Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Computing & IT > Computer software packages > Other software packages
Computational techniques based on simulation have now become an essential part of the statistician's toolbox. It is thus crucial to provide statisticians with a practical understanding of those methods, and there is no better way to develop intuition and skills for simulation than to use simulation to solve statistical problems. Introducing Monte Carlo Methods with R covers the main tools used in statistical simulation from a programmer's point of view, explaining the R implementation of each simulation technique and providing the output for better understanding and comparison. While this book constitutes a comprehensive treatment of simulation methods, the theoretical justification of those methods has been considerably reduced, compared with Robert and Casella (2004). Similarly, the more exploratory and less stable solutions are not covered here. This book does not require a preliminary exposure to the R programming language or to Monte Carlo methods, nor an advanced mathematical background. While many examples are set within a Bayesian framework, advanced expertise in Bayesian statistics is not required. The book covers basic random generation algorithms, Monte Carlo techniques for integration and optimization, convergence diagnoses, Markov chain Monte Carlo methods, including Metropolis {Hastings and Gibbs algorithms, and adaptive algorithms. All chapters include exercises and all R programs are available as an R package called mcsm. The book appeals to anyone with a practical interest in simulation methods but no previous exposure. It is meant to be useful for students and practitioners in areas such as statistics, signal processing, communications engineering, control theory, econometrics, finance and more. The programming parts are introduced progressively to be accessible to any reader.
The objective of this text is to introduce RStudio to practitioners and students and enable them to use R in their everyday work. It is not a statistical textbook, the purpose is to transmit the joy of analyzing data with RStudio. Practitioners and students learn how RStudio can be installed and used, they learn to import data, write scripts and save working results. Furthermore, they learn to employ descriptive statistics and create graphics with RStudio. Additionally, it is shown how RStudio can be used to test hypotheses, run an analysis of variance and regressions. To deepen the learned content, tasks are included with the solutions provided at the end of the textbook. This textbook has been recommended and developed for university courses in Germany, Austria and Switzerland.
Learn how to bring your data to life with this hands-on guide to visual analytics with Tableau Key Features Master the fundamentals of Tableau Desktop and Tableau Prep Learn how to explore, analyze, and present data to provide business insights Build your experience and confidence with hands-on exercises and activities Book DescriptionLearning Tableau has never been easier, thanks to this practical introduction to storytelling with data. The Tableau Workshop breaks down the analytical process into five steps: data preparation, data exploration, data analysis, interactivity, and distribution of dashboards. Each stage is addressed with a clear walkthrough of the key tools and techniques you'll need, as well as engaging real-world examples, meaningful data, and practical exercises to give you valuable hands-on experience. As you work through the book, you'll learn Tableau step by step, studying how to clean, shape, and combine data, as well as how to choose the most suitable charts for any given scenario. You'll load data from various sources and formats, perform data engineering to create new data that delivers deeper insights, and create interactive dashboards that engage end-users. All concepts are introduced with clear, simple explanations and demonstrated through realistic example scenarios. You'll simulate real-world data science projects with use cases such as traffic violations, urban populations, coffee store sales, and air travel delays. By the end of this Tableau book, you'll have the skills and knowledge to confidently present analytical results and make data-driven decisions. What you will learn Become an effective user of Tableau Prep and Tableau Desktop Load, combine, and process data for analysis and visualization Understand different types of charts and when to use them Perform calculations to engineer new data and unlock hidden insights Add interactivity to your visualizations to make them more engaging Create holistic dashboards that are detailed and user-friendly Who this book is forThis book is for anyone who wants to get started on visual analytics with Tableau. If you're new to Tableau, this Workshop will get you up and running. If you already have some experience in Tableau, this book will help fill in any gaps, consolidate your understanding, and give you extra practice of key tools.
Program for data analysis using R and learn practical skills to make your work more efficient. This revised book explores how to automate running code and the creation of reports to share your results, as well as writing functions and packages. It includes key R 4 features such as a new color palette for charts, an enhanced reference counting system, and normalization of matrix and array types where matrix objects now formally inherit from the array class, eliminating inconsistencies. Advanced R 4 Data Programming and the Cloud is not designed to teach advanced R programming nor to teach the theory behind statistical procedures. Rather, it is designed to be a practical guide moving beyond merely using R; it shows you how to program in R to automate tasks. This book will teach you how to manipulate data in modern R structures and includes connecting R to databases such as PostgreSQL, cloud services such as Amazon Web Services (AWS), and digital dashboards such as Shiny. Each chapter also includes a detailed bibliography with references to research articles and other resources that cover relevant conceptual and theoretical topics. What You Will Learn Write and document R functions using R 4 Make an R package and share it via GitHub or privately Add tests to R code to ensure it works as intended Use R to talk directly to databases and do complex data management Run R in the Amazon cloud Deploy a Shiny digital dashboard Generate presentation-ready tables and reports using R Who This Book Is For Working professionals, researchers, and students who are familiar with R and basic statistical techniques such as linear regression and who want to learn how to take their R coding and programming to the next level.
This book illustrates the role of software architecture and its application in business. The author describes enterprise architecture along with business architecture to show the role of software architecture in both areas. The place of software architecture in business is outlined from many perspectives in this context. The book outlines quality attributes and how managers can use software architecture to build high quality products. Topics include business software architecture, dealing with qualities, achieving quality attributes, managing business qualities, software product line, Internet of Things (IOT), and Service Oriented Business Architecture. The book is intended to benefit students, researchers, software architects, and business architects. Provides quick and easy access to all the important aspects of software architecture in business; Highlights a wide variety of concepts of software architecture in a straightforward manner, for students, practitioners, or architects; Presents different applications of software architecture in business.
This book presents strategies for analyzing qualitative and mixed methods data with MAXQDA software, and provides guidance on implementing a variety of research methods and approaches, e.g. grounded theory, discourse analysis and qualitative content analysis, using the software. In addition, it explains specific topics, such as transcription, building a coding frame, visualization, analysis of videos, concept maps, group comparisons and the creation of literature reviews. The book is intended for masters and PhD students as well as researchers and practitioners dealing with qualitative data in various disciplines, including the educational and social sciences, psychology, public health, business or economics.
Multi-Paradigm Modelling for Cyber-Physical Systems explores modeling and analysis as crucial activities in the development of Cyber-Physical Systems, which are inherently cross-disciplinary in nature and require distinct modeling techniques related to different disciplines, as well as a common background knowledge. This book will serve as a reference for anyone starting in the field of CPS who needs a solid foundation of modeling, including a comprehensive introduction to existing techniques and a clear explanation of their advantages and limitations. This book is aimed at both researchers and practitioners who are interested in various modeling paradigms across computer science and engineering.
All the Essentials to Start Using Adaptive Designs in No Time Compared to traditional clinical trial designs, adaptive designs often lead to increased success rates in drug development at reduced costs and time. Introductory Adaptive Trial Designs: A Practical Guide with R motivates newcomers to quickly and easily grasp the essence of adaptive designs as well as the foundations of adaptive design methods. The book reduces the mathematics to a minimum and makes the material as practical as possible. Instead of providing general, black-box commercial software packages, the author includes open-source R functions that enable readers to better understand the algorithms and customize the designs to meet their needs. Readers can run the simulations for all the examples and change the input parameters to see how each input parameter affects the simulation outcomes or design operating characteristics. Taking a learning-by-doing approach, this tutorial-style book guides readers on planning and executing various types of adaptive designs. It helps them develop the skills to begin using the designs immediately.
This textbook will familiarize students in economics and business, as well as practitioners, with the basic principles, techniques, and applications of applied statistics, statistical testing, and multivariate data analysis. Drawing on practical examples from the business world, it demonstrates the methods of univariate, bivariate, and multivariate statistical analysis. The textbook covers a range of topics, from data collection and scaling to the presentation and simple univariate analysis of quantitative data, while also providing advanced analytical procedures for assessing multivariate relationships. Accordingly, it addresses all topics typically covered in university courses on statistics and advanced applied data analysis. In addition, it does not limit itself to presenting applied methods, but also discusses the related use of Excel, SPSS, and Stata.
This book provides statistical methodologies for time series data, focusing on copula-based Markov chain models for serially correlated time series. It also includes data examples from economics, engineering, finance, sport and other disciplines to illustrate the methods presented. An accessible textbook for students in the fields of economics, management, mathematics, statistics, and related fields wanting to gain insights into the statistical analysis of time series data using copulas, the book also features stand-alone chapters to appeal to researchers. As the subtitle suggests, the book highlights parametric models based on normal distribution, t-distribution, normal mixture distribution, Poisson distribution, and others. Presenting likelihood-based methods as the main statistical tools for fitting the models, the book details the development of computing techniques to find the maximum likelihood estimator. It also addresses statistical process control, as well as Bayesian and regression methods. Lastly, to help readers analyze their data, it provides computer codes (R codes) for most of the statistical methods.
The Feature-Driven Method for Structural Optimization details a novel structural optimization method within a CAD framework, integrating structural optimization and feature-based design. The book presents cutting-edge research on advanced structures and introduces the feature-driven structural optimization method by regarding engineering features as basic design primitives. Consequently, it presents a method that allows structural optimization and feature design to be done simultaneously so that feature attributes are preserved throughout the design process. The book illustrates and supports the effectiveness of the method described, showing potential applications through numerical modeling techniques and programming. This volume presents a high-performance optimization method adapted to engineering structures-a novel perspective that will help engineers in the computation, modeling and design of advanced structures.
Bayesian statistical methods have become widely used for data analysis and modelling in recent years, and the BUGS software has become the most popular software for Bayesian analysis worldwide. Authored by the team that originally developed this software, The BUGS Book provides a practical introduction to this program and its use. The text presents complete coverage of all the functionalities of BUGS, including prediction, missing data, model criticism, and prior sensitivity. It also features a large number of worked examples and a wide range of applications from various disciplines. The book introduces regression models, techniques for criticism and comparison, and a wide range of modelling issues before going into the vital area of hierarchical models, one of the most common applications of Bayesian methods. It deals with essentials of modelling without getting bogged down in complexity. The book emphasises model criticism, model comparison, sensitivity analysis to alternative priors, and thoughtful choice of prior distributions-all those aspects of the "art" of modelling that are easily overlooked in more theoretical expositions. More pragmatic than ideological, the authors systematically work through the large range of "tricks" that reveal the real power of the BUGS software, for example, dealing with missing data, censoring, grouped data, prediction, ranking, parameter constraints, and so on. Many of the examples are biostatistical, but they do not require domain knowledge and are generalisable to a wide range of other application areas. Full code and data for examples, exercises, and some solutions can be found on the book's website.
This textbook offers an easy-to-follow, practical guide to modern data analysis using the programming language R. The chapters cover topics such as the fundamentals of programming in R, data collection and preprocessing, including web scraping, data visualization, and statistical methods, including multivariate analysis, and feature exercises at the end of each section. The text requires only basic statistics skills, as it strikes a balance between statistical and mathematical understanding and implementation in R, with a special emphasis on reproducible examples and real-world applications. This textbook is primarily intended for undergraduate students of mathematics, statistics, physics, economics, finance and business who are pursuing a career in data analytics. It will be equally valuable for master students of data science and industry professionals who want to conduct data analyses.
This book presents recent non-asymptotic results for approximations in multivariate statistical analysis. The book is unique in its focus on results with the correct error structure for all the parameters involved. Firstly, it discusses the computable error bounds on correlation coefficients, MANOVA tests and discriminant functions studied in recent papers. It then introduces new areas of research in high-dimensional approximations for bootstrap procedures, Cornish-Fisher expansions, power-divergence statistics and approximations of statistics based on observations with random sample size. Lastly, it proposes a general approach for the construction of non-asymptotic bounds, providing relevant examples for several complicated statistics. It is a valuable resource for researchers with a basic understanding of multivariate statistics.
30th European Symposium on Computer Aided Chemical Engineering, Volume 47 contains the papers presented at the 30th European Symposium of Computer Aided Process Engineering (ESCAPE) event held in Milan, Italy, May 24-27, 2020. It is a valuable resource for chemical engineers, chemical process engineers, researchers in industry and academia, students, and consultants for chemical industries.
Fulfilling the need for a practical user's guide, Statistics in MATLAB: A Primer provides an accessible introduction to the latest version of MATLAB (R) and its extensive functionality for statistics. Assuming a basic knowledge of statistics and probability as well as a fundamental understanding of linear algebra concepts, this book: Covers capabilities in the main MATLAB package, the Statistics Toolbox, and the student version of MATLAB Presents examples of how MATLAB can be used to analyze data Offers access to a companion website with data sets and additional examples Contains figures and visual aids to assist in application of the software Explains how to determine what method should be used for analysis Statistics in MATLAB: A Primer is an ideal reference for undergraduate and graduate students in engineering, mathematics, statistics, economics, biostatistics, and computer science. It is also appropriate for a diverse professional market, making it a valuable addition to the libraries of researchers in statistics, computer science, data mining, machine learning, image analysis, signal processing, and engineering.
Learn how to write R code with fewer bugs. The problem with programming is that you are always one typo away from writing something silly. Likewise with data analysis, a small mistake in your model can lead to a big mistake in your results. Combining the two disciplines means that it is all too easy for a missed minus sign to generate a false prediction that you don't spot until it's too late. Testing is the only way to be sure that your code, and your results, are correct. Testing R Code teaches you how to perform development-time testing using the testthat package, allowing you to ensure that your code works as intended. The book also teaches run-time testing using the assertive package; enabling your users to correctly run your code. After beginning with an introduction to testing in R, the book explores more advanced cases such as integrating tests into R packages; testing code that accesses databases; testing C++ code with Rcpp; and testing graphics. Each topic is explained with real-world examples, and has accompanying exercises for readers to practise their skills - only a small amount of experience with R is needed to get started!
Pro SharePoint 2010 Search gives you expert advice on planning, deploying and customizing searches in SharePoint 2010. Drawing on the authors' extensive experience of working with real-world SharePoint deployments, this book teaches everything you'll need to know to create well-designed SharePoint solutions that always keep the end-user's experience in mind. Increase your search efficiency with SharePoint 2010's search functionality: extend the search user interface using third-party tools, and utilize analytics to improve relevancy. This practical hands-on book is a must-have resource for anyone looking to unlock the full potential of their SharePoint server's search capabilities. Pro SharePoint 2010 Search empowers you to customize a SharePoint 2010 search deployment and maximize the platform's potential for your organization. What you'll learn Design and implement effective search crawls and indexing Create intuitive user interfaces, and improve search findability Understand how to configure core SharePointcomponents Customize SharePoint's existing search functionality Who this book is for This book is aimed at intermediate to advanced SharePoint administrators who want to incorporate well-designed search functionality into their sites. Table of Contents Overview of SharePoint 2010 Search Planning Your Search Deployment Setting Up the Crawler Deploying the Search Center The Search User Interface Configuring Search Settings and the User Interface Working with Search Page Layouts Searching Through the API Business Connectivity Services Relevancy and Reporting Search Extensions
This book presents fundamentals in MATLAB programming, including data and statement structures, control structures, function writing and bugging in MATLAB programming, followed by the presentations of algebraic computation, transcendental function evaluations and data processing. Advanced topics such as MATLAB interfacing, object-oriented programming and graphical user interface design are also addressed.
This book focuses on solving optimization problems with MATLAB. Descriptions and solutions of nonlinear equations of any form are studied first. Focuses are made on the solutions of various types of optimization problems, including unconstrained and constrained optimizations, mixed integer, multiobjective and dynamic programming problems. Comparative studies and conclusions on intelligent global solvers are also provided.
This book focuses the solutions of linear algebra and matrix analysis problems, with the exclusive use of MATLAB. The topics include representations, fundamental analysis, transformations of matrices, matrix equation solutions as well as matrix functions. Attempts on matrix and linear algebra applications are also explored.
This book focuses on solving practical problems in calculus with MATLAB. Descriptions and sketching of functions and sequences are introduced first, followed by the analytical solutions of limit, differentiation, integral and function approximation problems of univariate and multivariate functions. Advanced topics such as numerical differentiations and integrals, integral transforms as well as fractional calculus are also covered in the book. |
You may like...
Database Systems - Design…
Carlos Coronel, Steven Morris
Hardcover
SAS for Mixed Models - Introduction and…
Walter W. Stroup, George A. Milliken, …
Hardcover
R3,073
Discovery Miles 30 730
|