![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Computer software packages > Other software packages
Discover what needs to happen in enterprise-architecture practice-and not just its outcomes, but also the activities from which those outcomes would arise. This book reveals how business and enterprise architects can deliver fast solutions to an always-on-the-go business world. To begin, you'll review a new technique called "context-space mapping," which provides a structured method for sense-making across the entire context of an enterprise. Throughout the book, you'll concentrate on the routine practices that underpin each of the architecture disciplines. Working step-by-step through a real 10-day architecture project, this book explores the activities that underpin the strategy, structures and solutions in the real-time turmoil of an enterprise architect's everyday work. You'll explore how and why and when the various documents, artefacts and items of 'theory-stuff' come into the practice - all those mainstream methods, frameworks, models, metamodels and other information sources. In the end, Everyday Enterprise Architecture will help you develop the skills, judgment, and awareness to keep enhancing the value of your architectural projects. What You'll Learn Work on architectures at "business-speed" Adapt architectures for different tasks Gather, use, and manage architectural information Who This Book Is For Enterprise and business architects.
This proceedings volume features top contributions in modern statistical methods from Statistics 2021 Canada, the 6th Annual Canadian Conference in Applied Statistics, held virtually on July 15-18, 2021. Papers are contributed from established and emerging scholars, covering cutting-edge and contemporary innovative techniques in statistics and data science. Major areas of contribution include Bayesian statistics; computational statistics; data science; semi-parametric regression; and stochastic methods in biology, crop science, ecology and engineering. It will be a valuable edited collection for graduate students, researchers, and practitioners in a wide array of applied statistical and data science methods.
A new paradigm for scientific discovery through computational tools now permeates every aspect of astronomical research. Computational astrophysics combines modern computational methods, novel hardware designs, advanced algorithms, original software implementations, and associated technologies to discover new phenomena and to make predictions in astronomy. The proceedings of IAU Symposium 362 summarizes ongoing developments in computational astrophysics through astronomers in diverse fields sharing their knowledge and approaches. It focuses on computational methods applied to speed up and broaden the scope of scientific studies, such as finding trends in observational data, high performance computing, automated search algorithms, and model predictability. Experts discuss a palette of challenging informational and technical developments, with the goal of coordinating their efforts and the improvement of techniques in pursuit of a wide range of astronomical studies, including fluid dynamics in star and galaxy evolution, exoplanets, gravitational waves, numerical relativity, data mining, and much more.
The book presents the fundamental concepts from asymptotic statistical inference theory, elaborating on some basic large sample optimality properties of estimators and some test procedures. The most desirable property of consistency of an estimator and its large sample distribution, with suitable normalization, are discussed, the focus being on the consistent and asymptotically normal (CAN) estimators. It is shown that for the probability models belonging to an exponential family and a Cramer family, the maximum likelihood estimators of the indexing parameters are CAN. The book describes some large sample test procedures, in particular, the most frequently used likelihood ratio test procedure. Various applications of the likelihood ratio test procedure are addressed, when the underlying probability model is a multinomial distribution. These include tests for the goodness of fit and tests for contingency tables. The book also discusses a score test and Wald's test, their relationship with the likelihood ratio test and Karl Pearson's chi-square test. An important finding is that, while testing any hypothesis about the parameters of a multinomial distribution, a score test statistic and Karl Pearson's chi-square test statistic are identical. Numerous illustrative examples of differing difficulty level are incorporated to clarify the concepts. For better assimilation of the notions, various exercises are included in each chapter. Solutions to almost all the exercises are given in the last chapter, to motivate students towards solving these exercises and to enable digestion of the underlying concepts. The concepts from asymptotic inference are crucial in modern statistics, but are difficult to grasp in view of their abstract nature. To overcome this difficulty, keeping up with the recent trend of using R software for statistical computations, the book uses it extensively, for illustrating the concepts, verifying the properties of estimators and carrying out various test procedures. The last section of the chapters presents R codes to reveal and visually demonstrate the hidden aspects of different concepts and procedures. Augmenting the theory with R software is a novel and a unique feature of the book. The book is designed primarily to serve as a text book for a one semester introductory course in asymptotic statistical inference, in a post-graduate program, such as Statistics, Bio-statistics or Econometrics. It will also provide sufficient background information for studying inference in stochastic processes. The book will cater to the need of a concise but clear and student-friendly book introducing, conceptually and computationally, basics of asymptotic inference.
This textbook provides a step-by-step introduction to the tools and principles of high-dimensional statistics. Each chapter is complemented by numerous exercises, many of them with detailed solutions, and computer labs in R that convey valuable practical insights. The book covers the theory and practice of high-dimensional linear regression, graphical models, and inference, ensuring readers have a smooth start in the field. It also offers suggestions for further reading. Given its scope, the textbook is intended for beginning graduate and advanced undergraduate students in statistics, biostatistics, and bioinformatics, though it will be equally useful to a broader audience.
This book provides an accessible introduction and practical guidelines to apply asymmetric multidimensional scaling, cluster analysis, and related methods to asymmetric one-mode two-way and three-way asymmetric data. A major objective of this book is to present to applied researchers a set of methods and algorithms for graphical representation and clustering of asymmetric relationships. Data frequently concern measurements of asymmetric relationships between pairs of objects from a given set (e.g., subjects, variables, attributes,...), collected in one or more matrices. Examples abound in many different fields such as psychology, sociology, marketing research, and linguistics and more recently several applications have appeared in technological areas including cybernetics, air traffic control, robotics, and network analysis. The capabilities of the presented algorithms are illustrated by carefully chosen examples and supported by extensive data analyses. A review of the specialized statistical software available for the applications is also provided. This monograph is highly recommended to readers who need a complete and up-to-date reference on methods for asymmetric proximity data analysis.
The main focus of this book is on presenting advances in fuzzy statistics, and on proposing a methodology for testing hypotheses in the fuzzy environment based on the estimation of fuzzy confidence intervals, a context in which not only the data but also the hypotheses are considered to be fuzzy. The proposed method for estimating these intervals is based on the likelihood method and employs the bootstrap technique. A new metric generalizing the signed distance measure is also developed. In turn, the book presents two conceptually diverse applications in which defended intervals play a role: one is a novel methodology for evaluating linguistic questionnaires developed at the global and individual levels; the other is an extension of the multi-ways analysis of variance to the space of fuzzy sets. To illustrate these approaches, the book presents several empirical and simulation-based studies with synthetic and real data sets. In closing, it presents a coherent R package called "FuzzySTs" which covers all the previously mentioned concepts with full documentation and selected use cases. Given its scope, the book will be of interest to all researchers whose work involves advanced fuzzy statistical methods.
This introductory textbook presents research methods and data analysis tools in non-technical language. It explains the research process and the basics of qualitative and quantitative data analysis, including procedures and methods, analysis, interpretation, and applications using hands-on data examples in QDA Miner Lite and IBM SPSS Statistics software. The book is divided into four parts that address study and research design; data collection, qualitative methods and surveys; statistical methods, including hypothesis testing, regression, cluster and factor analysis; and reporting. The intended audience is business and social science students learning scientific research methods, however, given its business context, the book will be equally useful for decision-makers in businesses and organizations.
Employ essential tools and functions of the MATLAB and Simulink packages, which are explained and demonstrated via interactive examples and case studies. This revised edition covers features from the latest MATLAB 2022b release, as well as other features that have been released since the first edition published. This book contains dozens of simulation models and solved problems via m-files/scripts and Simulink models which will help you to learn programming and modelling essentials. You'll become efficient with many of the built-in tools and functions of MATLAB/Simulink while solving engineering and scientific computing problems. Beginning MATLAB and Simulink, Second Edition explains various practical issues of programming and modelling in parallel by comparing MATLAB and Simulink. After studying and using this book, you'll be proficient at using MATLAB and Simulink and applying the source code and models from the book's examples as templates for your own projects in data science or engineering. What You Will Learn Master the programming and modelling essentials of MATLAB and Simulink Carry out data visualization with MATLAB Build a GUI and develop App with MATLAB Work with integration and numerical root finding methods Apply MATLAB to differential equations-based models and simulations Use MATLAB and Simulink for data science projects Who This Book Is ForEngineers, programmers, data scientists, and students majoring in engineering and scientific computing who are new to MATLAB and Simulink.
This book presents a general method for deriving higher-order statistics of multivariate distributions with simple algorithms that allow for actual calculations. Multivariate nonlinear statistical models require the study of higher-order moments and cumulants. The main tool used for the definitions is the tensor derivative, leading to several useful expressions concerning Hermite polynomials, moments, cumulants, skewness, and kurtosis. A general test of multivariate skewness and kurtosis is obtained from this treatment. Exercises are provided for each chapter to help the readers understand the methods. Lastly, the book includes a comprehensive list of references, equipping readers to explore further on their own.
An easy-to-understand course book, based on the authentic lectures and detailed research, conducted by the authors themselves, on information optics, holography and MATLAB. This book is the first to highlight the incoherent optical system, provide up-to-date, novel digital holography techniques, and demonstrate MATLAB codes to accomplish tasks such as optical image processing and pattern recognition. This title is a comprehensive introduction to the basics of Fourier optics as well as optical image processing and digital holography. A step-by-step guide which details the vast majority of the derivations, without omitting essential steps, to facilitate a clear mathematical understanding. This book also features exercises at the end of each chapter, providing hands-on experience and consolidating understanding. An ideal companion for graduates and researchers involved in engineering and applied physics, as well as interested in the growing field of information optics.
This new edition to the classic book by ggplot2 creator Hadley Wickham highlights compatibility with knitr and RStudio. ggplot2 is a data visualization package for R that helps users create data graphics, including those that are multi-layered, with ease. With ggplot2, it's easy to: produce handsome, publication-quality plots with automatic legends created from the plot specification superimpose multiple layers (points, lines, maps, tiles, box plots) from different data sources with automatically adjusted common scales add customizable smoothers that use powerful modeling capabilities of R, such as loess, linear models, generalized additive models, and robust regression save any ggplot2 plot (or part thereof) for later modification or reuse create custom themes that capture in-house or journal style requirements and that can easily be applied to multiple plots approach a graph from a visual perspective, thinking about how each component of the data is represented on the final plot This book will be useful to everyone who has struggled with displaying data in an informative and attractive way. Some basic knowledge of R is necessary (e.g., importing data into R). ggplot2 is a mini-language specifically tailored for producing graphics, and you'll learn everything you need in the book. After reading this book you'll be able to produce graphics customized precisely for your problems, and you'll find it easy to get graphics out of your head and on to the screen or page.
Das Buch behandelt praxisbezogene Methoden zur Analyse und Steuerung operationaler IT-Risiken entsprechend der Anforderungen im Gesetz zur Kontrolle und Transparenz im Unternehmensbereich (KonTraG). Prasentiert werden zudem Konzepte fur den Aufbau und den Ablauf einer Notfall- und Krisenorganisation in Unternehmen sowie Verfahren zur Pravention und Durchfuhrung von Ubungen im Not- oder Katastrophenfall. Zu den Praxisbeispielen werden Checklisten zur Verfugung gestellt, die als Referenz bei der Erstellung eigener Dokumente dienen."
The book covers computational statistics, its methodologies and applications for IoT device. It includes the details in the areas of computational arithmetic and its influence on computational statistics, numerical algorithms in statistical application software, basics of computer systems, statistical techniques, linear algebra and its role in optimization techniques, evolution of optimization techniques, optimal utilization of computer resources, and statistical graphics role in data analysis. It also explores computational inferencing and computer model's role in design of experiments, Bayesian analysis, survival analysis and data mining in computational statistics.
The most crucial ability for machine learning and data science is mathematical logic for grasping their essence rather than relying on knowledge or experience. This textbook addresses the fundamentals of kernel methods for machine learning by considering relevant math problems and building Python programs. The book's main features are as follows: The content is written in an easy-to-follow and self-contained style. The book includes 100 exercises, which have been carefully selected and refined. As their solutions are provided in the main text, readers can solve all of the exercises by reading the book. The mathematical premises of kernels are proven and the correct conclusions are provided, helping readers to understand the nature of kernels. Source programs and running examples are presented to help readers acquire a deeper understanding of the mathematics used. Once readers have a basic understanding of the functional analysis topics covered in Chapter 2, the applications are discussed in the subsequent chapters. Here, no prior knowledge of mathematics is assumed. This book considers both the kernel for reproducing kernel Hilbert space (RKHS) and the kernel for the Gaussian process; a clear distinction is made between the two.
This book is a result of a workshop, the 8th of the successful TopoInVis workshop series, held in 2019 in Nykoeping, Sweden. The workshop regularly gathers some of the world's leading experts in this field. Thereby, it provides a forum for discussions on the latest advances in the field with a focus on finding practical solutions to open problems in topological data analysis for visualization. The contributions provide introductory and novel research articles including new concepts for the analysis of multivariate and time-dependent data, robust computational approaches for the extraction and approximations of topological structures with theoretical guarantees, and applications of topological scalar and vector field analysis for visualization. The applications span a wide range of scientific areas comprising climate science, material sciences, fluid dynamics, and astronomy. In addition, community efforts with respect to joint software development are reported and discussed.
BRIDGES THE GAP BETWEEN SAS AND R, ALLOWING USERS TRAINED IN ONE LANGUAGE TO EASILY LEARN THE OTHER SAS and R are widely-used, very different software environments. Prized for its statistical and graphical tools, R is an open-source programming language that is popular with statisticians and data miners who develop statistical software and analyze data. SAS (Statistical Analysis System) is the leading corporate software in analytics thanks to its faster data handling and smaller learning curve. SAS for R Users enables entry-level data scientists to take advantage of the best aspects of both tools by providing a cross-functional framework for users who already know R but may need to work with SAS. Those with knowledge of both R and SAS are of far greater value to employers, particularly in corporate settings. Using a clear, step-by-step approach, this book presents an analytics workflow that mirrors that of the everyday data scientist. This up-to-date guide is compatible with the latest R packages as well as SAS University Edition. Useful for anyone seeking employment in data science, this book: Instructs both practitioners and students fluent in one language seeking to learn the other Provides command-by-command translations of R to SAS and SAS to R Offers examples and applications in both R and SAS Presents step-by-step guidance on workflows, color illustrations, sample code, chapter quizzes, and more Includes sections on advanced methods and applications Designed for professionals, researchers, and students, SAS for R Users is a valuable resource for those with some knowledge of coding and basic statistics who wish to enter the realm of data science and business analytics.
The nonequilibrium behavior of nanoscopic and biological systems, which are typically strongly fluctuating, is a major focus of current research. Lately, much progress has been made in understanding such systems from a thermodynamic perspective. However, new theoretical challenges emerge when the fluctuating system is additionally subject to time delay, e.g. due to the presence of feedback loops. This thesis advances this young and vibrant research field in several directions. The first main contribution concerns the probabilistic description of time-delayed systems; e.g. by introducing a versatile approximation scheme for nonlinear delay systems. Second, it reveals that delay can induce intriguing thermodynamic properties such as anomalous (reversed) heat flow. More generally, the thesis shows how to treat the thermodynamics of non-Markovian systems by introducing auxiliary variables. It turns out that delayed feedback is inextricably linked to nonreciprocal coupling, information flow, and to net energy input on the fluctuating level.
The most crucial ability for machine learning and data science is mathematical logic for grasping their essence rather than relying on knowledge or experience. This textbook addresses the fundamentals of kernel methods for machine learning by considering relevant math problems and building R programs. The book's main features are as follows: The content is written in an easy-to-follow and self-contained style. The book includes 100 exercises, which have been carefully selected and refined. As their solutions are provided in the main text, readers can solve all of the exercises by reading the book. The mathematical premises of kernels are proven and the correct conclusions are provided, helping readers to understand the nature of kernels. Source programs and running examples are presented to help readers acquire a deeper understanding of the mathematics used. Once readers have a basic understanding of the functional analysis topics covered in Chapter 2, the applications are discussed in the subsequent chapters. Here, no prior knowledge of mathematics is assumed. This book considers both the kernel for reproducing kernel Hilbert space (RKHS) and the kernel for the Gaussian process; a clear distinction is made between the two.
This book discusses all major topics on survey sampling and estimation. It covers traditional as well as advanced sampling methods related to the spatial populations. The book presents real-world applications of major sampling methods and illustrates them with the R software. As a large sample size is not cost-efficient, this book introduces a new method by using the domain knowledge of the negative correlation between the variable of interest and the auxiliary variable in order to control the size of a sample. In addition, the book focuses on adaptive cluster sampling, rank-set sampling and their applications in real life. Advance methods discussed in the book have tremendous applications in ecology, environmental science, health science, forestry, bio-sciences, and humanities. This book is targeted as a text for undergraduate and graduate students of statistics, as well as researchers in various disciplines.
This monograph uses the Julia language to guide the reader through an exploration of the fundamental concepts of probability and statistics, all with a view of mastering machine learning, data science, and artificial intelligence. The text does not require any prior statistical knowledge and only assumes a basic understanding of programming and mathematical notation. It is accessible to practitioners and researchers in data science, machine learning, bio-statistics, finance, or engineering who may wish to solidify their knowledge of probability and statistics. The book progresses through ten independent chapters starting with an introduction of Julia, and moving through basic probability, distributions, statistical inference, regression analysis, machine learning methods, and the use of Monte Carlo simulation for dynamic stochastic models. Ultimately this text introduces the Julia programming language as a computational tool, uniquely addressing end-users rather than developers. It makes heavy use of over 200 code examples to illustrate dozens of key statistical concepts. The Julia code, written in a simple format with parameters that can be easily modified, is also available for download from the book's associated GitHub repository online. See what co-creators of the Julia language are saying about the book: Professor Alan Edelman, MIT: With "Statistics with Julia", Yoni and Hayden have written an easy to read, well organized, modern introduction to statistics. The code may be looked at, and understood on the static pages of a book, or even better, when running live on a computer. Everything you need is here in one nicely written self-contained reference. Dr. Viral Shah, CEO of Julia Computing: Yoni and Hayden provide a modern way to learn statistics with the Julia programming language. This book has been perfected through iteration over several semesters in the classroom. It prepares the reader with two complementary skills - statistical reasoning with hands on experience and working with large datasets through training in Julia.
Das Buch stellt Konzepte des "Echtzeitunternehmens" (Real-Time Enterprise) vor und weist auf die tiefgreifenden Ver nderungen hin, die diese Art der Evolution f r das Unternehmen mit sich bringt. Als Wegweiser und Sammlung von Ideen und erprobten Konzepten zeigt es auf, wie man Unternehmen auf mehr Geschwindigkeit trimmen kann, um die Wettbewerbsf higkeit zu st rken, die Attraktivit t f r die Kunden zu erh hen und letztlich wirtschaftlicher zu arbeiten. Innovative Praktiker, f hrende Denker aus Wissenschaft und Forschung und betroffene Dienstleistungs- und Technologieanbieter vermitteln facettenreich und aus verschiedenen Blickwinkeln sowohl Ideen als auch notwendiges Wissen, um den Herausforderungen des "Geschwindigkeitsdiktates" wirksam zu begegnen und die in ihm liegenden Chancen voll auszusch pfen.
Eine wesentliche Ursache fA1/4r das Scheitern von Softwareentwicklungsprojekten ist, daA sich die vorab formulierten Anforderungen Andern. Nur wenn diese A"nderungen professionell gemanagt werden, kann ein Softwareprojekt erfolgreich in Zeit und Budget fertiggestellt werden. Grundlagen und Konzepte eines professionellen Anforderungs- und A"nderungsmanagements werden in diesem Werk schlA1/4ssig dargestellt. MAgliche Werkzeuge, die das Anforderungs- und A"nderungsmanagement erleichtern und zum Teil auch automatisieren, werden ebenfalls vorgestellt. Abgerundet wird das Buch durch einen Blick in die Zukunft, hier wird darauf eingegangen, inwieweit die immer grAAer werdende Verbreitung des Internets kA1/4nftig das Anforderungs- und A"nderungsmanagement bestimmen wird. Auch die Integration in das Projektmanagement wird untersucht.
This textbook presents the essential tools and core concepts of data science to public officials, policy analysts, and economists among others in order to further their application in the public sector. An expansion of the quantitative economics frameworks presented in policy and business schools, this book emphasizes the process of asking relevant questions to inform public policy. Its techniques and approaches emphasize data-driven practices, beginning with the basic programming paradigms that occupy the majority of an analyst's time and advancing to the practical applications of statistical learning and machine learning. The text considers two divergent, competing perspectives to support its applications, incorporating techniques from both causal inference and prediction. Additionally, the book includes open-sourced data as well as live code, written in R and presented in notebook form, which readers can use and modify to practice working with data.
This book provides a comprehensive and concrete illustration of time series analysis focusing on the state-space model, which has recently attracted increasing attention in a broad range of fields. The major feature of the book lies in its consistent Bayesian treatment regarding whole combinations of batch and sequential solutions for linear Gaussian and general state-space models: MCMC and Kalman/particle filter. The reader is given insight on flexible modeling in modern time series analysis. The main topics of the book deal with the state-space model, covering extensively, from introductory and exploratory methods to the latest advanced topics such as real-time structural change detection. Additionally, a practical exercise using R/Stan based on real data promotes understanding and enhances the reader's analytical capability. |
![]() ![]() You may like...
Cybersecurity Issues and Challenges for…
Saqib Saeed, Abdullah M. Almuhaideb, …
Hardcover
R8,595
Discovery Miles 85 950
Spatial Regression Analysis Using…
Daniel A. Griffith, Yongwan Chun, …
Paperback
R3,120
Discovery Miles 31 200
An Introduction to Creating Standardized…
Todd Case, Yuting Tian
Hardcover
R1,643
Discovery Miles 16 430
Database Systems - Design…
Carlos Coronel, Steven Morris
Paperback
|