![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Industrial chemistry > Pharmaceutical technology
The Art of Drug Synthesis illustrates how chemistry, biology, pharmacokinetics, and a host of other disciplines come together to produce successful medicines. The authors have compiled a collection of 21 representative categories of drugs, from which they have selected as examples many of the best-selling drugs on the market today. An introduction to each drug is provided, as well as background to the biology, pharmacology, pharmacokinetics, and drug metabolism, followed by a detailed account of the drug synthesis.* Edited by prominent scientists working in drug discovery for Pfizer* Meets the needs of a growing community of researchers in pharmaceutical R&D* Provides a useful guide for practicing pharmaceutical scientists as well as a text for medicinal chemistry students* An excellent follow-up to the very successful first book by these editors, Contemporary Drug Synthesis, but with all new therapeutic categories and drugs discussed.
Nanoscale Fabrication, Optimization, Scale-up and Biological Aspects of Pharmaceutical Nanotechnology focuses on the fabrication, optimization, scale-up and biological aspects of pharmaceutical nanotechnology. In particular, the following aspects of nanoparticle preparation methods are discussed: the need for less toxic reagents, simplification of the procedure to allow economic scale-up, and optimization to improve yield and entrapment efficiency. Written by a diverse range of international researchers, the chapters examine characterization and manufacturing of nanomaterials for pharmaceutical applications. Regulatory and policy aspects are also discussed. This book is a valuable reference resource for researchers in both academia and the pharmaceutical industry who want to learn more about how nanomaterials can best be utilized.
Natural Substances for Cancer Prevention explores in detail how numerous investigations in chemical biology and molecular biology have established strong scientific evidence demonstrating how the properties of naturally occurring bioactive chemicals hamper all stages of cancers (from initiation to metastasis). Accordingly, important goals for cancer prevention are the modification of our dietary habits and an increase in the intake of more anticancer-related natural substances. More significantly, the bioactive chemicals presented in the functional foods should be readily available, inexpensive, non-toxic, and nutritional.
In 1993, the genetic mutation responsible for Huntington's disease (HD) was identified. Considered a milestone in human genomics, this discovery has led to nearly two decades of remarkable progress that has greatly increased our knowledge of HD, and documented an unexpectedly large and diverse range of biochemical and genetic perturbations that seem to result directly from the expression of the mutant huntingtin gene. Neurobiology of Huntington's Disease: Applications to Drug Discovery presents a thorough review of the issues surrounding drug discovery and development for the treatment of this paradigmatic neurodegenerative disease. Drawing on the expertise of key researchers in the field, the book discusses the basic neurobiology of Huntington's disease and how its monogenic nature confers enormous practical advantages for translational research, including the creation of robust experimental tools, models, and assays to facilitate discovery and validation of molecular targets and drug candidates for HD. Written to support future basic research as well as drug development efforts, this volume: Covers the latest research approaches in genetics, genomics, and proteomics, including high-throughput and high-content screening Highlights advances in the discovery and development of new drug therapies for neurodegenerative disorders Examines the practical realities of preclinical testing, clinical testing strategies, and, ultimately, clinical usage While the development of effective drug treatments for Huntington's disease continues to be tremendously challenging, a highly interactive and cooperative community of researchers and clinical investigators now brings us to the threshold of potential breakthroughs in the quest for therapeutic agents. The impressive array of drug discovery resources outlined in the text holds much promise for treating this devastating disease, providing hope to long-suffering Huntington's disease patients and their families.
Analytical ultracentrifugation is one of the most powerful solution techniques for the study of macromolecular interactions, to define the number and stoichiometry of complexes formed, and to measure affinities ranging from very strong to very weak and repulsive. Building on the data analysis tools described in the volume Sedimentation Velocity Analytical Ultracentrifugation: Discrete Species and Size-Distributions of Macromolecules and Particles, and the experimental and instrumental aspects in the first volume Basic Principles of Analytical Ultracentrifugation, the present volume Sedimentation Velocity Analytical Ultracentrifugation: Interacting Systems is devoted to the theory and practical data analysis of dynamically coupled sedimentation processes. This volume is designed to fill a gap in biophysical methodology to provide a framework that builds on the fundamentals of the highly developed traditional methods of analytical ultracentrifugation, updated with current methodology and from a viewpoint of modern applications. It will be an invaluable resource for researchers and graduate students interested in the application of analytical ultracentrifugation in the study of interacting systems, such as biological macromolecules, multi-protein complexes, polymers, or nanoparticles.
Features Represents the first book to provide comprehensive coverage of model-assisted designs for various types of dose-finding and optimization clinical trials Describes the up-to-date theory and practice for model-assisted designs Presents many practical challenges and issues arising from early-phase clinical trials Illustrates with many real trial applications Offers numerous tips and guidance on designing dose finding and optimization trials Provides step-by-step illustration of using software to design trials Develops a companion website (www.trialdesign.org) to provide easy-to-use software to assist learning and implementing model-assisted designs.
Timely coverage of cleaning validation for the phamaceutical industry, a dynamic area in terms of health-based limits. Author encourages pharmaceutical manufacturers, and particularly upper management, to meet the challenges of the science-based and risk-based approaches to cleaning validation. Draws on the author's vast experience in the field of cleaning validation and hazardous materials Discusses EMA vs. ISPE on Cleaning Limits and revised Risk-MaPP for highly hazardous products in shared facilities Diverse list of topics from protocol limits for yeasts and molds to cleaning validation for homeopathic drug products
This book volume provides complete and updated information on the applications of Design of Experiments (DoE) and related multivariate techniques at various stages of pharmaceutical product development. It discusses the applications of experimental designs that shall include oral, topical, transdermal, injectables preparations, and beyond for nanopharmaceutical product development, leading to dedicated case studies on various pharmaceutical experiments through illustrations, art-works, tables and figures. This book is a valuable guide for all academic and industrial researchers, pharmaceutical and biomedical scientists, undergraduate and postgraduate research scholars, pharmacists, biostatisticians, biotechnologists, formulations and process engineers, regulatory affairs and quality assurance personnel.
The aim of this unique volume is to help medical researchers design clinical trials to improve survival, remission duration, or time to recurrence of disease. Written in a user-friendly step-by-step format, this work enables the researcher-with no background in statistics-to determine sample size and write statistical considerations for their protocols. It provides critical language which can help with FDA submissions and/or research grants. It also provides the mathematical justification of the material at a level consistent with one year of undergraduate mathematical statistics. It presents survival analysis methods at a more elementary level than any known text. Filled with tables, figures, plus an extensive appendix, this one-of-a-kind reference is an absolute must for all clinical researchers and biostatisticians.
This open access book presents a unique collection of practical examples from the field of pharma business management and research. It covers a wide range of topics such as: 'Brexit and its Impact on pharmaceutical Law - Implications for Global Pharma Companies', 'Implementation of Measures and Sustainable Actions to Improve Employee's Engagement', 'Global Medical Clinical and Regulatory Affairs (GMCRA)', and 'A Quality Management System for R&D Project and Portfolio Management in a Pharmaceutical Company'. The chapters are summaries of master's theses by "high potential" Pharma MBA students from the Goethe Business School, Frankfurt/Main, Germany, with 8-10 years of work experience and are based on scientific know-how and real-world experience. The authors applied their interdisciplinary knowledge gained in 22 months of studies in the MBA program to selected practical themes drawn from their daily business.
Design and Development of New Nanocarriers focuses on the design and development of new nanocarriers used in pharmaceutical applications that have emerged in recent years. In particular, the pharmaceutical uses of microfluidic techniques, supramolecular design of nanocapsules, smart hydrogels, polymeric micelles, exosomes and metal nanoparticles are discussed in detail. Written by a diverse group of international researchers, this book is a valuable reference resource for those working in both biomaterials science and the pharmaceutical industry.
What's the Deal with Biosimilars? Biosimilars are gaining momentum as new protein therapeutic candidates that can help fill a vital need in the healthcare industry. The biological drugs are produced by recombinant DNA technology that allows for large-scale production and an overall reduction time in costs and development. Part of a two-volume set that covers varying aspects of biosimilars, Biosimilars and Interchangeable Biologics: Strategic Elements explores the strategic planning side of biosimilar drugs and targets issues surrounding biosimilars that are linked to legal matters. This includes principal patents and intellectual property, regulatory pathways, and concerns about affordability on a global scale. It addresses the complexity of biosimilar products, and it discusses the utilization of biosimilars and related biological drugs in expanding world markets. Of specific interest to practitioners, researchers, and scientists in the biopharmaceutical industry, this volume examines the science, technology, finance, legality, ethics, and politics of biosimilar drugs. It considers strategic planning elements that include an overall understanding of the history and the current status of the art and science of biosimilars, and it provides detailed descriptions of the legal, regulatory, and commercial characteristics. The book also presents a global strategy on how to build, take to market, and manage the next generation of biosimilars throughout their life cycle.
Inhaled Pharmaceutical Product Development Perspectives: Challenges and Opportunities describes methods and procedures for consideration when developing inhaled pharmaceuticals, while commenting on product development strategies and their suitability to support regulatory submission. It bridges the gap between the aspirations of scientists invested in new technology development and the requirements that must be met for any new product. The book brings together emerging analytical and inhalation technologies, providing perspectives that illuminate formulation and device design, development, regulatory compliance, and practice. Focusing on underlying scientific and technical principles known to be acceptable from the current regulatory perspective, this monograph will remain useful as a high-level guide to inhaled product development for the foreseeable future.
The legislative requirement for cannabis to undergo laboratory testing has followed legalization of medical and recreational use in every U.S. state to date. Cannabis safety testing is a new investment opportunity within the emerging cannabis market that is separate from cultivation, processing, and distribution, allowing individuals and organizations who may have been reluctant to enter previously a new entry route to the cannabis space. However, many of the costs, timelines, operational requirements, and compliance issues are overlooked by people who have not been exposed to regulated laboratory testing. Cannabis Laboratory Fundamentals provides an in-depth review of the key issues that impact cannabis testing laboratories and provides recommendations and solutions to avoid common - but expensive - mistakes. The text goes beyond methodology to include sections on economics, regulation, and operational challenges, making it useful for both new and experienced cannabis laboratory operators, as well as all those who want to understand the opportunities and risks of this industry.
The activity of many biopharmaceutical polymers is dependent on conformation, and the next several years will see increased interest in the conformational analysis of these polymers resulting from the development of biosimilar or "follow-on" biological products. While a wide variety of approaches to analysis exists, finding the most viable ones would be much easier with a consolidated reference that details the benefits and cost of each approach, with an emphasis on real results and real products. Explores the Growing Role of Conformational Analysis in Comparing Generic Biopharmaceuticals Approaches to the Conformational Analysis of Biopharmaceuticals gathers the most useful techniques and methods into a single volume, putting the greatest emphasis on those approaches that have proven the most fruitful. Rather than cover specific uses of techniques in detail, this book provides commercial biotechnologists and researchers with the information and references they need to make good choices about the technology they choose to use. With a large number of references that direct readers to primary source material, it includes studies drawn from the gamut of current literature, covering physical methods, such as differential scanning calorimetry, light scanning, and analytical ultracentrifugation. It also addresses chemical methods, such as hydrogen-deuterium exchange and trace labeling, along with infrared, ultraviolet, and Raman spectroscopy. Written by Roger Lundblad, a true pioneer in protein science, this volume supplies the necessary information researchers need to access when deciding on the most cost-effective approach, including: Comparability of biopharmaceuticals Characterization of follow-on biologics Quality attributes of protein biopharmaceuticals Confrontational analysis of biopharmaceutical products With a clear focus on relevant commercial biotechnology, this book belongs on the shelves of those serious researchers who are paving the way for the next generation of biopharmaceutical polymers.
Principles of Animal Extrapolation addresses the conceptual basis for animal extrapolation and provides an abundance of documentation that illustrates how these principles may be applied in the selection of the more appropriate models and in the interpretation of toxicological studies. The book analyzes and documents each specific biological cause of interspecies differences in susceptibility to toxic agents, including differences in absorption, gut flora, tissue distribution, metabolism, mechanisms and efficiencies of repair, and excretion. The problem of the heterogenicity of the human population is addressed through several chapters that assess the availability and prospects of developing predictive animal models for normal humans, as well as selected potential high-risk groups. Other topics presented in this book include the biological basis of regulatory actions involving attempts to extrapolate from exceptionally high exposure levels to realistic values, especially carcinogens; an assessment of genotoxicity tests, their ability to predict carcinogenicity in whole animals, and the manner in which they should be used by regulatory agencies; birth defects; and predicting the risk of human teratogenesis. Principle of Animal Extrapolation is essential for environmental toxicologists. It also provides valuable information to biomedical scientists (especially those involved in drug development and testing) and regulatory personnel in agencies such as the EPA, the OSHA, the NIOSH, and the FDA.
Sodium is concerned with the physiology, pathophysiology, and clinical consequences of altered physiology involving the sodium ion.The first section focuses on the presence and handling of sodium in the normal state. In chapter one, Drs. Solomon and Galey deal with the fundamentals of transport and energy metabolism as they relate to sodium. This is followed by a chapter in which Drs. Gardenswartz and Schrier consider in detail the normal body economy of sodium, and especially the factors (particularly extracellular fluid volume) that regulate the renal handling of sodium and the responses of the various portions of the nephron to these influences.
This book is devoted to a broader understanding of liposomes as a versatile tool used in many domains, including basic research and applied technology, focusing on less common applications and recent developments. Over the past few years, new types of liposomes made of nonphospholipid molecules have opened new perspectives in applications. These lipid vesicles, already used in cosmetology, are being manufactured for industrial and agricultural uses. However, "Stealth" liposomes, pH-sensitive liposomes, and cationic liposomes have enlarged and improved the application field of liposomes in clinical research. The book covers these different uses of liposomes with particular attention to new formulations and new applications.
One of the main problems concerning therapeutic tools for the treatment of parasitic diseases, including leishmaniasis, is that some field parasites are naturally resistant to the classical drugs; additionally, current therapies may select parasites prone to be resistant to the applied drugs. These features are (at least partially) responsible for the disappointing persistence of the disease and resultant deaths worldwide. This book provides a comprehensive view of the pathology of the disease itself, and of parasitic drug resistance, its molecular basis, consequences and possible treatments. Scientists both from academic fields and from the industry involved in biomedical research and drug design, will find in this book a valuable and fundamental guide that conveys the knowledge needed to understand and to improve the success in combating this disease worldwide.
In Silico Drug Discovery and Design: Theory, Methods, Challenges, and Applications provides a comprehensive, unified, and in-depth overview of the current methodological strategies in computer-aided drug discovery and design. Its main aims are to introduce the theoretical framework and algorithms, discuss the range of validity, strengths and limitations of each methodology, and present applications to real world problems in the drug discovery arena. Special emphasis has been given to the emerging and most pressing methodological challenges in in silico drug discovery and design. The book assumes a basic knowledge of physical principles and molecular modeling. Particular attention has been paid to outline the underlying physico-chemical foundation of the methods described, thus providing the necessary background to avoid a "black-box" approach. In each self-contained chapter, this is presented together with the latest developments and applications, and the challenges that lie ahead. Assembling a unique team of experts to weigh in on the most important issues influencing modern computational drug discovery and design, this book constitutes both a desktop reference to academic and industrial researchers in the field, and a textbook for students in the area of molecular modeling and drug discovery. Comprised of 18 chapters and divided into three parts, this book: Provides a comprehensive, unified, and in-depth overview of the current methodological strategies in computer-aided drug discovery and design Outlines the underlying physico-chemical foundation of the methods described Presents several applications of computational methods to real world problems in the drug design field Helps to avoid a "black-box" approach to in silico drug discovery Constitutes an actual textbook for students in the area of molecular modeling and drug discovery Gives the reader the adequate background to face the current challenges of the field In Silico Drug Discovery and Design: Theory, Methods, Challenges, and Applications describes the theoretical framework, methods, practical applications and case examples relevant to computer-aided drug lead discovery and design. This text will surely aid in understanding the underlying physical foundation of computational tools and their range of application, thus facilitating the interpretation of simulation results.
There is a clear need for innovative technologies to improve the delivery of therapeutic and diagnostic agents in the body. Recent breakthroughs in nanomedicine are now making it possible to deliver drugs and therapeutic proteins to local areas of disease or tumors to maximize clinical benefit while limiting unwanted side effects. Nanomedicine in Drug Delivery gives an overview of aspects of nanomedicine to help readers design and develop novel drug delivery systems and devices that build on nanoscale technologies. Featuring contributions by leading researchers from around the world, the book examines: The integration of nanoparticles with therapeutic agents The synthesis and characterization of nanoencapsulated drug particles Targeted pulmonary nanomedicine delivery using inhalation aerosols The use of biological systems-bacteria, cells, viruses, and virus-like particles-as carriers to deliver nanoparticles Nanodermatology and the role of nanotechnology in the diagnosis and treatment of skin disease Nanoparticles for the delivery of small molecules, such as for gene and vaccine delivery The use of nanotechnologies to modulate and modify wound healing Nanoparticles in bioimaging, including magnetic resonance, computed tomography, and molecular imaging Nanoparticles to enhance the efficiency of existing anticancer drugs The development of nanoparticle formulations Nanoparticles for ocular drug delivery Nanoparticle toxicity, including routes of exposure and mechanisms of toxicity The use of animal and cellular models in nanoparticles safety studies With its practical focus on the design, synthesis, and application of nanomedicine in drug delivery, this book is a valuable resource for clinical researchers and anyone working to tackle the challenges of delivering drugs in a more targeted and efficient manner. It explores a wide range of promising approaches for the diagnosis and treatment of diseases using cutting-edge nanotechnologies.
With contributions from leading experts, this book is the first to focus solely on addressing the problems and reviewing the strategies currently being used to improve the delivery of antisense nucleic acids. Important delivery issues, such as improving biological stability, improving cell-specific targeting and cellular uptake, manipulating subcellular distribution and producing liposomal delivery systems for antisense agents are comprehensively covered in this volume. This book links review-type articles with contributions that contain exciting never-before-published data on the cellular delivery of oligonucleotides. It stimulates reading for both established researchers and newcomers to the antisense field.
This book offers a comprehensive study of biological molecules acquired from marine organisms, which have been exploited for drug discovery with the aim to treat human diseases. Biomolecules have potential impacts on a diverse range of fields, including medical and pharmaceutical science, industrial science, biotechnology, basic research, molecular science, environmental science and climate change, etc. To understand and effectively apply medicinally important biomolecules, multidisciplinary approaches are called for. The ocean remains a rich biological resource, and the vast untapped potential of novel molecules from marine bio-resources has caught the interest of more and more researchers. These novel biological compounds have never been found in terrestrial or other ecosystems, but only in this rich niche. Advances in sampling techniques and technologies, along with increased funding for research and nature conservation, have now encouraged scientists to look deeper in the waters. Aquaculture supports both tremendous seafood production and the bulk production of marine-derived drugs. Furthermore, molecular methods are now being extensively employed to explore the untapped marine microbial diversity. With the help of molecular and biotech tools, the ability of marine organisms to produce new biosynthetic drugs can be greatly enhanced. This book provides an extensive compilation of the latest information on marine resources and their undisputedly vital role in the treatment of diverse ailments.
This volume details state-of-the- art methods on computer-aided antibody design. Chapters guide readers through information on antibody sequences and structures, modeling antibody structures and dynamics, prediction and optimization of biological and biophysical properties of antibodies, prediction of antibody-antigen interactions, and computer-aided antibody affinity maturation and beyond. Written in the format of the highly successful Methods in Molecular Biology series, each chapter includes an introduction to the topic, lists necessary materials and reagents, includes tips on troubleshooting and known pitfalls, and step-by-step, readily reproducible protocols. Authoritative and cutting-edge, Computer-Aided Antibody Design aims to be a useful and practical guide to new researchers and experts looking to expand their knowledge. Chapter 2 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
Advances in genomics and combinatorial chemistry during the past two decades inspired innovative technologies and changes in the discovery and pre-clinical development paradigm with the goal of accelerating the process of bringing therapeutic drugs to market. Written by William Kisaalita, one of the foremost experts in this field, 3D Cell-Based Biosensors in Drug Discovery Programs: Microtissue Engineering for High Throughput Screening provides the latest information - from theory to practice - on challenges and opportunities for incorporating 3D cell-based biosensors or assays in drug discovery programs. The book supplies a historical perspective and defines the problem 3D cultures can solve. It also discusses how genomics and combinatorial chemistry have changed the way drug are discovered and presents data from the literature to underscore the less-than-desirable pharmaceutical industry performance under the new paradigm. The author uses results from his lab and those of other investigators to show how 3D micro environments create cell culture models that more closely reflect normal in vivo-like cell morphology and function. He makes a case for validated biomarkers for three-dimensionality in vitro and discusses the advantages and disadvantages of promising tools in the search of these biomarkers. The book concludes with case studies of drugs that were abandoned late in the discovery process, which would have been discarded early if tested with 3D cultures. Dr. Kisaalita presents evidence in support of embracing 3D cell-based systems for widespread use in drug discovery programs. He goes to the root of the issue, establishing the 3D cell-based biosensor physiological relevance by comparing 2D and 3D culture from genomic to functional levels. He then assembles the bioengineering principles behind successful 3D cell-based biosensor systems. Kisaalita also addresses the challenges and opportunities for incorporating 3D cell-based biosensors or cultures in current discovery and pre-clinical development programs. This book makes the case for widespread adoption of 3D cell-based systems, rendering their 2D counterparts, in the words of Dr. Kisaalita "quaint, if not archaic" in the near future. |
You may like...
Pharmaceutical Engineering
Dulal Krishna Tripathi, Nirmalya Tripathi
Hardcover
R1,635
Discovery Miles 16 350
New Developments in Nanosensors for…
Sibel A Ozkan, Afzal Shah
Paperback
Therapeutic Risk Management of Medicines
Stephen J. Mayall, Anjan Swapu Banerjee
Hardcover
R4,565
Discovery Miles 45 650
Drug Delivery Nanosystems for Biomedical…
Chandra P Sharma
Hardcover
Orphan Drugs - Understanding the Rare…
Elizabeth Hernberg-Stahl, Miroslav Reljanović
Hardcover
R4,210
Discovery Miles 42 100
Handbook of Cosmeceutical Excipients and…
Y H Kwan, Y K Tung, …
Hardcover
R3,770
Discovery Miles 37 700
Progress in Medicinal Chemistry, Volume…
G.P. Ellis, D.K. Luscombe
Hardcover
R3,895
Discovery Miles 38 950
|