Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Biology, life sciences > Botany & plant sciences > Plant ecology
Available for the first time with Macmillan's new online learning tool, Achieve, Ecology: The Economy of Nature takes students through all of the key concepts of an ecology course. It challenges them along the way with questions that encourage critical thinking, whether about chapter concepts, quantitative tools, or figures. Achieve for Ecology: The Economy of Nature connects the interactive features and real-world examples in the book to rich digital resources that foster further understanding and application of ecology. Assets in Achieve support learning before, during, and after class for students, while providing instructors with class performance analytics in an easy-to-use interface.
This book examines the way that lead enters the biosphere and the subsequent environmental impact. The contributing authors include international experts who provide methods for assessing and characterizing the ecological risk of lead contamination of soil and plants. Information is provided on the consequences for human health as a result of lead pollution. This book reveals that approximately 98% of stable lead in the atmosphere originates from human activities. Lead in Plants and the Environment reports on methods for detecting, measuring, and assessing the concentration of lead in plants. The authors provide a method for the measurement of 210Pb isotopes in plants. This method can be applied extensively in different environmental settings, not only as a way of revealing sources of lead, but also as a way to monitor lead transport in plants and animals that ingest them. The chapters include coverage on the following topics: * Lead bioavailability in the environment and its exposure and effects * Radioanalytical methods for detecting and identifying trace concentrations of lead in the environment * Lead contamination and its dynamics in soil plant systems * Lead pollution monitoring and remediation through terrestrial plants in mesocosm constructed wetlands * A review of phytoremediation of lead This book is a valuable resource to students, academics, researchers, and environmental professionals doing field work on lead contamination throughout the world.
From deep ocean trenches and the geographical poles to outer space, organisms can be found living in remarkably extreme conditions. This book provides a captivating account of these systems and their extraordinary inhabitants, 'extremophiles'. A diverse, multidisciplinary group of experts discuss responses and adaptations to change; biodiversity, bioenergetic processes, and biotic and abiotic interactions; polar environments; and life and habitability, including searching for biosignatures in the extraterrestrial environment. The editors emphasize that understanding these systems is important for increasing our knowledge and utilizing their potential, but this remains an understudied area. Given the threat to these environments and their biota caused by climate change and human impact, this timely book also addresses the urgency to document these systems. It will help graduate students and researchers in conservation, marine biology, evolutionary biology, environmental change and astrobiology better understand how life exists in these environments and their susceptibility or resilience to change.
By combining the analysis of biotic and abiotic components of terrestrial ecosystems, this book synthesizes material on arid and semiarid landscapes, which was previously scattered among various books and journal articles. It focuses on water-limited ecosystems, which are highly sensitive to fluctuations in hydrologic conditions and, in turn, play an important role in affecting the regional water cycle. Intended as a tool for scientists working in the area of the earth and environmental sciences, this book presents the basic principles of eco-hydrology as well as a broad spectrum of topics and advances in this research field. Written by authors with diverse areas of expertise who work in arid areas around the world, the contributions describe the various interactions between the biological and physical dynamics in dryland ecosystems, ranging from basic processes in the soil-vegetation-climate system, to landscape-scale hydrologic and geomorphic processes, ecohydrologic controls on soil nutrient dynamics, and multiscale analyses of disturbances and patterns
The cropping system is one of the important components of sustainable agriculture, since it provides more efficient nutrient cycling. As such, balanced fertilization must be based on the concept of sustainable crop production. Feeding the rapidly growing world population using environmentally sustainable production systems is a major challenge, especially in developing countries. A number of studies have highlighted the fact that degradation of the world's cultivated soils is largely responsible for low and plateauing yields. Soil is lost rapidly but only formed over millennia, and this represents the greatest global threat to nutrient dynamics in agriculture. This means that nutrient management is essential to provide food and nutritional security for current and future generations. Nutrient dynamics and soil sustainability imply the maintenance of the desired ecological balance, the enhancement and preservation of soil functions, and the protection of biodiversity above and below ground. Understanding the role of nutrient management as a tool for soil sustainability and nutritional security requires a holistic approach to a wide range of soil parameters (biological, physical, and chemical) to assess the soil functions and nutrient dynamics of a crop management system within the desired timescale. Further, best nutrient management approaches are important to advance soil sustainability and food and nutritional security without compromising the soil quality and productive potential. Sustainable management practices must allow environmentally and economically sustainable yields and restore soil health and sustainability. This book presents soil management approaches that can provide a wide range of benefits, including improved fertility, with a focus on the importance of nutrient dynamics. Discussing the broad impacts of nutrients cycling on the sustainability of soil and the cropping systems that it supports, it also addresses nutrient application to allow environmentally and economically sustainable agroecosystems that restore soil health. Arguing that balanced fertilization must be based on the concept of INM for a cropping system rather than a crop, it provides a roadmap to nutrient management for sustainability. This richly illustrated book features tables, figures and photographs and includes extensive up-to-date references, making it a valuable resource for policymakers and researchers, as well as undergraduate and graduate students of Soil Science, Agronomy, Ecology and Environmental Sciences.
This Open Access volume aims to methodologically improve our understanding of biodiversity by linking disciplines that incorporate remote sensing, and uniting data and perspectives in the fields of biology, landscape ecology, and geography. The book provides a framework for how biodiversity can be detected and evaluated-focusing particularly on plants-using proximal and remotely sensed hyperspectral data and other tools such as LiDAR. The volume, whose chapters bring together a large cross-section of the biodiversity community engaged in these methods, attempts to establish a common language across disciplines for understanding and implementing remote sensing of biodiversity across scales. The first part of the book offers a potential basis for remote detection of biodiversity. An overview of the nature of biodiversity is described, along with ways for determining traits of plant biodiversity through spectral analyses across spatial scales and linking spectral data to the tree of life. The second part details what can be detected spectrally and remotely. Specific instrumentation and technologies are described, as well as the technical challenges of detection and data synthesis, collection and processing. The third part discusses spatial resolution and integration across scales and ends with a vision for developing a global biodiversity monitoring system. Topics include spectral and functional variation across habitats and biomes, biodiversity variables for global scale assessment, and the prospects and pitfalls in remote sensing of biodiversity at the global scale.
An understanding of ecology is an important requirement of a wide range of academic areas, including biology, zoology and environmental science. This book is a study and revision guide for students following programmes of study in which ecology is an important component. It contains 600 multiple-choice questions (and answers) set at three levels - foundation, intermediate and advanced - and grouped into 10 major topic areas: * The history and foundations of ecology * Abiotic factors and environmental monitoring * Taxonomy and biodiversity * Energy flow and production ecology * Nutrient and material cycles * Ecophysiology * Population ecology * Community ecology and species interactions * Ecological genetics and evolution * Ecological methods and statistics The book has been produced in a convenient format so that it can be used at any time in any place. It allows the reader to learn and revise the meaning of ecological terms, the basic processes operating in ecosystems, the dynamics of populations, ecological genetics and the process of evolution, the methods used in ecological surveys, and much more. The structure of the book allows the study of one topic area at a time, progressing through simple questions to those that are more demanding. Many of the questions require students to use their knowledge to interpret information provided in the form of graphs, data or photographs, providing a useful tool for independent study.
This book offers a concise but comprehensive introduction to desert ecology and adopts a strong evolutionary focus. As with other titles in the Biology of Habitats Series, the emphasis in the book is on the organisms that dominate this harsh environment, although theoretical and experimental aspects are also discussed. In this updated second edition, there is a greater focus on the effects of climate change and some of its likely effects on deserts, seeing desertification as among the most serious results of climate change, leading ultimately to the increasing size of arid and semi-arid regions. The Biology of Deserts Second Edition includes a wide range of ecological and evolutionary issues including morphological and physiological adaptations of desert plants and animals, species interactions, the importance of predation and parasitism, food webs, biodiversity, and conservation. It features a balance of plant and animal (both invertebrate and vertebrate) examples, and also emphasizes topical applied issues such as desertification and invasive species. The book concludes by considering the positive aspects of desert conservation. This accessible textbook is intended for senior undergraduate and graduate students, as well as professional ecologists, conservation practitioners, and resource managers working in the field of desert ecology.
The sixth Global Environment Outlook was launched in 2019 at the fourth UN Environment Assembly. It highlighted the ongoing damage to life and health from pollution and land degradation, and warned that zoonosis was already accounting for more than 60% of human infectious diseases. Since then the spread of COVID-19 has demonstrated the enormous challenges a global pandemic can cause for health care systems and the economy, as well as revealing potential environmental benefits of an altered lifestyle. This Technical Summary synthesizes the science and data in the GEO-6 report to make it accessible to a broad audience of policymakers, students and scientists. It demonstrates that more urgent and sustained action is required to address the degradation caused by our energy, food and waste systems and identifies a variety of transformational pathways for those seeking far-reaching policies for environmental and economic recovery. Also available as Open Access on Cambridge Core.
The book is the first comprehensive analysis of the macroecology and geobotany of endemic vascular plants with case-studies and analyses from different regions in the world. Endemism is a pre-extinction phenomenon. Endemics are threatened with extinction. Due to international nature conservation policies and due to the perception of the public the concept s importance is increasing. Endemism can result from different biological and environmental processes. Depending on the process conservation measures should be adapted. Endemic vascular plant taxa, in the setting of their species composition and vegetation types are important features of landscapes and indicators of the quality of relating habitats. The book is an important basis for biologists, ecologists, geographers, planners and managers of nature reserves and national parks, and people generally interested in nature conservation and biogeography of vascular plants."
This book provides the concepts, techniques, and recent developments with regard to use of mulches in agriculture, utility of mulches for non-chemical pest control, and sustainability of crop production systems. Non-conventional means of improving the sustainability of crop production and pest control are required in the wake of environmental concerns over the use of conventional pesticides as well as the intensive use of land resources. Mulches have been used in agriculture for various purposes; however, there has been an increase in their use more recently, and scientists around the world have conducted more research to explore the benefits of mulching in various agricultural systems. Mulches have been found advantageous in non-chemical pest control, soil and water conservation, improving fertility, and improving microbial activities in the soil. While this is a topic of current importance, the information use of mulches in agricultural fields is rarely compiled in one comprehensive location to provide a full account of various aspects of mulches and their utility. This book will be helpful for researchers, growers, and students.
This book highlights classification patterns and underlying ecological drivers structuring the vegetation of selected indigenous subtropical forests in South Africa. It uses original field sampling and advanced numerical data analysis to examine three major types of forest - Albany Coastal Forests, Pondoland Coastal Scarp and Eastern Scarp - all of which are of high conservation value. Offering a unique and systematic assessment of South African ecology in unprecedented detail, the book could serve as a model for future vegetation surveys of forests not only in Africa, but also around the globe.
Agroforestry systems (AFS) are becoming increasingly relevant worldwide as society has come to recognize their multiple roles and services: biodiversity conservation, carbon sequestration, adaptation and mitigation of climate change, restoration of degraded ecosystems, and tools for rural development. This book summarizes advances in agroforestry research and practice and raises questions as to the effectiveness of AFS to solve the development and environmental challenges the world presents us today. Currently AFS are considered to be a land use that can achieve a compromise among productive and environmental functions. Apparently, AFS can play a significant role in rural development even in the most challenging socioeconomic and ecological conditions, but still there is a lot of work to do to reach these goals. Considerable funding is spent in projects directed to enhancing productivity and sustainability of smallholders forestry and agroforestry practices. These projects and programs face many questions and challenges related to the integration of traditional knowledge to promote the most suitable systems for each situation; access to markets for AFS products, and scaling up of successful AFS. These complex questions need innovative approaches from varying perspectives and knowledge bases. This book gathers fresh and novel contributions from a set of Yale University researchers and associates who intend to provide alternative and sometimes departing insights into these pressing questions. The book focuses on the functions that AFS can provide when well designed and implemented: their role in rural development as they can improve food security and sovereignty and contribute to provision of energy needs to the smallholders; and their environmental functions: contribution to biodiversity conservation, to increased connectivity of fragmented landscapes, and adaptation and mitigation of climate change. The chapters present conceptual aspects and case studies ranging from traditional to more modern approaches, from tropical as well as from temperate regions of the world, with examples of the AFS functions mentioned above.
This book provides in-depth information on Caatinga's geographical boundaries and ecological systems, including plants, insects, fishes, amphibians, reptiles, birds, and mammals. It also discusses the major threats to the region's socio-ecological systems and includes chapters on climate change and fast and large-scale land-use changes, as well as slow and small-scale changes, also known as chronic human disturbances. Subsequent chapters address sustainable agriculture, conservation systems, and sustainable development. Lastly, the book proposes 10 major actions that could enable the transformation of Caatinga into a place where people and nature can thrive together. "I consider this book an excellent example of how scientists worldwide can mobilize their efforts to propose sound solutions for one of the biggest challenges of modern times, i.e., how to protect the world's natural ecosystems while improving human well-being. I am sure this book will inspire more research and conservation action in the region and perhaps encourage other groups of scientists to produce similar syntheses about their regions." Russell Mittermeier, Ph.D. Executive Vice-Chair, Conservation International
Temperate-zone forests have been shaped by fire, wind and grazing over thousands of years. This book provides a major contribution to the study of their dynamics by considering three important themes: * The combined influence of wind, fire and herbivory on the successional trajectories and structural characteristics of forests * The interaction of deciduous and evergreen tree species to form mosaics which, in turn, influence the environment and disturbance regime * The significance of temporal and spatial scale with regard to the overall impact of disturbances These themes are explored via case studies from the forests in the Lake States of the USA (Minnesota, Wisconsin and Michigan) where the presence of large primary forest remnants provides a unique opportunity to study the long-term dynamics of near-boreal, pine and hardwood-hemlock forests. The comparability of these forests to forests in other temperate zones allows generalizations to be made that may apply more widely.
This study focuses on impacts of the environmental and socio-economic transformation on the indigenous people's livelihoods in Vietnam's Central Highlands recent decades since the country's reunification in 1975. The first empirical section sheds light on multiple external conditions (policy reforms, population trends, and market forces) exposed onto local people. The role of human and social capital is examined again in a specific livelihood of community-based tourism to testify the resilience level of local people when coping with constraints. The study concludes with an outlook on implications of development processed which still places agriculture at the primary position livelihood, and pays attention to human capital and social capital of indigenous groups in these highlands.
Air pollution poses a serious threat to human health and the environment worldwide. It contributes significantly to regional and global atmospheric issues such as global warming, acidification and depletion of the ozone layer. It affects every living thing, including all kinds of vegetation on which we depend for our survival. Although several works have appeared on air pollution, few, are able to provide the broad background that encompasses the whole gamut of plant responses to atmospheric insult. This multi--authored work integrates the varied plant growth responses to the pollution stress; the focus of the attention is plant rather than pollutant. This portrays a clearer picture of plant performance versus air pollution, and helps develop a better insight of the pollution--based disturbances at the different levels of plant life. The book shall interest both students and researchers of environmental botany and forestry as well as all those who love plants and have any interest towards global vegetation and environmental health.
This book is an excellent resource for scientists, political decision makers, and students interested in the impact of peatlands on climate change and ecosystem function, containing a plethora of recent research results such as monitoring-sensing-modeling for carbon-water flux/storage, biodiversity and peatland management in tropical regions. It is estimated that more than 23 million hectares (62 %) of the total global tropical peatland area are located in Southeast Asia, in lowland or coastal areas of East Sumatra, Kalimantan, West Papua, Papua New Guinea, Brunei, Peninsular Malaysia, Sabah, Sarawak and Southeast Thailand. Tropical peatland has a vital carbon-water storage function and is host to a huge diversity of plant and animal species. Peatland ecosystems are extremely vulnerable to climate change and the impacts of human activities such as logging, drainage and conversion to agricultural land. In Southeast Asia, severe episodic droughts associated with the El Nino-Southern Oscillation, in combination with over-drainage, forest degradation, and land-use changes, have caused widespread peatland fires and microbial peat oxidation. Indonesia's 20 Mha peatland area is estimated to include about 45-55 GtC of carbon stocks. As a result of land use and development, Indonesia is the third largest emitter of greenhouse gases (2-3 Gtons carbon dioxide equivalent per year), 80 % of which is due to deforestation and peatland loss. Thus, tropical peatlands are key ecosystems in terms of the carbon-water cycle and climate change.
This book covers the ethnobiology and traditional ecological knowledge (TEK) of the Solega people of southern India. Solega TEK is shown to be a complex, inter-related network of detailed observations of natural phenomena, well-reasoned and often highly accurate theorizing, as well as a belief system, derived from cultural norms, regarding the relationships between humans and other species on the one hand, and between non-human species on the other. As language-based studies are strongly biased toward investigations of ethno-taxonomy and nomenclature, the importance of studying TEK in its proper context is discussed as making context and encyclopedic knowledge the objects of study are essential for a proper understanding of TEK.
Ecophysiology of Pesticides: Interface between Pesticide Chemistry and Plant Physiology is the first comprehensive overview of the physical impact of this increasingly complex environmental challenge. Designed to offer state-of-the-art knowledge, the book covers pesticide usage and its consequences on the ecophysiology of plants. It includes the challenge of policymaking in pesticide consumption and a risk analysis of conventional and modern approaches on standard usage. In addition, it summarizes research reports pertaining to the physio-ecological effects of pesticides, discusses the environmental risks associated with the over-utilization of pesticides, and covers pesticide usage on the micro-flora and rhizosphere. This book is a valuable reference for plant ecologists, plant biochemists and chemists who want to study pesticide consumption and its biochemical and physiological evaluation effects on plants. It will also be of immense help to university and college teachers and students of environmental biotechnology, environmental botany and plant ecophysiology.
This book takes the place of "Biology of Seagrasses: A Treatise on the Biology of Seagrasses with Special Reference to the Australian Region", co-edited by A.W.D. Larkum, A.J. MaCComb and S.A. Shepherd and published by Elsevier in 1989. The first book has been influential, but it is now 25 years since it was published and seagrass studies have progressed and developed considerably since then. The design of the current book follows in the steps of the first book. There are chapters on taxonomy, floral biology, biogeography and regional studies. The regional studies emphasize the importance of Australia having over half of the world's 62 species, including some ten species published for Australia since the previous book. There are a number of chapters on ecology and biogeography; fish biology and fisheries and dugong biology are prominent chapters. Physiological aspects again play an important part, including new knowledge on the role of hydrogen sulphide in sediments and on photosynthetic processes. Climate change, pollution and environmental degradation this time gain an even more important part of the book. Decline of seagrasses around Australia are also discussed in detail in several chapters. Since the first book was published two new areas have received special attention: blue carbon and genomic studies. Seagrasses are now known to be a very important player in the formation of blue carbon, i.e. carbon that has a long turnover time in soils and sediments. Alongside salt marshes and mangroves, seagrasses are now recognized as playing a very important role in the formation of blue carbon. And because Australia has such an abundance and variety of seagrasses, their role in blue carbon production and turnover is of great importance. The first whole genomes of seagrasses are now available and Australia has played an important role here. It appears that seagrasses have several different suites of genes as compared with other (land) plants and even in comparison with freshwater hydrophytes. This difference is leading to important molecular biological studies where the new knowledge will be important to the understanding and conservation of seagrass ecosystems in Australia. Thus by reason of its natural abundance of diverse seagrasses and a sophisticated seagrass research community in Australia it is possible to produce a book which will be attractive to marine biologists, coastal scientists and conservationists from many countries around the world.
"Biodiversity" refers to the variety of life. It is now agreed that there is a "biodiversity crisis", corresponding to extinction rates of species that may be 1000 times what is thought to be "normal". Biodiversity science has a higher profile than ever, with the new Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services involving more than 120 countries and 1000s of scientists. At the same time, the discipline is re-evaluating its foundations - including its philosophy and even core definitions. The value of biodiversity is being debated. In this context, the tree of life ("phylogeny") is emerging as an important way to look at biodiversity, with relevance cutting across current areas of concern - from the question of resilience within ecosystems, to conservation priorities for globally threatened species - while capturing the values of biodiversity that have been hard to quantify, including resilience and maintaining options for future generations. This increased appreciation of the importance of conserving "phylogenetic diversity", from microbial communities in the human gut to global threatened species, has inevitably resulted in an explosion of new indices, methods, and case studies. This book recognizes and responds to the timely opportunity for synthesis and sharing experiences in practical applications. The book recognizes that the challenge of finding a synthesis, and building shared concepts and a shared toolbox, requires both an appreciation of the past and a look into the future. Thus, the book is organized as a flow from history, concepts and philosophy, through to methods and tools, and followed by selected case studies. A positive vision and plan of action emerges from these chapters, that includes coping with inevitable uncertainties, effectively communicating the importance of this "evolutionary heritage" to the public and to policy-makers, and ultimately contributing to biodiversity conservation policy from local to global scales.
This book assembles recent research on memory and learning in plants. Organisms that share a capability to store information about experiences in the past have an actively generated background resource on which they can compare and evaluate coming experiences in order to react faster or even better. This is an essential tool for all adaptation purposes. Such memory/learning skills can be found from bacteria up to fungi, animals and plants, although until recently it had been mentioned only as capabilities of higher animals. With the rise of epigenetics the context dependent marking of experiences on the genetic level is an essential perspective to understand memory and learning in organisms. Plants are highly sensitive organisms that actively compete for environmental resources. They assess their surroundings, estimate how much energy they need for particular goals, and then realize the optimum variant. They take measures to control certain environmental resources. They perceive themselves and can distinguish between 'self' and 'non-self'. They process and evaluate information and then modify their behavior accordingly. The book will guide scientists in further investigations on these skills of plant behavior and on how plants mediate signaling processes between themselves and the environment in memory and learning processes.
This book presents advanced ecological techniques for crop cultivation and the chapters are arranged into four sections, namely general aspects, weeds, fungi, worms and microbes. Biocontrol is an ecological method of controlling pests such as insects, mites, weeds and plant diseases using other organisms. This practice has been used for centuries. Biocontrol relies on predation, parasitism, herbivory, or other natural mechanisms. Natural enemies of insect pests, also known as biological control agents, include predators, parasitoids, pathogens, and competitors.
Phytoplasma-associated diseases are a major limiting factor to quality and productivity of many ornamentals, horticultural and other economically important agriculture crops worldwide. Annual losses due to phytoplasma diseases in many crops vary, but under the pathogen favorable conditions they always lead to disastrous consequences to farming community. As there is no effective cure for phytoplasma diseases, the management options emphasize on their exclusion, minimizing their spread by insect vectors and propagation materials and on development of host plant resistance. The phytoplasma associated plant diseases have a history of more than 50 years. Phytoplasmas have undoubtedly infected plants and cause diseases for centuries before they are described and proven to be the causal agents. But important progress related to identification of phytoplasmas only began after 1980's. Phytoplasmas have emerged as the most serious constraints in the production of several crops all around the world during last four decades. Phytoplasmas constitute a major limiting factor to quality and productivity of cereals, horticultural, ornamentals and many other economically important crops all over the world. Annual losses due to phytoplasma diseases may vary, but under the pathogen favorable condition, phytoplasma disease may lead to disastrous consequences for farming and industry community. The scientific literature concerning phytoplasma occurrence, characterization, diagnosis, detection, and management is growing at a fast pace. Significant advancement in the last decades on diagnostic, biological and molecular properties, epidemiology, host-pathogen-insect interactions as well as management of phytoplasmas has been made. Till date, no authentic compilation is available to know the progress of phytoplasmas characterization major crops all over the world. The planned book will compile all the updated information available information on phytoplasmas by distinguished experts in the form of edited book entitled "Characterization and epidemiology of phytoplasma associated diseases". The book covers recent and update information on emerging and re-emerging phytoplasma diseases affecting important crops in tropics and subtropics. It provides comprehensive information on disease distribution, occurrence, and identification of the phytoplasmas including the recent approaches for diagnostics, transmission, and information about losses and geographical distribution along with and management aspects. This volume contains 11-12 chapters contributed by the experienced and recognized experts working on different group of phytoplasmas affecting major crops all over the world. The information on various topics is at advanced as well as comprehensive level and provides the period wise developments of phytoplasma research. The book covers major chapters on an up to date progress of phytoplasma research, and then phytoplasma diseases associated with vegetable, pulse, oils crops, cereals, sugar crops, fruit crops, ornamentals, medicinal plants, palms species, forest tress and weeds. We have covered historical background, geographical distribution, identification and characterization, genetic diversity, host pathogen interaction and management aspects of important phytoplasma diseases infecting our major agricultural crops. The information on various topics is advanced as well as comprehensive, and provides thought provoking ideas for planning novel research ideas for future. This book will be useful to everyone interested in mollicutes, phytoplasma, spiroplasmas, plant pathology, disease control and plant biology and serve as an exhaustive and up-to-date compendium of references on various aspects of different groups of phytoplasmas affecting important crops worldwide. |
You may like...
Next-Generation Greenhouses for Food…
Redmond R. Shamshiri
Hardcover
Agroecosystems - Very Complex…
Marcelo L. Larramendy, Sonia Soloneski
Hardcover
Plant-Animal Interactions - Source of…
Kleber Del-Claro, Helena Maura Torezan-Silingardi
Hardcover
R3,317
Discovery Miles 33 170
Flora and Vegetation of the Pantanal…
Geraldo Alves Damasceno-Junior, Arnildo Pott
Hardcover
R6,332
Discovery Miles 63 320
Conservation and Utilization of…
P.E Rajasekharan, Shabir Hussain Wani
Hardcover
R5,061
Discovery Miles 50 610
Stresses of Cucurbits: Current Status…
Bholanath Mondal, Chandan Kumar Mondal, …
Hardcover
R4,265
Discovery Miles 42 650
Predictive Species and Habitat Modeling…
C. Ashton Drew, Yolanda F. Wiersma, …
Hardcover
R6,187
Discovery Miles 61 870
|