![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Particle & high-energy physics
Ultracold Neutrons is a guide to a fascinating topic. It describes how a simple new idea in experimental neutron physics has changed the landscape of what is often called 'fundamental physics.' Ultracold neutrons (UCNs) are neutrons moving at the low speed of a bicycle rider. They were produced for the first time 50 years ago (in 1968) and are distinguished from ordinary neutrons with much higher energies by their ability to be confined in 'neutron bottles' for durations up to several hundred seconds. This is possible since they are reflected back and forth from the container walls many thousands of times with very little loss. As a result of these long observation times, their properties and interactions with the environment can be studied with superb precision.Directed towards a general readership, this book is an excellent introduction to a field of research that is not highly specialized but touches on many aspects of our physical world, classical as well as quantum mechanical.
This thesis describes the application of the collinear resonance laser spectroscopy to sensitively measure the electromagnetic nuclear observables of the neutron-rich indium isotopes 115-131In. This entailed a systematic study of the efficiency of resonant ionization schemes to extract the hyperfine structure of the isotopes, the atomic charge exchange process and benchmarking of modern atomic calculations with a laser ablation ion source. This allowed determination of the root-mean-square nuclear charge radii, nuclear magnetic dipole moments, nuclear electric quadrupole moments and nuclear spins of the 113-131In isotopes with high accuracy. With a proton hole in the Z = 50 nuclear shell closure of tin and several nuclear isomer states, these measurements of the indium (Z = 49) isotope chain provided an efficient probe of the evolution of nuclear structure properties towards and at the doubly-magic nuclear shell closure of 132Sn (N = 82) - revealing unpredicted changes.
The essays in this open access volume identify the key ingredients for success in capitalizing on public investments in scientific projects and the development of large-scale research infrastructures. Investment in science - whether in education and training or through public funding for developing new research tools and technologies - is a crucial priority. Authors from big research laboratories/organizations, funding agencies and academia discuss how investing in science can produce societal benefits as well as identifying future challenges for scientists and policy makers. The volume cites different ways to assess the socio-economic impact of Research Infrastructures and their role as hubs of global collaboration, creativity and innovation. It highlights the different benefits stemming from fundamental research at the local, national and global level, while also inviting us to rethink the notion of "benefit" in the 21st century. Public investment is required to maintain the pace of technological and scientific advancements over the next decades. Far from advocating a radical transformation and massive expansion in funding, the authors suggest ways for maintaining a strong foundation of science and research to ensure that we continue to benefit from the outputs. The volume draws inspiration from the first "Economics of Big Science" workshop, held in Brussels in 2019 with the aim of creating a new space for dialogue and interaction between representatives of Big Science organizations, policy makers and academia. It aspires to provide useful reading for policy makers, scientists and students of science, who are increasingly called upon to explain the value of fundamental research and adopt the language and logic of economics when engaging in policy discussions.
This book examines the motivation for electron scattering and develops the theoretical analysis of the process. It discusses our current theoretical understanding of the underlying structure of nuclei and nucleons at appropriate levels of resolution and sophistication, and summarizes present experimental electron scattering capabilities. Only a working knowledge of quantum mechanics and special relativity is assumed, making this a suitable textbook for graduate and advanced undergraduate courses.
This book seeks to present a new way of thinking about the interaction of gravitational fields with quantum systems. Despite the massive amounts of research and experimentation, the myriad meetings, seminars and conferences, all of the articles, treatises and books, and the seemingly endless theorization, quantization and just plain speculation that have been engaged in regarding our evolving understanding of the quantum world, that world remains an enigma, even to the experts. The usefulness of general relativity in this regard has proven to be imperfect at best, but there is a new approach. We do not simply have to accept the limitations of Einstein's most celebrated theorem in regard to quantum theory; we can also embrace them, and thereby utilize them, to reveal new facts about the behavior of quantum systems within inertial and gravitational fields, and therefore about the very structure of space-time at the quantum level. By taking existing knowledge of the essential functionality of spin (along with the careful identification of the omnipresent inertial effects) and applying it to the quantum world, the book gives the reader a much clearer picture of the difference between the classical and quantum behaviors of a particle, shows that Einstein's ideas may not be as incompatible within this realm as many have come to believe, sparks new revelations of the way in which gravity affects quantum systems and brings a new level of efficiency-quantum efficiency, if you will-to the study of gravitational theory.
This book introduces the reader to the field of jet substructure, starting from the basic considerations for capturing decays of boosted particles in individual jets, to explaining state-of-the-art techniques. Jet substructure methods have become ubiquitous in data analyses at the LHC, with diverse applications stemming from the abundance of jets in proton-proton collisions, the presence of pileup and multiple interactions, and the need to reconstruct and identify decays of highly-Lorentz boosted particles. The last decade has seen a vast increase in our knowledge of all aspects of the field, with a proliferation of new jet substructure algorithms, calculations and measurements which are presented in this book. Recent developments and algorithms are described and put into the larger experimental context. Their usefulness and application are shown in many demonstrative examples and the phenomenological and experimental effects influencing their performance are discussed. A comprehensive overview is given of measurements and searches for new phenomena performed by the ATLAS and CMS Collaborations. This book shows the impressive versatility of jet substructure methods at the LHC.
This book contains the Proceedings of the Eighth Meeting on CPT and Lorentz Symmetry, held at Indiana University in Bloomington on May 12-16, 2019. The Meeting focused on tests of these fundamental symmetries and on related theoretical issues, including scenarios for possible violations. Topics covered at the meeting include experimental and observational searches for CPT and Lorentz violation involving: accelerators and colliders; astrophysical birefringence, dispersion, and anisotropy; atomic and molecular spectroscopy; cavities, oscillators, resonators; Cherenkov radiation; clock-comparison measurements; CMB polarimetry; cosmic rays; decays of atoms, nuclei, and particles; equivalence-principle tests with matter and antimatter; exotic atoms, muonium, positronium; gauge bosons, the Higgs boson; gravimetry; gravitational waves; high-energy astrophysical observations; hydrogen and antihydrogen spectroscopy; lasers, masers; matter-wave interferometry; meson and baryon properties; neutral-meson interferometry; neutrino mixing and propagation, neutrino-antineutrino oscillations; particle-antiparticle comparisons; photon and particle scattering; post-Newton gravity in the solar system and beyond; second- and third-generation particles; short-range gravity; sidereal and annual time variations, compass asymmetries; single-top and top pair production; space-based missions; spin-gravity couplings; spin precession; time-of-flight measurements; torsion and nonmetricity; trapped particles, ions, and atoms. The meeting also covered theoretical and phenomenological studies of CPT and Lorentz violation including: physical effects at the level of the Standard Model, General Relativity, and beyond; origins and mechanisms for violations; classical and quantum field theory, gravitation, particle physics, and strings; mathematical foundations, Finsler geometry.
This book delves into finite mathematics and its application in physics, particularly quantum theory. It is shown that quantum theory based on finite mathematics is more general than standard quantum theory, whilst finite mathematics is itself more general than standard mathematics.As a consequence, the mathematics describing nature at the most fundamental level involves only a finite number of numbers while the notions of limit, infinite/infinitesimal and continuity are needed only in calculations that describe nature approximately. It is also shown that the concepts of particle and antiparticle are likewise approximate notions, valid only in special situations, and that the electric charge and baryon- and lepton quantum numbers can be only approximately conserved.
The history is full of misconceptions that opposed the progress of physics. The book starts with reviewing some historical cases, such as the arguments against the Earth rotation, or the famous problem of 3/4 in the theory of electromagnetic mass of electron. After having pointed out that misconceptions have been common in the history of physics, it is argued that they must be present today as well. In fact, it is now commonly being realized that in the last forty years there has been no significant progress in the fundamental theoretical physics. A reason certainly lies in certain stumbling blocks on our way towards the unification of interaction and of gravity with quantum mechanics. The author discusses what he perceives as some persisting misconceptions that have not yet been recognized as such by physics community in general.
The second edition of this monograph discusses the usefulness of heavy flavor as a probe of TeV-scale physics, exploring a number of recently-uncovered "flavor anomalies" that are suggestive of possible TeV-scale phenomena. The large human endeavor at the Large Hadron Collider has not turned up any New Physics, except the last particle of the Standard Model, the Higgs boson. Revised and updated throughout, this book puts the first results from the LHC into perspective and provides an outlook for a new era of flavor physics. The author readdresses many questions raised in the first edition and poses new ones. As before, the experimental perspective is taken, with a focus on processes, rather than theories or models, as a basis for exploration, and two-thirds of the book is concerned with b -^ s or bs sb transitions. In the face of the advent of Belle II and other flavor experiments, this book becomes a part of a dialogue between the energy/collider and intensity/flavor frontiers that will continue over the coming decade. Researchers with an interest in modern particle physics will find this book particularly valuable.
Now available for the first time in English translation, this important book contains extensive material relating to the electrodynamic characteristics of linear accelerators, and gives a good overview of the fundamentals of accelerating cavity design. The authors describe the experimental methods and measurement techniques essential in this area of research, and provide comprehensive data about the electrodynamic characteristics of resonant structures, which are widely used in charged particle accelerators and microwave devices. Single cavities and coupling chains, excited in electrical and magnetic modes, are described numerically and analyzed in detail. The book also provides a valuable description of the perturbation method, which is illustrated using a unique collection of data.
This book reports on a new result from the KL 0 search at the J-PARC KOTO experiment, which sets an upper limit of 3x10-9 for the branching fraction of the decay at the 90% confidence level, improving the previous best limit by an order of magnitude. To explain the matter-antimatter asymmetry in the universe, still unknown new physics beyond the standard model (SM) that breaks CP symmetry is necessary. The rare decay of a long-lived neutral K meson, KL 0 , is a CP-violating decay. It is an excellent probe to search for new physics because new physics can contribute to the decay and change its branching fraction, while the SM is as small as 3x10-11. However, it is extremely difficult to search for because all of the decay products are neutral and two neutrinos are undetectable. The KL 0 signal is identified by measuring two photons from a 0 with a calorimeter and confirming the absence of any other detectable particles with hermetic veto counters. The book contributes to the analysis of neutron-induced backgrounds which were the dominant background sources in the search. For the background caused by two consecutive hadronic showers in the calorimeter due to a neutron, the author evaluated the background yield using a data-driven approach. For another background caused by an meson production- decays two photons-by a neutron that hits a veto counter near the calorimeter, the author developed an original analysis technique to reduce it. The book also contributes to the analysis of the normalization modes (KL 3 0, KL 2 0, KL 2 ) to measure KL yield, the estimation of the signal acceptance based on a simulation, and the evaluation of the trigger efficiency. As a result, significant improvements in the measurement were achieved, and this is an important step in the continuing higher sensitivity search, which can reach new physics with the energy scales up to O(100-1000 TeV).
The associated production of a W boson and a single charm quark (W+c) is the only process in proton-proton collisions that directly probes the strange quark content of the proton. In this thesis, W+charm production is measured in proton-proton collisions at the LHC at 13 TeV, as recorded by the Compact Muon Solenoid (CMS) experiment. The analysis focuses on the identification of W bosons in their leptonic decay to a muon and a neutrino and charm quarks are tagged via the full reconstruction of D*-Mesons. The measured cross sections of W+c production are used, in combination with other relevant CMS results and the most precise HERA DIS data, in a QCD analysis to determine the strange quark content of the proton. The resulting strange quark distribution and suppression, with respect to the other light sea quarks, are in good agreement with those obtained in neutrino scattering experiments and extend their kinematic reach.
This thesis reports the calculation of neutrino production for the T2K experiment; the most precise a priori estimate of neutrino production that has been achieved for any accelerator-based neutrino oscillation experiment to date. The production of intense neutrino beams at accelerator facilities requires exceptional understanding of chains of particle interactions initiated within extended targets. In this thesis, the calculation of neutrino production for T2K has been improved by using measurements of particle production from a T2K replica target, taken by the NA61/SHINE experiment. This enabled the reduction of the neutrino production uncertainty to the level of 5%, which will have a significant impact on neutrino oscillation and interaction measurements by T2K in the coming years. In addition to presenting the revised flux calculation methodology in an accessible format, this thesis also reports a joint T2K measurement of muon neutrino and antineutrino disappearance, and the accompanying electron neutrino and antineutrino appearance, with the updated beam constraint.
This thesis develops the dispersive optical model into a tool that allows for the assessment of the validity of nuclear reaction models, thereby generating unambiguous removal probabilities of nucleons from valence orbits using the electron-induced proton knockout reaction. These removal probabilities document the substantial quantitative degree in which nuclei deviate from the independent-particle model description. Another outcome reported within is the prediction for the neutron distribution of Ca-40, Ca-48, and Pb-208. The neutron radii of these nuclei have direct relevance for the understanding of neutron stars and are currently the subject of delicate experiments. Unlike other approaches, the current method is consistent with all other relevant data and describes nuclei beyond the independent-particle model. Finally, a new interpretation of the saturation probabilities of infinite nuclear matter is proposed suggesting that the semi-empirical mass formula must be supplemented with a better extrapolation from nuclei to infinite matter.
How did electrons in the high atmosphere and space around the Earth
come to acquire their speeds and energies?
This thesis focuses on a cutting-edge area of research, which is aligned with CERN's mainstream research, the "AWAKE" project, dedicated to proving the capability of accelerating particles to the energy frontier by the high energy proton beam. The author participated in this project and has advanced the plasma wakefield theory and modelling significantly, especially concerning future plasma acceleration based collider design. The thesis addresses electron beam acceleration to high energy whilst preserving its high quality driven by a single short proton bunch in hollow plasma. It also demonstrates stable deceleration of multiple proton bunches in a nonlinear regime with strong resonant wakefield excitation in hollow plasma, and generation of high energy and high quality electron or positron bunches. Further work includes the assessment of transverse instabilities induced by misaligned beams in hollow plasma and enhancement of the wakefield amplitude driven by a self-modulated long proton bunch with a tapered plasma. This work has major potential to impact the next generation of linear colliders and also in the long-term may help develop compact accelerators for use in industrial and medical facilities.
Superstrings and M-theory: provocative and controversial, but unarguably one of the most interesting and active areas of research in current physics. Called by some, "the theory of everything," superstrings may solve a problem that has eluded physicists for the past 50 years, the final unification of the two great theories of the twentieth century, general relativity and quantum field theory. Now, here is a thoroughly revised, second edition of a course-tested comprehensive introductory graduate text on superstrings which stresses the most current areas of interest, not covered in other presentations, including: · Four-dimensional superstrings · Kac-Moody algebras · Teichmüller spaces and Calabi-Yau manifolds · M-theory Membranes and D-branes · Duality and BPS relations · Matrix models The book begins with a simple discussion of point particle theory, and uses Feynman path integrals to unify the presentation of superstrings. It has been updated throughout, and three new chapters on M-theory have been added. Prerequisites are an acquaintance with quantum mechanics and relativity.
If the new boson is indeed the Higgs particle, its discovery represents an important milestone in the history of particle physics. However, despite the pressure to award Nobel Prizes to physicists associated with the Higgs boson, John Moffat argues that there still remain important data analyses to be performed before uncorking the champagne. John Moffat is Professor Emeritus of Physics at the University of Toronto and a senior researcher at the Perimeter Institute for Theoretical Physics. Well-known for his outside-the-box research on topics such as dark matter, dark energy, and the varying speed of light cosmology (VSL), his new book takes a critical look at the hype surrounding the Higgs boson. In the process, he presents a cogent and often entertaining history of particle physics and an exploration of alternative theories of particle physics that do not feature the Higgs boson, including his own. He gives a detailed and personal description of how theoretical physicists come up with new theories, and emphasizes how carefully experimental physicists must interpret the complex data now coming out of accelerators like the Large Hadron Collider (LHC). The book does not shy away from controversial topics such as the sociology of particle physics. There is immense pressure on projects like the $9 billion LHC to come up with positive results in order to secure funding for the future. Yet to date, the Higgs boson may be the only positive result to emerge from the LHC experiments. The searches for dark matter particles, mini-black holes, extra dimensions, and supersymmetric particles have all come up empty-handed, with serious consequences for theoretical physics, including string theory and gravity theory. John Moffat is also the author of Reinventing Gravity (2008) and Einstein Wrote Back (2010).
This unique monograph discusses all aspects of the design and operation of ultra-high vacuum pumps (EUVP). The adsorption-diffusion model of interaction of gas molecules with metal getters is presented, together with the getter films sorption characteristics. A mathematical model of molecular transfer in electrophysical pumps and the principles and criteria of their energy and structural-geometrical optimization are proposed. The physical processes in the pumps are analyzed during the pumping out of both active and inert gases. Also presented are the generic and specific pump parameters and the methods for calculating their main characteristics.
Few-body physics covers a rich and wide variety of phenomena, ranging from the very lowest energy scales of atomic and molecular physics to high-energy particle physics. The papers contained in the present volume provide an apercu of recent progress in the field from both the theoretical and experimental perspectives and are based on work presented at the "22nd International Conference on Few-Body Problems in Physics". This book is geared towards academics and graduate students involved in the study of systems which present few-body characteristics and those interested in the related mathematical and computational techniques.
The basic logic is very simple. Countries around the globe have a need for more electrical generating capacity because of increases in population and increases in energy use per capita. The needs are constrained by the requirement that the ba- load energy source be economical, secure, and not emit climate-changing gases. Nuclear power fits this description. Therefore, many countries that have not had a nuclear power program (or only had a small program) see a need to develop one in the future. However, the development of a national nuclear energy program is not so simple. The purpose of the NATO Advanced Research Workshop on Nuclear Power and Energy Security was to contribute to our understanding of how these programs might evolve. The workshop took place 26-29 May 2009 in Yerevan, Armenia. Approximately 50 participants discussed the infrastructure that is needed and some of the reactor options that might be considered. The papers in this book helped define the discussion that took place. The infrastructure that is needed includes a legal framework, a functioning regulator, a plan for waste disposal, a plan for emergency response, etc. These needs were explained and just as importantly, it was explained what international, bilateral, and regional cooperation is available. Although there were many co- tries represented, the Armenian experience was of particular interest because of where the meeting was located. The papers on reactor options covered both innovative and evolutionary designs.
This book provides an understandable review of SU(3) representations, SU(3) Wigner-Racah algebra and the SU(3) SO(3) integrity basis operators, which are often considered to be difficult and are avoided by most nuclear physicists. Explaining group algebras that apply to specific physical systems and discussing their physical applications, the book is a useful resource for researchers in nuclear physics. At the same time it helps experimentalists to interpret data on rotational nuclei by using SU(3) symmetry that appears in a variety of nuclear models, such as the shell model, pseudo-SU(3) model, proxy-SU(3) model, symplectic Sp(6, R) model, various interacting boson models, various interacting boson-fermion models, and cluster models. In addition to presenting the results from all these models, the book also describes a variety of statistical results that follow from the SU(3) symmetry.
Meeting the need for a coherently written and comprehensive
compendium combining field theory and particle physics for advanced
students and researchers, this book directly links the theory to
the experiments. It is clearly divided into two sections covering
approaches to field theory and the standard model, and rounded off
with numerous useful appendices. |
![]() ![]() You may like...
Confessions of Guilt - From Torture to…
George C. Thomas III, Richard A. Leo
Hardcover
R1,827
Discovery Miles 18 270
Cellular Injury in Liver Diseases
Wen Xing Ding, Xiao-Ming Yin
Hardcover
R4,866
Discovery Miles 48 660
Introduction To Legal Pluralism In South…
C. Rautenbach
Paperback
![]()
Autoimmune Liver Diseases - Perspectives…
Hiromasa Ohira
Hardcover
Deadly Predators - Level 3
Melissa Stewart, National Geographic Kids
Paperback
R270
Discovery Miles 2 700
Beyond The Story - 10 Year Record Of BTS
Bts, Myeongseok Kang
Hardcover
![]()
|