised that any attempt to model chemical processes would need the active collaboration of workers from other fields, especially physical oceano graphers concerned with air-sea interaction and turbulence, and biological oceano raphers with expertise in primary productivity and the cycling of particulate and dissolved organic material. As plans for the ARI developed further a somewhat different emphasis emerged, focused on the question as to how chemists should set about observing an environment as variable and dynamic as the upper ocean and selecting the appropriate scales for the framework of measurements to study a particular process, especially in the light of current knowledge of physical processes of transport and mixing. It was plain that the capabil ity of physical oceanographic methods to resolve differences on small spatial and temporal scales is considerably ahead of the capabilities of biologists and chemists who rely upon discrete sampling and complex lab oratory manipulations in order to obtain most of their data."
Fractal geometry allows the description of natural patterns and the establishment and testing of models of pattern formation. In particular, it is a tool for geoscientists. The aim of this volume is to give an overview of the applications of fractal geometry and the theory of dynamic systems in the geosciences. The state of the art is presented and the reader obtains an impression of the variety of fields for which fractal geometry is a useful tool and of the different methods of fractal geometry which can be applied. In addition to specific information about new applications of fractal geometry in structural geology, physics of the solid earth, and mineralogy, proposals and ideas about how fractal geometry can be applied in the reader's field of studies will be put forward.
One of the most important issues in current debates on climate change is sea level rise. Hardly a day goes by when there is not a newspaper article, TV or radio presentation on the topic. Nearly half of the world's population live on or near the coast, so there is real concern about the impact that future sea level rise may have. Yet media predictions of future changes tend to be depicted in a sensationalist manner and quite often the explanations of the science of sea level change bear little relation to reality. This book details the history of scientific discoveries that have explained the patterns of sea level change that have taken place across the Earth in the past. Alastair Dawson introduces the many complex processes, some of which are not well-known, that influence patterns and rates of relative sea level change. Using this knowledge, the reader is much better placed to form a clearer perspective on what the future is likely to have in store for sea levels on Earth.Alastair Dawson first addresses some of the most important misconceptions about the topic of sea level change. He then explains the principal causes of sea level change focusing on the key issues of vertical land movements and changes in global ocean volume. He explores the key areas of science that we need to understand in order to evaluate competing assertions of how sea level is likely to change in the future. He also shows how, remarkably, the melting history of the last great ice sheets on Earth is still playing an important part in contributing to present patterns of sea level change. The book concludes with a consideration of the rates and patterns of sea level change that have occurred over the last century and demonstrates how satellite technology is presently contributing new ways of understanding of present patterns of change.
The phenomenon of sound transmissions through marine sediments is of extreme interest to both the United States civilian and Navy research communities. Both communities have conducted research within the field of this phenomenon approaching it from different perspectives. The academic research community has approached it as a technique for studying sedimentary and crustal structures of the ocean basins. The Navy research community has approached it as an additional variable in the predictability of sound trans mission through oceanic waters. In order to join these diverse talents, with the principal aim of bringing into sharp focus the state-of-the-science in the problems relating to the behavior of sound in marine sediments, the Office of Naval Research organized and sponsored an invited symposium on this subject. The papers published in this volume are the results of this symposium and mark the frontiers in the state-of-the-art. The symposia series were based on five research areas identified by ONR as being particularly suitable for critical review and for the appraisal of future research trends. These areas include: 1. Physics of Sound in Marine Sediments, 2. Physical and Engineering Properties of Deep-Sea Sediments, 3. The Role of Bottom Currents in Sea Floor Geological Processes, 4. Nephelometry and the Optical Properties of the Ocean I'laters, S. Natural Gases in Marine Sediments and Their Mode of Distribution. These five areas also form some of the research priorities of the ONR program in Marine Geology and Geophysics."
Waves critically affect man in coastal regions, including the open coasts and adjacent continental shelves. Preventing beach erosion, designing and building structures, designing and operating ships, providing marine forecasts, and coastal planning are but a few examples of projects for which extensive information about wave conditions is critical. Scientific studies, especially those in volving coastal processes and the development of better wave prediction models, also require wave condition information. How ever, wave conditions along and off the coasts of the United States have not been adequately determined. The main categories of available wave data are visual estimates of wave conditions made from ships at sea, scientific measurements of waves made for short time periods at specific locations, and a small number of long-term measurements made from piers or offshore platforms. With these considerations in mind, the National Ocean Survey of the National Oceanic and Atmospheric Administration sponsored the Ocean Wave Climate Symposium at Herndon, Virginia, July 12-14, 1977. This volume contains papers presented at this symposium. A goal of the symposium was to establish the foundations for a com prehensive and far-sighted wave measurement and analysis program to fully describe the coastal wave climate of the United States. Emphasis was placed on ocean engineering and scientific uses of wave data, existing wave monitoring programs, and modern measure ment techniques which may provide currently needed data."
Shear waves and closely related interface waves (Rayleigh, Stoneley and Scholte) play an important role in many areas of engineering, geophysics and underwater acoustics. In some cases interest is focused on large-amplitude waves of low frequency such as those associ ated with earthquakes and nuclear explosions; in other cases low amplitude waves, which have often travelled great distances through the sediment, are of interest. Both low and high frequency shear and interface waves are often used for seafloor probing and sediment characterization. As a result of the wide spectrum of different interests, different disciplines have developed lines of research and a literature particularly suited to their own problems. For example water-column acousticians view the seafloor sediment as the lower boundary of their domain and are interested in shear and interface waves in the near bottom sediments mainly from the standpoint of how they influence absorption and reflection at this boundary. On the other hand, geophysicists seeking deep oil deposits are interested in the maximum penetration into the sediments and the tell-tale characteristics of the seismic waves that have encountered potential oil or gas bearing strata. In another area, geotechnical engineers use shear and interface waves to study soil properties necessary for the design and the siting of seafloor structures.
Recent decades have seen a degradation of the environmental quality in semi-enclosed seas, which are particularly sensitive to population pressures due to their naturally low flushing rates related to their geometry. The North Sea, Baltic Sea and the Black Sea are amongst the most seriously threatened seas in the Euro-Asian region. Each semi-enclosed sea has a distinct pattern of circulation, transport, mixing, associated with the particular geometry, topography, boundary processes, interior stratification, atmospheric forcing, ice fonnation, straits / sill controls, and the specific inputs of freshwater, nutrients and pollutants. The workshop investigated the distinctive physical and ecological characteristics of the three seas in a comparative manner, in order to identify the types of driving forces and dynamic controls operating on productivity, nutrient cycling, physical transport and mixing mechanisms. A comparative study of these controlling mechanisms would allow us to better understand ecosystem sensitivity in these different environments. The workshop presentations highlighted the complexity of the semi-enclosed seas related to the interaction amongst the physical, chemical and biological fields, and differences in time and space scales in each of the systems. Further, a strong climate signal exists in these systems, manifest in the interannual, interdecadal and longer term variability. Part of the variability appears connected with background climatic variability. |
You may like...
Handbook of Electron Spin Resonance…
Charles P., Jr. Poole, Horacio A. Farach
Hardcover
R5,360
Discovery Miles 53 600
Advances in Acoustic Microscopy - Volume…
Andrew Briggs, Walter Arnold
Hardcover
R5,179
Discovery Miles 51 790
Layered Two-Dimensional Heterostructures…
Sergio C. De La Barrera
Hardcover
R3,236
Discovery Miles 32 360
Spectroscopic Properties of Inorganic…
Jack Yarwood, Richard Douthwaite, …
Hardcover
R10,763
Discovery Miles 107 630
|