![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Organic chemistry
"Organic Syntheses Based on Named Reactions" is an indispensable
reference companion for chemistry students and researchers.
Building on Hassner & Stumer s highly regarded 2e, this new
work reviews 750 reactions, with over 100 new stereoselective and
regioselective reactions. Each A-Z entry provides a carefully
condensed summary of valuable information that a chemist needs to
understand and utilize these fundamental reactions in their work,
including brief practical details. The book is illustrated with
real synthetic examples from the literature and about 3,400
references to the primary literature to aid further reading.
Extensive indexes (name, reagent, reaction) and a very useful
functional group transformation index help the reader fully
navigate this extensive collection of important reactions. With its
comprehensive coverage, superb organization and quality of
presentation, this long-awaited new edition belongs on the shelf of
every organic chemist.
This book, based primarily on late breaking work ... provides an
interesting snapshot at some of the main lines of current and new
research within the field, such as investigation of the novel
properties of ionic liquids and their uses in separations (e.g.,
gases, organics, and metal ions), biochemistry, medicine, and
nanochemistry. The chapters also reflect the growing theoretical
and computational work within the field leading to new predictive
capability.
This book examines the history and fundamentals of the physical organic chemistry discipline. With the recent flowering of the organic synthesis field, physical organic chemistry has seemed to be shrinking or perhaps is just being absorbed into the toolkit of the synthetic chemist. The only Nobel Prize that can be reasonably attributed to a physical organic chemist is the 1994 award to George Olah, although Jeffrey I. Seeman has recently made a strong case that R. B. Woodward was actually a physical organic chemist in disguise (I). 2014 saw the awarding of the 50th James Flack Norris Award in Physical Organic Chemistry. James Flack Norris was an early physical organic chemist, before the discipline received its name. This book provides insight into the fundamentals of the field, and each chapter is devoted to a major discovery or to noted physical organic chemists, including Paul Schleyer, William Doering, and Glen A. Russell.
This book is focused on recent progress in the dynamically developing field of controlled/living radical polymerization. It is a sequel to ACS Symposium Series 685, 768, 854, and 944. The volume contains 24 chapters on other controlled/living radical polymerization techniques including kinetics and mechanism of RAFT, DT, NMP, and OMRP, macromolecular architecture by RAFT, DT, and NMP, materials prepared by RAFT and NMP, and industriral aspects of RAFT and NMP.
"Progress in Medicinal Chemistry" provides a review of eclectic developments in medicinal chemistry. This volume continues in the serial's tradition of providing an insight into the skills required of the modern medicinal chemist; in particular, the use of an appropriate selection of the wide range of tools now available to solve key scientific problems, including g-secretase modulators, P2X7 antagonists as therapeutic agents for CNS disorders, N-type calcium channel modulators for the treatment of pain, and more.
Homework help! Develop the solid problem-solving strategies you need for success in organic chemistry with this Study Guide/Solutions Manual. Contains answers to all problems in the text.
This book is focused on recent progress in the dynamically developing field of controlled/living radical polymerization. It is a sequel to ACS Symposium Series 685, 768, 854, and 944. Volume 1023 contains 26 chapters on mechanistic, synthetic and materials aspects of ATRP. Volume 1024 contains 24 chapters on other controlled/living radical polymerization techniques.
Chirality as an environmental phenomenon was dealt with in a
thorough and interesting manner in a series of three symposia
entitled "Modern Chiral Pesticides: Enantioselectivity and Its
Consequences," sponsored by the Agrochemical Division of the
American Chemical Society and held in Washington, DC (2005),
Boston, MA (2007) and San Francisco, CA (2010). All three symposia
included speakers from industry, government and academia,
representing several European countries, China, and the United
States. Corresponding to this broad group of countries,
institutions and speakers, the range of topics touched on almost
all facets of chirality as it is manifested in environmental and
human exposure and toxicity. The 40 oral and 20 poster
presentations indeed approached comprehensive coverage: analysis of
enantiomers and other stereoisomers; preparative separation of
enantiomers; stereoselective occurrences of chiral pesticides in
environment soil and water and in wildlife and human tissues and
fluids; stereoselective degradation and metabolism of chiral
pesticides; and stereoselective toxicity.
This volume consists of written chapters taken from the
presentations at the symposium "100+ Years of Plastics: Leo
Baekeland and Beyond," held March 22, 2010, at the 239th ACS
National Meeting in San Francisco. The symposium celebrates the
100th anniversary of the formation of General Bakelite Corp., which
was preceded by Leo Baekland's synthesis of Bakelite in 1907 and
the unveiling of the Bakelite process in 1909. It is quite
reasonable to use the synthesis of Bakelite as the starting point
of the Age of Plastics. Indeed, Time magazine in its June 14, 1999,
issue on the 100 most influential people of the 20th century chose
Leo Baekeland and his Bakelite synthesis as the sole representative
of chemistry.
This third volume of NMR Spectroscopy in the Undergraduate Curriculum continues the work we started with the first and second volumes in providing effective approaches for using nuclear magnetic resonance spectrometers as powerful tools for investigating a wide variety of phenomena at the undergraduate level. This volume focuses on upper-level courses and NMR spectroscopy across the curriculum. The applications and strategies in this volume will be helpful to those who are looking to transform their curriculum by integrating more NMR spectroscopy, to those who might not have considered NMR spectroscopy as a tool for solving certain types of problems, or for those seeking funding for a new or replacement NMR spectrometer.
In this second edition, Edwin Frankel has updated and extended his
now well-known book Lipid oxidation which has come to be regarded
as the standard work on the subject since the publication of the
first edition seven years previously. His main objective is to
develop the background necessary for a better understanding of what
factors should be considered, and what methods and lipid systems
should be employed, to achieve suitable evaluation and control of
lipid oxidation in complex foods and biological systems.
This ACS Symposium Series is the product of a symposium held at the 241st National Meeting of the American Chemical Society in Anaheim, CA on March 27-31, 2011. It includes chapters on new biobased building blocks such as the furandicarboxylic acid, polyesters and polyamides from adipic, succinic and sebacic acids with aliphatic diols such as 1,3-propylene glycol, 1,4-butanediol, 1,12-dodecylenediol and isosorbide. The conversion of hydroxymethylfurfural, the dehydration product of hexose sugars, to succinic acid and 1,4-butanediol to produce poly(butylene succinate) is described in one chapter. Also the synthesis of new polymers from plant-derived olefinic monomers such as tulipalin A and studies of composites from cotton by-products are featured in other chapters. There is a strong emphasis on biocatalytic synthesis and polymerization within the book. Chapter topics include the synthesis of ?-hydroxyfatty acids and polymers therefrom, an interesting discussion on the structural differences of the products of the biocatalytic and chemical catalytic synthesis of polyesters from oleic diacid and glycerol and the ability to produce polylactic acid (PLA) and PLA-PHA copolyesters within a "microbial cell factory". Other areas of interest explored in other chapters include recent developments of biobased polymer fibers and oleate-based pressure sensitive adhesives and composites. One chapter describes a large increase in cold-drawn fiber tensile strength by the blending of a small amount of ultrahigh molecular weight (MW) poly(3-hydroxybutyrate) with a much lower MW 3-hydroxybutyrate polymer. The addition of a rubber and inorganic fillers to normally brittle PLA was found to dramatically improve its ductility. Finally, there are several chapters on seed oil-based polyurethanes, one on fibers from soy proteins and composites from starch.
This book will explore our forests as the most readily available and renewable source of carbon as well as the building block of chemicals, plastics, and pharmaceuticals as the next 100 years gradually push consumers toward alternate sources of chemicals. Meeting these needs from trees requires that new chemistry be developed so that plant materials is converted to commodity chemicals. This focused discussion on ongoing global efforts at creativity using forest and biomass based renewable materials will include six different mechanisms for bringing about change on this very innovative topic.
Both technically and economically, additives form a large and
increasingly significant part of the polymer industry, both
plastics and elastomers. Since the first edition of this book was
published, there have been wide-ranging developments, covering
chemistry and formulation of new and more efficient additive
systems and the safer use of additives, both by processors in the
factory and, in the wider field, as they affect the general public.
This new edition follows the successful formula of its
predecessor, it provides a comprehensive view of all types of
additives, concentrating mainly on their technical aspects
(chemistry/formulation, structure, function, main applications)
with notes on the commercial background of each. The field has been
expanded to include any substance that is added to a polymer to
improve its use, so including reinforcing materials (such as glass
fibre), carbon black and titanium dioxide. This is a book which has been planned for ease of use and the information is presented in a way which is appropriate to the users' needs.
Assessing Exposures and Reducing Risks to People from the Use of Pesticides will focus on practices that have been developed in the past 10 years marked from the passage of the Food Quality Protection Act and other pertinent legislation (eg the Clean Air Act Amendments), which deal all, or in part with reducing risks associated with pesticides.
A major strength of American Chemical Society (ACS) is the large number of volunteers who help to grow and sustain the organization, from local sections to technical divisions, from regional to national meetings, from task forces to national committees, and from conducting research to writing and reviewing manuscripts for journals. Some of them spend literally thousands of hours on behalf of ACS and the global chemistry enterprise, helping students or fellow scientists, organizing meetings and symposia, and reaching out to the local communities. One of the people who excelled in these efforts was the late Prof. Ernest L. Eliel. For many years he taught at the University of Notre Dame and the University of North Carolina and was an acknowledged leader in organic stereochemistry and conformational analysis. He was also a leader at ACS, serving as ACS President in 1992 and Chair of ACS Board of Directors in 1987-89. Unfortunately Prof. Eliel died in 2008, but the ACS held a symposium in 2016 honoring his work. This book features two volumes highlighting stereochemistry and global connectivity, which represent two of the key legacies of Prof. Eliel. Because stereochemistry is a fundamental chemistry concept, ongoing research is carried out in different subfields of chemistry (such as organic, medicinal, carbohydrates, polymers), using various analytical techniques (such as NMR, X-ray crystallography, and circular dichroism). The two volumes of this book contain many research papers that represent cutting-edge research in all the above areas. Because chemistry is now a world-wide enterprise, global connectivity is important to chemistry practitioners, and the chapters on international activities should be of great interest as well.
This book is meant to be a companion volume for the ACS Symposium Series Book entitled Nuts and Bolts of Chemical Education Research. In the Nuts and Bolts book (edited by Diane M. Bunce and Renee Cole), readers were presented with information on how to conduct quality chemical education research. In the Myth book, exemplars of chemical education research are featured. In the cases where the chapter in the book is describing research that has already been published (typically in the Journal of Chemical Education), additional information is provided either in terms of research questions investigated that were not reported in the published article or background information on decisions made in the research that helped the investigation. The main focus of this type of discussion is to engage the reader in the reality of doing chemical education research including a discussion of the authors' motivation. It is expected that these two books could be used as textbooks for graduate chemical education courses showing how to do chemical education research and then providing examples of quality research.
Tools of Chemistry Education Research meets the current need for information on more in-depth resources for those interested in doing chemistry education research. Renowned chemists Diane M. Bunce and Renee S. Cole present this volume as a continuation of the dialogue started in their previous work, Nuts and Bolts of Chemical Education Research. With both volumes, new and experienced researchers will now have a place to start as they consider new research projects in chemistry education. Tools of Chemistry Education Research brings together a group of talented researchers to share their insights and expertise with the broader community. The volume features the contributions of both early career and more established chemistry education researchers, so as to promote the growth and expansion of chemistry education. Drawing on the expertise and insights of junior faculty and more experienced researchers, each author offers unique insights that promise to benefit other practitioners in chemistry education research.
Since their discovery, disinfection by-products (DBPs) have become one of the major driving forces in drinking water regulations, research and water utility operations throughout the world. The list of DBPs that can occur in treated drinking waters has grown from a few trihalomethanes to a long list of halogenated and non-halogenated organic or inorganic compounds. This list is expected to continue to grow as the analytical techniques are improved, as more information on their toxicity is developed, and as more occurrence studies are conducted. This book documents the latest DBP research findings, including emerging issues and state-of-the-art studies. Specifically, papers on the occurrence, formation, control, and health effects of emerging (unregulated) halogenated (e.g., brominated) and nonhalogenated (e.g., nitrosamines) DBPs (e.g., emerging nitrogenous vs. regulated carbonaceous DBPs) are presented. In addition to the characterization and reactivity of natural organic matter to form DBPs, new studies on algal organic matter and treated wastewater as sources of DBPs and their precursors are discussed.
The world-wide sales of polysiloxanes or silicones at the beginning of this new millennium is approximately $10 billion per year. Commercial products range from those entirely composed of silicone to products where the silicone is a low level but key component. This symposium covered the recent academic and technological developments behind silicones and silicone-modified materials and the sessions were well attended of wide interest to both the academic and industrial communities. The papers from our two highly successful symposia in this important area were published in the books Silicones and Silicone-Modified Materials, (Eds. S. J. Clarson, J. J. Fitzgerald, M. J. Owen and S. D. Smith), ACS Symposium Series Vol. 729 / Oxford University Press, 2000, ISBN 0-8412-3613-5 and Synthesis and Properties of Silicones and Silicone-Modified Materials, (Eds. S. J. Clarson, J. J. Fitzgerald, M. J. Owen, S. D. Smith and M. E. Van Dyke), ACS Symposium Series Vol 838 / Oxford University Press, 2003, ISBN 0-8412-3804-9
Polymeric materials have been and continue to be a focus of
research in the development of materials for energy conversion,
storage and delivery applications (fuel cells, batteries,
photovoltaics, capacitors, etc.). Significant growth in this field
started in the early 1990s and has continued to grow quite
substantially since that time. Polymeric materials now have a
prominent place in energy research.
Developing innovative efficient and sensitive spectroscopic and optical techniques for studying biomedically relevant molecules, structures and processes in vitro and in vivo is a field of rapidly growing interest. This symposium book covers novel and exciting approaches in biomedical spectroscopy. Several chapters deal with infrared and Raman spectroscopy. These complimentary vibrational spectroscopic techniques are capable of monitoring molecular structures as well as structural changes. Such studies are of interest for understanding diseases at a molecular level as well as for developing techniques for efficient early diagnosis based on molecular structural information. The chapters demonstrate also applications vibrational spectroscopy in proteomics and the characterization of micro organisms. The second section of the book introduces surface enhanced Raman scattering (SERS), demonstrates the application of the effect in the biomedical field and develops the concept of multifunctional nanosensors. The measurement of intrinsic optical signals from biological objects such as nerve tissue are discussed in the next section of the book. Chapters deal also with Coherent anti-Stokes Raman scattering (CARS) and fluorescence fluctuation spectroscopy. Other chapters illustrate how photons of very different energies, in the Terahertz and in the ultra violet range, can be used to retrieve molecular structural information from native biomolecules. The electrical properties of protein molecules adsorbed onto a gold substrate are studied by using a scanning Kelvin nanoprobe in a microarray format. The final chapters in the book demonstrate the powerful combination of different spectroscopic techniques for the characterization of biomolecules as well as native and engineered biomaterials. These chapters combine information from Raman and Inelastic Neutron Scattering, optical absorbance and energy dispersive X-ray analysis, positron annihilation lifetime spectroscopy (PALS), 1H NMR, and 129Xe NMR X-ray diffraction and fluorescence resonance energy transfer.
Climate change is a major challenge facing modern society. The chemistry of air and its influence on the climate system forms the main focus of this book. Vol. 2 of Chemistry of the Climate System takes a problem-based approach to presenting global atmospheric processes, evaluating the effects of changing air compositions as well as possibilities for interference with these processes through the use of chemistry.
This is the long awaited sequel to Classics in Total Synthesis, a
book that has made its mark as a superb tool for educating students
and practitioners alike in the art of organic synthesis since its
introduction in 1996. In this highly welcomed new volume, K. C.
Nicolaou and Scott A. Snyder discuss in detail the most impressive
accomplishments in natural product total synthesis during the 1990s
and the first years of the 21st century. While all of the features
that made the first volume of Classics so popular and unique as a
teaching tool have been maintained, in this new treatise the
authors seek to present the latest techniques and advances in
organic synthesis as they beautifully describe the works of some of
the most renowned synthetic organic chemists of our time. Develops
domino reactions, cascade sequences, biomimetic strategies, and
asymmetric catalysis are systematically through the chosen
synthesis Discusses the latest synthetic technologies in terms of
mechanism and scope Includes new reactions, such as olefin
metathesis, in mini-review style Abundant references for further
reading CD with useful teaching material for lecturers is included
with hardback version (ISBN 3-527-30685-4) Graduate students,
educators, and researchers in the fields of synthetic and medicinal
chemistry will wish to have a copy of this book in their collection
as an indispensable companion that both augments and supplements
the original Classics in Total Synthesis. .,." a volume, (..) which any chemist with an interest in
synthetic organic chemistry will wish to acquire." .,."this superb book (..) will be an essential purchase formany
organic chemists."
|
![]() ![]() You may like...
Comprehensive Natural Products III
Hung-Wen Liu, Tadhg Begley
Hardcover
R97,104
Discovery Miles 971 040
Advances in Physical Organic Chemistry…
Ian Williams, Nick Williams
Hardcover
R5,669
Discovery Miles 56 690
Herbal Bioactive-Based Drug Delivery…
Inderbir Singh Bakshi, Rajni Bala, …
Paperback
R4,112
Discovery Miles 41 120
Studies in Natural Products Chemistry…
Atta-ur Rahman
Hardcover
Progress in Medicinal Chemistry, Volume…
David R. Witty, Brian Cox
Hardcover
R4,496
Discovery Miles 44 960
|