![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Computer software packages > Other software packages
This book is a text for a one-semester course for upper-level undergraduates and beginning graduate students in engineering, science, and mathematics. Prerequisites are a first course in the theory of ODEs and a survey course in numerical analysis, in addition to specific programming experience, preferably in MATLAB, and knowledge of elementary matrix theory. Professionals will also find that this useful concise reference contains reviews of technical issues and realistic and detailed examples. The programs for the examples are supplied on the accompanying web site and can serve as templates for solving other problems. Each chapter begins with a discussion of the "facts of life" for the problem, mainly by means of examples. Numerical methods for the problem are then developed, but only those methods most widely used. The treatment of each method is brief and technical issues are minimized, but all the issues important in practice and for understaning the codes are discussed. The last part of each chapter is a tutorial that shows how to solve problems by means of small, but realistic, examples.
We have sold 4300 copies worldwide of the first edition (1999). This new edition contains five completely new chapters covering new developments.
The first MATLAB-based numerical methods textbook for bioengineers that uniquely integrates modelling concepts with statistical analysis, while maintaining a focus on enabling the user to report the error or uncertainty in their result. Between traditional numerical method topics of linear modelling concepts, nonlinear root finding, and numerical integration, chapters on hypothesis testing, data regression and probability are interweaved. A unique feature of the book is the inclusion of examples from clinical trials and bioinformatics, which are not found in other numerical methods textbooks for engineers. With a wealth of biomedical engineering examples, case studies on topical biomedical research, and the inclusion of end of chapter problems, this is a perfect core text for a one-semester undergraduate course.
There has been dramatic growth in the development and application of Bayesian inference in statistics. Berger (2000) documents the increase in Bayesian activity by the number of published research articles, the number of books, andtheextensivenumberofapplicationsofBayesianarticlesinapplied disciplines such as science and engineering. One reason for the dramatic growth in Bayesian modeling is the availab- ity of computational algorithms to compute the range of integrals that are necessary in a Bayesian posterior analysis. Due to the speed of modern c- puters, it is now possible to use the Bayesian paradigm to 't very complex models that cannot be 't by alternative frequentist methods. To 't Bayesian models, one needs a statistical computing environment. This environment should be such that one can: write short scripts to de?ne a Bayesian model use or write functions to summarize a posterior distribution use functions to simulate from the posterior distribution construct graphs to illustrate the posterior inference An environment that meets these requirements is the R system. R provides a wide range of functions for data manipulation, calculation, and graphical d- plays. Moreover, it includes a well-developed, simple programming language that users can extend by adding new functions. Many such extensions of the language in the form of packages are easily downloadable from the Comp- hensive R Archive Network (CRAN)
Computational techniques based on simulation have now become an essential part of the statistician's toolbox. It is thus crucial to provide statisticians with a practical understanding of those methods, and there is no better way to develop intuition and skills for simulation than to use simulation to solve statistical problems. Introducing Monte Carlo Methods with R covers the main tools used in statistical simulation from a programmer's point of view, explaining the R implementation of each simulation technique and providing the output for better understanding and comparison. While this book constitutes a comprehensive treatment of simulation methods, the theoretical justification of those methods has been considerably reduced, compared with Robert and Casella (2004). Similarly, the more exploratory and less stable solutions are not covered here. This book does not require a preliminary exposure to the R programming language or to Monte Carlo methods, nor an advanced mathematical background. While many examples are set within a Bayesian framework, advanced expertise in Bayesian statistics is not required. The book covers basic random generation algorithms, Monte Carlo techniques for integration and optimization, convergence diagnoses, Markov chain Monte Carlo methods, including Metropolis {Hastings and Gibbs algorithms, and adaptive algorithms. All chapters include exercises and all R programs are available as an R package called mcsm. The book appeals to anyone with a practical interest in simulation methods but no previous exposure. It is meant to be useful for students and practitioners in areas such as statistics, signal processing, communications engineering, control theory, econometrics, finance and more. The programming parts are introduced progressively to be accessible to any reader.
This book was first published in 2003. Combinatorica, an extension to the popular computer algebra system Mathematica (R), is the most comprehensive software available for teaching and research applications of discrete mathematics, particularly combinatorics and graph theory. This book is the definitive reference/user's guide to Combinatorica, with examples of all 450 Combinatorica functions in action, along with the associated mathematical and algorithmic theory. The authors cover classical and advanced topics on the most important combinatorial objects: permutations, subsets, partitions, and Young tableaux, as well as all important areas of graph theory: graph construction operations, invariants, embeddings, and algorithmic graph theory. In addition to being a research tool, Combinatorica makes discrete mathematics accessible in new and exciting ways to a wide variety of people, by encouraging computational experimentation and visualization. The book contains no formal proofs, but enough discussion to understand and appreciate all the algorithms and theorems it contains.
Wie managen f hrende Unternehmen ihre Gesch ftsprozesse? Was sind die Grundlagen des Erfolgs? Basierend auf einer Untersuchung der Business-Process-Management-Praktiken (BPM) in 17 Unternehmen zeigt das Buch, wie in Best-Practice-Unternehmen Organisation und IT-Systeme optimal aufeinander abgestimmt werden, um die Kundenorientierung zu steigern, Kosten zu senken sowie Flexibilit t und Qualit t zu verbessern. Der Band enth lt eine Analyse der Erfolgsmuster, wichtige Umsetzungshinweise sowie einen Ausblick auf zuk nftige Entwicklungen des BPM.
This volume contains selected papers presented at two joint German-Japanese symposia on data analysis and related elds. The articles substantially extend and further develop material presented at the two symposia organized on the basis of longstanding and close relationships which have been cultivated in the last couple of decades between the two classi cation societies: the German Class- cation Society (Gesellschaft fu ]r Klassi kation e. V.) and the Japanese Classi cation Society. These symposia have been very helpful in exchanging ideas, views, and knowledge between the two societies and have served as a spring board for more extensive and closer co-operation between the societies as well as among their individual members. The scienti c program of the rst Joint Japanese-German Symposium (Tokyo 2005)included23presentations;forthesecondJointGerman-JapaneseSymposium (Berlin 2006) 27 presentations were scheduled. This volume presents 21 peer refereed papers, which are grouped into three parts: 1. Part 1 Clustering and Visualization (eight papers) 2. Part 2 Methods in Fields (nine papers) 3. Part 3 Applications in Clustering and Visualization (four papers) The concept of having a joint symposium of the two classi cation societies came from the talks with Hans-Hermann and Wolfgang when Akinori attended the 28th Annual Conference of the German Classi cation Society held in Dortmund in March 2004."
A self-contained introduction to abstract interpretation-based static analysis, an essential resource for students, developers, and users. Static program analysis, or static analysis, aims to discover semantic properties of programs without running them. It plays an important role in all phases of development, including verification of specifications and programs, the synthesis of optimized code, and the refactoring and maintenance of software applications. This book offers a self-contained introduction to static analysis, covering the basics of both theoretical foundations and practical considerations in the use of static analysis tools. By offering a quick and comprehensive introduction for nonspecialists, the book fills a notable gap in the literature, which until now has consisted largely of scientific articles on advanced topics. The text covers the mathematical foundations of static analysis, including semantics, semantic abstraction, and computation of program invariants; more advanced notions and techniques, including techniques for enhancing the cost-accuracy balance of analysis and abstractions for advanced programming features and answering a wide range of semantic questions; and techniques for implementing and using static analysis tools. It begins with background information and an intuitive and informal introduction to the main static analysis principles and techniques. It then formalizes the scientific foundations of program analysis techniques, considers practical aspects of implementation, and presents more advanced applications. The book can be used as a textbook in advanced undergraduate and graduate courses in static analysis and program verification, and as a reference for users, developers, and experts.
An elementary first course for students in mathematics and engineering Practical in approach: examples of code are provided for students to debug, and tasks - with full solutions - are provided at the end of each chapter Includes a glossary of useful terms, with each term supported by an example of the syntaxes commonly encountered
This volume brings together the main results in the field of Bayesian Optimization (BO), focusing on the last ten years and showing how, on the basic framework, new methods have been specialized to solve emerging problems from machine learning, artificial intelligence, and system optimization. It also analyzes the software resources available for BO and a few selected application areas. Some areas for which new results are shown include constrained optimization, safe optimization, and applied mathematics, specifically BO's use in solving difficult nonlinear mixed integer problems. The book will help bring readers to a full understanding of the basic Bayesian Optimization framework and gain an appreciation of its potential for emerging application areas. It will be of particular interest to the data science, computer science, optimization, and engineering communities.
Architect scalable, reliable, and maintainable applications for enterprises with Python Key Features Explore various Python design patterns used for enterprise software development Apply best practices for testing and performance optimization to build stable applications Learn about different attacking strategies used on enterprise applications and how to avoid them Book DescriptionDynamically typed languages like Python are continuously improving. With the addition of exciting new features and a wide selection of modern libraries and frameworks, Python has emerged as an ideal language for developing enterprise applications. Hands-On Enterprise Application Development with Python will show you how to build effective applications that are stable, secure, and easily scalable. The book is a detailed guide to building an end-to-end enterprise-grade application in Python. You will learn how to effectively implement Python features and design patterns that will positively impact your application lifecycle. The book also covers advanced concurrency techniques that will help you build a RESTful application with an optimized frontend. Given that security and stability are the foundation for an enterprise application, you'll be trained on effective testing, performance analysis, and security practices, and understand how to embed them in your codebase during the initial phase. You'll also be guided in how to move on from a monolithic architecture to one that is service oriented, leveraging microservices and serverless deployment techniques. By the end of the book, you will have become proficient at building efficient enterprise applications in Python. What you will learn Understand the purpose of design patterns and their impact on application lifecycle Build applications that can handle large amounts of data-intensive operations Uncover advanced concurrency techniques and discover how to handle a large number of requests in production Optimize frontends to improve the client-side experience of your application Effective testing and performance profiling techniques to detect issues in applications early in the development cycle Build applications with a focus on security Implement large applications as microservices to improve scalability Who this book is forIf you're a developer who wants to build enterprise-grade applications, this book is for you. Basic to intermediate-level of programming experience with Python and database systems is required to understand the concepts covered in this book.
The second edition of this popular guide demonstrates the process of entering and analyzing data using the latest version of SPSS (12.0), and is also appropriate for those using earlier versions of SPSS. The book is easy to follow because all procedures are outlined in a step-by-step format designed for the novice user. Students are introduced to the rationale of statistical tests and detailed explanations of results are given through clearly annotated examples of SPSS output. Topics covered range from descriptive statistics through multiple regression analysis. In addition, this guide includes topics not typically covered in other books such as probability theory, interaction effects in analysis of variance, factor analysis, and scale reliability. Chapter exercises reinforce the text examples and may be performed for further practice, for homework assignments, or in computer laboratory sessions. This book can be used in two ways: as a stand-alone manual for students wishing to learn data analysis techniques using SPSS for Windows, or in research and statistics courses to be used with a basic statistics text. The book provides hands-on experience with actual data sets, helps students choose appropriate statistical tests, illustrates the meaning of results, and provides exercises to be completed for further practice or as homework assignments. Susan B. Gerber, Ph.D. is Research Assistant Professor of Education at State University of New York at Buffalo. She is director of the Educational Technology program and holds degrees in Statistics and Educational Psychology. Kristin Voelkl Finn, Ph.D. is Assistant Professor of Education at Canisius College. She teaches graduate courses in research methodology and conducts research on adolescent problem behavior.
New Paradigm for considering application integration and B2B problems Heightens the importance of conveying meaning between systems Addresses movement in the EAI space toward more data handling capabilities Offers a solution for the multitude of managers disconnected with the latest technologies Leverages the technical advances made in complex data integration over 15 years Shifts the focus from technology solutions to information solutions Relies heavily on the use of practical examples, tips, definitions, and soapbox excerpts throughout the main body of text
Get the knowledge you need to deploy a top-quality Exchange serviceThe latest release of Microsoft's messaging system allows for easier access to e-mail, voicemail, and calendars from a variety of devices and any location while also giving users more control and freeing up administrators to perform more critical tasks. This innovative new field guide starts with key concepts of Microsoft Exchange Server 2013 and then moves through the recommended practices and processes that are necessary to deploy a top-quality Exchange service.Focuses on the Exchange ecosystem rather than just the features and functions of the Exchange productFocuses on scenarios facing real customers and explains how problems can be solved and requirements metZooms in on both on-premises deployments as well as Exchange Online cloud deployments with Office 365Helps you thoroughly master the new version with step-by-step instruction on how to install, configure, and manage this multifaceted collaboration system Whether you're upgrading from Exchange Server 2010 or earlier, installing for the first time, or migrating from another system, this step-by-step guide provides the hands-on instruction, practical application, and real-world advice you need.
With this practical guide, you'll learn how to understand the needs of external customers without requirements elicitation or sign-offs, the difference between customer and business value, and why you need to create both. You'll discover how to respond to changes in the market and the actions of competitors. You'll understand how to develop new products, launch them into the market, and how to deliver business outcomes through the maturity and eventual retirement of your product.
Data Mining for Business Analytics: Concepts, Techniques, and Applications in XLMiner(R), Third Edition presents an applied approach to data mining and predictive analytics with clear exposition, hands-on exercises, and real-life case studies. Readers will work with all of the standard data mining methods using the Microsoft(R) Office Excel(R) add-in XLMiner(R) to develop predictive models and learn how to obtain business value from Big Data. Featuring updated topical coverage on text mining, social network analysis, collaborative filtering, ensemble methods, uplift modeling and more, the Third Edition also includes: * Real-world examples to build a theoretical and practical understanding of key data mining methods * End-of-chapter exercises that help readers better understand the presented material * Data-rich case studies to illustrate various applications of data mining techniques * Completely new chapters on social network analysis and text mining * A companion site with additional data sets, instructors material that include solutions to exercises and case studies, and Microsoft PowerPoint(R) slides * Free 140-day license to use XLMiner for Education software Data Mining for Business Analytics: Concepts, Techniques, and Applications in XLMiner(R), Third Edition is an ideal textbook for upper-undergraduate and graduate-level courses as well as professional programs on data mining, predictive modeling, and Big Data analytics. The new edition is also a unique reference for analysts, researchers, and practitioners working with predictive analytics in the fields of business, finance, marketing, computer science, and information technology. Praise for the Second Edition " full of vivid and thought-provoking anecdotes...needs to be read by anyone with a serious interest in research and marketing." Research Magazine "Shmueli et al. have done a wonderful job in presenting the field of data mining - a welcome addition to the literature." ComputingReviews.com "Excellent choice for business analysts...The book is a perfect fit for its intended audience." Keith McCormick, Consultant and Author of SPSS Statistics For Dummies, Third Edition and SPSS Statistics for Data Analysis and Visualization Galit Shmueli, PhD, is Distinguished Professor at National Tsing Hua University s Institute of Service Science. She has designed and instructed data mining courses since 2004 at University of Maryland, Statistics.com, The Indian School of Business, and National Tsing Hua University, Taiwan. Professor Shmueli is known for her research and teaching in business analytics, with a focus on statistical and data mining methods in information systems and healthcare. She has authored over 70 journal articles, books, textbooks and book chapters. Peter C. Bruce is President and Founder of the Institute for Statistics Education at www.statistics.com. He has written multiple journal articles and is the developer of Resampling Stats software. He is the author of Introductory Statistics and Analytics: A Resampling Perspective, also published by Wiley. Nitin R. Patel, PhD, is Chairman and cofounder of Cytel, Inc., based in Cambridge, Massachusetts. A Fellow of the American Statistical Association, Dr. Patel has also served as a Visiting Professor at the Massachusetts Institute of Technology and at Harvard University. He is a Fellow of the Computer Society of India and was a professor at the Indian Institute of Management, Ahmedabad for 15 years.
Reproducible Finance with R: Code Flows and Shiny Apps for Portfolio Analysis is a unique introduction to data science for investment management that explores the three major R/finance coding paradigms, emphasizes data visualization, and explains how to build a cohesive suite of functioning Shiny applications. The full source code, asset price data and live Shiny applications are available at reproduciblefinance.com. The ideal reader works in finance or wants to work in finance and has a desire to learn R code and Shiny through simple, yet practical real-world examples. The book begins with the first step in data science: importing and wrangling data, which in the investment context means importing asset prices, converting to returns, and constructing a portfolio. The next section covers risk and tackles descriptive statistics such as standard deviation, skewness, kurtosis, and their rolling histories. The third section focuses on portfolio theory, analyzing the Sharpe Ratio, CAPM, and Fama French models. The book concludes with applications for finding individual asset contribution to risk and for running Monte Carlo simulations. For each of these tasks, the three major coding paradigms are explored and the work is wrapped into interactive Shiny dashboards.
Get the most out of your Materials Management implementation with this updated, comprehensive guide to configuration and functionality. You'll learn the ins and outs of Materials Management in SAP, from goods receipt and invoice verification to early warning systems and special procurement types. Dive into master data and other configuration tasks to ensure your MM system is optimized for your logistics needs! Materials Management Functionality: Learn to use MM for essential tasks like requesting quotations, purchase orders, and inventory management and for more advanced tasks like forecasting, using classification systems, and handling special procurement types. Business Scenarios and Examples: Configure settings for critical processes, and explore master data for materials and vendors. Cloud Migration and SAP S/4HANA: Expand your understanding of MM processes with expert advice, real-world examples, and sample business scenarios. Highlights: Materials master data Vendor master data Purchasing information data Batch management External Services Management Material requirements planning (MRP) Inventory management Goods issue/goods receipt (GI/GR) Material Ledger Balance sheet valuation Invoice verification Document management
The updated guide to the newest graphing calculator from Texas Instruments The TI-Nspire graphing calculator is popular among high school and college students as a valuable tool for calculus, AP calculus, and college-level algebra courses. Its use is allowed on the major college entrance exams. This book is a nuts-and-bolts guide to working with the TI-Nspire, providing everything you need to get up and running and helping you get the most out of this high-powered math tool.Texas Instruments' TI-Nspire graphing calculator is perfect for high school and college students in advanced algebra and calculus classes as well as students taking the SAT, PSAT, and ACT examsThis fully updated guide covers all enhancements to the TI-Nspire, including the touchpad and the updated software that can be purchased along with the deviceShows how to get maximum value from this versatile math tool With updated screenshots and examples, "TI-Nspire For Dummies" provides practical, hands-on instruction to help students make the most of this revolutionary graphing calculator.
Gain the R programming language fundamentals for doing the applied statistics useful for data exploration and analysis in data science and data mining. This book covers topics ranging from R syntax basics, descriptive statistics, and data visualizations to inferential statistics and regressions. After learning R's syntax, you will work through data visualizations such as histograms and boxplot charting, descriptive statistics, and inferential statistics such as t-test, chi-square test, ANOVA, non-parametric test, and linear regressions. Learn R for Applied Statistics is a timely skills-migration book that equips you with the R programming fundamentals and introduces you to applied statistics for data explorations. What You Will Learn Discover R, statistics, data science, data mining, and big data Master the fundamentals of R programming, including variables and arithmetic, vectors, lists, data frames, conditional statements, loops, and functions Work with descriptive statistics Create data visualizations, including bar charts, line charts, scatter plots, boxplots, histograms, and scatterplots Use inferential statistics including t-tests, chi-square tests, ANOVA, non-parametric tests, linear regressions, and multiple linear regressions Who This Book Is For Those who are interested in data science, in particular data exploration using applied statistics, and the use of R programming for data visualizations.
Recommended by Bill Gates A thought-provoking and wide-ranging exploration of machine learning and the race to build computer intelligences as flexible as our own In the world's top research labs and universities, the race is on to invent the ultimate learning algorithm: one capable of discovering any knowledge from data, and doing anything we want, before we even ask. In The Master Algorithm, Pedro Domingos lifts the veil to give us a peek inside the learning machines that power Google, Amazon, and your smartphone. He assembles a blueprint for the future universal learner--the Master Algorithm--and discusses what it will mean for business, science, and society. If data-ism is today's philosophy, this book is its bible.
Biological systems are extremely complex and have emergent properties that cannot be explained or even predicted by studying their individual parts in isolation. The reductionist approach, although successful in the early days of molecular biology, underestimates this complexity. As the amount of available data grows, so it will become increasingly important to be able to analyse and integrate these large data sets. This book introduces novel approaches and solutions to the Big Data problem in biomedicine, and presents new techniques in the field of graph theory for handling and processing multi-type large data sets. By discussing cutting-edge problems and techniques, researchers from a wide range of fields will be able to gain insights for exploiting big heterogonous data in the life sciences through the concept of 'network of networks'. |
![]() ![]() You may like...
The Basics Of Safety Hazards - And The…
Sarel J. Smit, Elriza Esterhuyzen
Paperback
![]() R332 Discovery Miles 3 320
Call Sign Chaos - Learning To Lead
Jim Mattis, Bing West
Hardcover
![]()
From Police to Security Professional - A…
Michael S. D'Angelo
Paperback
R1,658
Discovery Miles 16 580
The Australian Workplace Barometer…
Maureen F. Dollard, Tessa S Bailey
Paperback
R943
Discovery Miles 9 430
Handbook of Small Modular Nuclear…
Daniel T. Ingersoll, Mario D. Carelli
Hardcover
R6,732
Discovery Miles 67 320
|