![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Computer software packages > Other software packages
This report examines Viet Nam's tech-based startups in two sectors: agriculture and health. It assesses the challenges for creating a more enabling ecosystem to scale up startups in these sectors and makes recommendations to overcome them. Technology-based startup enterprises are an increasingly important part of the business landscape in Asia and the Pacific. By applying innovative technologies to create new products and services, they can make a significant contribution to economic development while generating social and environmental benefits. However, to survive and then thrive, tech startups require an enabling ecosystem that includes supportive government policy, adequate access to capital, skilled personnel, and quality digital infrastructure. This is the third country report in the series ""Ecosystems for Technology Startups in Asia and the Pacific.
This book presents recent non-asymptotic results for approximations in multivariate statistical analysis. The book is unique in its focus on results with the correct error structure for all the parameters involved. Firstly, it discusses the computable error bounds on correlation coefficients, MANOVA tests and discriminant functions studied in recent papers. It then introduces new areas of research in high-dimensional approximations for bootstrap procedures, Cornish-Fisher expansions, power-divergence statistics and approximations of statistics based on observations with random sample size. Lastly, it proposes a general approach for the construction of non-asymptotic bounds, providing relevant examples for several complicated statistics. It is a valuable resource for researchers with a basic understanding of multivariate statistics.
This book provides statistical methodologies for time series data, focusing on copula-based Markov chain models for serially correlated time series. It also includes data examples from economics, engineering, finance, sport and other disciplines to illustrate the methods presented. An accessible textbook for students in the fields of economics, management, mathematics, statistics, and related fields wanting to gain insights into the statistical analysis of time series data using copulas, the book also features stand-alone chapters to appeal to researchers. As the subtitle suggests, the book highlights parametric models based on normal distribution, t-distribution, normal mixture distribution, Poisson distribution, and others. Presenting likelihood-based methods as the main statistical tools for fitting the models, the book details the development of computing techniques to find the maximum likelihood estimator. It also addresses statistical process control, as well as Bayesian and regression methods. Lastly, to help readers analyze their data, it provides computer codes (R codes) for most of the statistical methods.
This volume gathers peer-reviewed contributions on data analysis, classification and related areas presented at the 28th Conference of the Section on Classification and Data Analysis of the Polish Statistical Association, SKAD 2019, held in Szczecin, Poland, on September 18-20, 2019. Providing a balance between theoretical and methodological contributions and empirical papers, it covers a broad variety of topics, ranging from multivariate data analysis, classification and regression, symbolic (and other) data analysis, visualization, data mining, and computer methods to composite measures, and numerous applications of data analysis methods in economics, finance and other social sciences. The book is intended for a wide audience, including researchers at universities and research institutions, graduate and doctoral students, practitioners, data scientists and employees in public statistical institutions.
In biological research, the amount of data available to researchers has increased so much over recent years, it is becoming increasingly difficult to understand the current state of the art without some experience and understanding of data analytics and bioinformatics. An Introduction to Bioinformatics with R: A Practical Guide for Biologists leads the reader through the basics of computational analysis of data encountered in modern biological research. With no previous experience with statistics or programming required, readers will develop the ability to plan suitable analyses of biological datasets, and to use the R programming environment to perform these analyses. This is achieved through a series of case studies using R to answer research questions using molecular biology datasets. Broadly applicable statistical methods are explained, including linear and rank-based correlation, distance metrics and hierarchical clustering, hypothesis testing using linear regression, proportional hazards regression for survival data, and principal component analysis. These methods are then applied as appropriate throughout the case studies, illustrating how they can be used to answer research questions. Key Features: * Provides a practical course in computational data analysis suitable for students or researchers with no previous exposure to computer programming. * Describes in detail the theoretical basis for statistical analysis techniques used throughout the textbook, from basic principles * Presents walk-throughs of data analysis tasks using R and example datasets. All R commands are presented and explained in order to enable the reader to carry out these tasks themselves. * Uses outputs from a large range of molecular biology platforms including DNA methylation and genotyping microarrays; RNA-seq, genome sequencing, ChIP-seq and bisulphite sequencing; and high-throughput phenotypic screens. * Gives worked-out examples geared towards problems encountered in cancer research, which can also be applied across many areas of molecular biology and medical research. This book has been developed over years of training biological scientists and clinicians to analyse the large datasets available in their cancer research projects. It is appropriate for use as a textbook or as a practical book for biological scientists looking to gain bioinformatics skills.
This textbook offers an easy-to-follow, practical guide to modern data analysis using the programming language R. The chapters cover topics such as the fundamentals of programming in R, data collection and preprocessing, including web scraping, data visualization, and statistical methods, including multivariate analysis, and feature exercises at the end of each section. The text requires only basic statistics skills, as it strikes a balance between statistical and mathematical understanding and implementation in R, with a special emphasis on reproducible examples and real-world applications. This textbook is primarily intended for undergraduate students of mathematics, statistics, physics, economics, finance and business who are pursuing a career in data analytics. It will be equally valuable for master students of data science and industry professionals who want to conduct data analyses.
Discover what the Common Data Service is and how Dynamics 365 fits in the Power Platform. Learn how to set up core Dynamics 365 Customer Engagement functionality and build more customized processes using model-driven apps. This book covers the Dynamics 365 Online system for sales, customer service, marketing, field service, and Outlook integration. In this second edition, core platform changes from the Common Data Service are included and you will know what this means for Dynamics 365. Updated features include processes, the latest form and view designer, and Business Process Flows. The book also includes new chapters on portals and power virtual agents. After reading Dynamics 365 Essentials, you will have mastered the core functionality available in Dynamics 365 CE and model-driven applications, and will be able to set it up for a range of different business scenarios. What You Will Learn Set up the core standard features of Dynamics 365 CE Create model-driven apps within Dynamics 365 customized to specific business needs Customize Dynamics 365 CE and leverage process automation functionality through the UI Study the Common Data Service for Apps Who This Book Is For Consultants, business analysts, administrators, and project managers who are looking for more information about Dynamics 365
Get up to speed on Microsoft Project 2013 and learn how to manage projects large and small. This crystal-clear book not only guides you step-by-step through Project 2013's new features, it also gives you real-world guidance: how to prep a project before touching your PC, and which Project tools will keep you on target. With this Missing Manual, you'll go from project manager to Project master. The important stuff you need to knowLearn Project 2013 inside out. Get hands-on instructions for the Standard and Professional editions.Start with a project management primer. Discover what it takes to handle a project successfully.Build and refine your plan. Put together your team, schedule, and budget.Achieve the results you want. Build realistic schedules with Project, and learn how to keep costs under control.Track your progress. Measure your performance, make course corrections, and manage changes.Create attractive reports. Communicate clearly to stakeholders and team members using charts, tables, and dashboards.Use Project's power tools. Customize Project's features and views, and transfer info via the cloud, using Microsoft SkyDrive.
The goals of this text are to develop the skills and an appreciation for the richness and versatility of modern time series analysis as a tool for analyzing dependent data. A useful feature of the presentation is the inclusion of nontrivial data sets illustrating the richness of potential applications to problems in the biological, physical, and social sciences as well as medicine. The text presents a balanced and comprehensive treatment of both time and frequency domain methods with an emphasis on data analysis. Numerous examples using data illustrate solutions to problems such as discovering natural and anthropogenic climate change, evaluating pain perception experiments using functional magnetic resonance imaging, and the analysis of economic and financial problems. The text can be used for a one semester/quarter introductory time series course where the prerequisites are an understanding of linear regression, basic calculus-based probability skills, and math skills at the high school level. All of the numerical examples use the R statistical package without assuming that the reader has previously used the software. Robert H. Shumway is Professor Emeritus of Statistics, University of California, Davis. He is a Fellow of the American Statistical Association and has won the American Statistical Association Award for Outstanding Statistical Application. He is the author of numerous texts and served on editorial boards such as the Journal of Forecasting and the Journal of the American Statistical Association. David S. Stoffer is Professor of Statistics, University of Pittsburgh. He is a Fellow of the American Statistical Association and has won the American Statistical Association Award for Outstanding Statistical Application. He is currently on the editorial boards of the Journal of Forecasting, the Annals of Statistical Mathematics, and the Journal of Time Series Analysis. He served as a Program Director in the Division of Mathematical Sciences at the National Science Foundation and as an Associate Editor for the Journal of the American Statistical Association and the Journal of Business & Economic Statistics.
This book offers a modern and accessible introduction to Statistical Inference, the science of inferring key information from data. Aimed at beginning undergraduate students in mathematics, it presents the concepts underpinning frequentist statistical theory. Written in a conversational and informal style, this concise text concentrates on ideas and concepts, with key theorems stated and proved. Detailed worked examples are included and each chapter ends with a set of exercises, with full solutions given at the back of the book. Examples using R are provided throughout the book, with a brief guide to the software included. Topics covered in the book include: sampling distributions, properties of estimators, confidence intervals, hypothesis testing, ANOVA, and fitting a straight line to paired data. Based on the author's extensive teaching experience, the material of the book has been honed by student feedback for over a decade. Assuming only some familiarity with elementary probability, this textbook has been devised for a one semester first course in statistics.
Written at a readily accessible level, " Basic Data Analysis for Time Series with R" emphasizes the mathematical importance of collaborative analysis of data used to collect increments of time or space. Balancing a theoretical and practical approach to analyzing data within the context of serial correlation, the book presents a coherent and systematic regression-based approach to model selection. The book illustrates these principles of model selection and model building through the use of information criteria, cross validation, hypothesis tests, and confidence intervals. Focusing on frequency- and time-domain and trigonometric regression as the primary themes, the book also includes modern topical coverage on Fourier series and Akaike's Information Criterion (AIC). In addition, "Basic Data Analysis for Time Series with R" also features: Real-world examples to provide readers with practical hands-on experienceMultiple R software subroutines employed with graphical displaysNumerous exercise sets intended to support readers understanding of the core conceptsSpecific chapters devoted to the analysis of the Wolf sunspot number data and the Vostok ice core data sets
This book focuses on solving optimization problems with MATLAB. Descriptions and solutions of nonlinear equations of any form are studied first. Focuses are made on the solutions of various types of optimization problems, including unconstrained and constrained optimizations, mixed integer, multiobjective and dynamic programming problems. Comparative studies and conclusions on intelligent global solvers are also provided.
This book focuses on solving practical problems in calculus with MATLAB. Descriptions and sketching of functions and sequences are introduced first, followed by the analytical solutions of limit, differentiation, integral and function approximation problems of univariate and multivariate functions. Advanced topics such as numerical differentiations and integrals, integral transforms as well as fractional calculus are also covered in the book.
This book focuses the solutions of linear algebra and matrix analysis problems, with the exclusive use of MATLAB. The topics include representations, fundamental analysis, transformations of matrices, matrix equation solutions as well as matrix functions. Attempts on matrix and linear algebra applications are also explored.
This book depicts a wide range of situations in which there exist finite form representations for the Meijer G and the Fox H functions. Accordingly, it will be of interest to researchers and graduate students who, when implementing likelihood ratio tests in multivariate analysis, would like to know if there exists an explicit manageable finite form for the distribution of the test statistics. In these cases, both the exact quantiles and the exact p-values of the likelihood ratio tests can be computed quickly and efficiently. The test statistics in question range from common ones, such as those used to test e.g. the equality of means or the independence of blocks of variables in real or complex normally distributed random vectors; to far more elaborate tests on the structure of covariance matrices and equality of mean vectors. The book also provides computational modules in Mathematica (R), MAXIMA and R, which allow readers to easily implement, plot and compute the distributions of any of these statistics, or any other statistics that fit into the general paradigm described here.
Addressing a broad range of big data analytics in cross-disciplinary applications, this essential handbook focuses on the statistical prospects offered by recent developments in this field. To do so, it covers statistical methods for high-dimensional problems, algorithmic designs, computation tools, analysis flows and the software-hardware co-designs that are needed to support insightful discoveries from big data. The book is primarily intended for statisticians, computer experts, engineers and application developers interested in using big data analytics with statistics. Readers should have a solid background in statistics and computer science.
This volume presents a selection of research papers on various topics at the interface of statistics and computer science. Emphasis is put on the practical applications of statistical methods in various disciplines, using machine learning and other computational methods. The book covers fields of research including the design of experiments, computational statistics, music data analysis, statistical process control, biometrics, industrial engineering, and econometrics. Gathering innovative, high-quality and scientifically relevant contributions, the volume was published in honor of Claus Weihs, Professor of Computational Statistics at TU Dortmund University, on the occasion of his 66th birthday.
This book is the modern first treatment of experimental designs, providing a comprehensive introduction to the interrelationship between the theory of optimal designs and the theory of cubature formulas in numerical analysis. It also offers original new ideas for constructing optimal designs. The book opens with some basics on reproducing kernels, and builds up to more advanced topics, including bounds for the number of cubature formula points, equivalence theorems for statistical optimalities, and the Sobolev Theorem for the cubature formula. It concludes with a functional analytic generalization of the above classical results. Although it is intended for readers who are interested in recent advances in the construction theory of optimal experimental designs, the book is also useful for researchers seeking rich interactions between optimal experimental designs and various mathematical subjects such as spherical designs in combinatorics and cubature formulas in numerical analysis, both closely related to embeddings of classical finite-dimensional Banach spaces in functional analysis and Hilbert identities in elementary number theory. Moreover, it provides a novel communication platform for "design theorists" in a wide variety of research fields.
This textbook is aimed at computer science undergraduates late in sophomore or early in junior year, supplying a comprehensive background in qualitative and quantitative data analysis, probability, random variables, and statistical methods, including machine learning. With careful treatment of topics that fill the curricular needs for the course, Probability and Statistics for Computer Science features: * A treatment of random variables and expectations dealing primarily with the discrete case. * A practical treatment of simulation, showing how many interesting probabilities and expectations can be extracted, with particular emphasis on Markov chains. * A clear but crisp account of simple point inference strategies (maximum likelihood; Bayesian inference) in simple contexts. This is extended to cover some confidence intervals, samples and populations for random sampling with replacement, and the simplest hypothesis testing. * A chapter dealing with classification, explaining why it's useful; how to train SVM classifiers with stochastic gradient descent; and how to use implementations of more advanced methods such as random forests and nearest neighbors. * A chapter dealing with regression, explaining how to set up, use and understand linear regression and nearest neighbors regression in practical problems. * A chapter dealing with principal components analysis, developing intuition carefully, and including numerous practical examples. There is a brief description of multivariate scaling via principal coordinate analysis. * A chapter dealing with clustering via agglomerative methods and k-means, showing how to build vector quantized features for complex signals. Illustrated throughout, each main chapter includes many worked examples and other pedagogical elements such as boxed Procedures, Definitions, Useful Facts, and Remember This (short tips). Problems and Programming Exercises are at the end of each chapter, with a summary of what the reader should know. Instructor resources include a full set of model solutions for all problems, and an Instructor's Manual with accompanying presentation slides.
This book discusses the latest advances in algorithms for symbolic summation, factorization, symbolic-numeric linear algebra and linear functional equations. It presents a collection of papers on original research topics from the Waterloo Workshop on Computer Algebra (WWCA-2016), a satellite workshop of the International Symposium on Symbolic and Algebraic Computation (ISSAC'2016), which was held at Wilfrid Laurier University (Waterloo, Ontario, Canada) on July 23-24, 2016. This workshop and the resulting book celebrate the 70th birthday of Sergei Abramov (Dorodnicyn Computing Centre of the Russian Academy of Sciences, Moscow), whose highly regarded and inspirational contributions to symbolic methods have become a crucial benchmark of computer algebra and have been broadly adopted by many Computer Algebra systems.
This volume features selected contributions on a variety of topics related to linear statistical inference. The peer-reviewed papers from the International Conference on Trends and Perspectives in Linear Statistical Inference (LinStat 2016) held in Istanbul, Turkey, 22-25 August 2016, cover topics in both theoretical and applied statistics, such as linear models, high-dimensional statistics, computational statistics, the design of experiments, and multivariate analysis. The book is intended for statisticians, Ph.D. students, and professionals who are interested in statistical inference.
This book provides state-of-the-art and interdisciplinary topics on solving matrix eigenvalue problems, particularly by using recent petascale and upcoming post-petascale supercomputers. It gathers selected topics presented at the International Workshops on Eigenvalue Problems: Algorithms; Software and Applications, in Petascale Computing (EPASA2014 and EPASA2015), which brought together leading researchers working on the numerical solution of matrix eigenvalue problems to discuss and exchange ideas - and in so doing helped to create a community for researchers in eigenvalue problems. The topics presented in the book, including novel numerical algorithms, high-performance implementation techniques, software developments and sample applications, will contribute to various fields that involve solving large-scale eigenvalue problems.
Combining theoretical and practical aspects of topology, this book provides a comprehensive and self-contained introduction to topological methods for the analysis and visualization of scientific data. Theoretical concepts are presented in a painstaking but intuitive manner, with numerous high-quality color illustrations. Key algorithms for the computation and simplification of topological data representations are described in detail, and their application is carefully demonstrated in a chapter dedicated to concrete use cases. With its fine balance between theory and practice, "Topological Data Analysis for Scientific Visualization" constitutes an appealing introduction to the increasingly important topic of topological data analysis for lecturers, students and researchers.
This book introduces readers to statistical methodologies used to analyze doubly truncated data. The first book exclusively dedicated to the topic, it provides likelihood-based methods, Bayesian methods, non-parametric methods, and linear regression methods. These procedures can be used to effectively analyze continuous data, especially survival data arising in biostatistics and economics. Because truncation is a phenomenon that is often encountered in non-experimental studies, the methods presented here can be applied to many branches of science. The book provides R codes for most of the statistical methods, to help readers analyze their data. Given its scope, the book is ideally suited as a textbook for students of statistics, mathematics, econometrics, and other fields. |
You may like...
Database Systems - Design…
Carlos Coronel, Steven Morris
Paperback
Data Communication and Computer Networks…
Jill West, Curt M. White
Paperback
29th European Symposium on Computer…
Anton A Kiss, Edwin Zondervan, …
Hardcover
R11,317
Discovery Miles 113 170
14th International Symposium on Process…
Yoshiyuki Yamashita, Manabu Kano
Hardcover
R11,098
Discovery Miles 110 980
Multi-Criteria Decision-Making Sorting…
Luis Martinez Lopez, Alessio Ishizaka, …
Paperback
R2,948
Discovery Miles 29 480
|