![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Biology, life sciences > Botany & plant sciences > Plant physiology
Priming-Mediated Stress and Cross-Stress Tolerance in Crop Plants provides the latest, in-depth understanding of the molecular mechanisms associated with the development of stress and cross-stress tolerance in plants. Plants growing under field conditions are constantly exposed, either sequentially or simultaneously, to many abiotic or biotic stress factors. As a result, many plants have developed unique strategies to respond to ever-changing environmental conditions, enabling them to monitor their surroundings and adjust their metabolic systems to maintain homeostasis. Recently, priming mediated stress and cross-stress tolerance (i.e., greater tolerance to a second, stronger stress after exposure to a different, milder primary stress) have attracted considerable interest within the scientific community as potential means of stress management and for producing stress-resistant crops to aid global food security. Priming-Mediated Stress and Cross-Stress Tolerance in Crop Plants comprehensively reviews the physiological, biochemical, and molecular basis of cross-tolerance phenomena, allowing researchers to develop strategies to enhance crop productivity under stressful conditions and to utilize natural resources more efficiently. The book is a valuable asset for plant and agricultural scientists in corporate or government environments, as well as educators and advanced students looking to promote future research into plant stress tolerance.
Physicochemical and Environmental Plant Physiology, Fifth Edition, is the updated version of an established and successful text and reference for plant scientists. This work represents the seventh book in a 50-year series by Park Nobel beginning in 1970. The original structure and philosophy of the book continue in this new edition, providing a genuine synthesis of modern physicochemical and physiological thinking, while updating the content. Key concepts in plant physiology are developed with the use of chemistry, physics, and mathematics fundamentals. The book contains plant physiology basics while also including many equations and often their derivation to quantify the processes and explain why certain effects and pathways occur, helping readers to broaden their knowledge base. New topics included in this edition are advances in plant hydraulics, other plant-water relations, and the effects of climate change on plants. This series continues to be the gold standard in environmental plant physiology.
Carbon stabilization involves to capturing carbon from the atmosphere and fix it in the forms soil organic carbon stock for a long period of time, it will be present to escape as a greenhouse gas in the form of carbon dioxide. Soil carbon storage is an important ecosystem service, resulting from interactions of several ecological processes. This process is primarily mediated by plants through photosynthesis, with carbon stored in the form of soil organic carbon. Soil carbon levels have reduced over decades of conversion of pristine ecosystems into agriculture landscape, which now offers the opportunity to store carbon from air into the soil. Carbon stabilization into the agricultural soils is a novel approach of research and offers promising reduction in the atmospheric carbon dioxide levels. This book brings together all aspects of soil carbon sequestration and stabilization, with a special focus on diversity of microorganisms and management practices of soil in agricultural systems. It discusses the role of ecosystem functioning, recent and future prospects, soil microbial ecological studies, rhizosphere microflora, and organic matter in soil carbon stabilization. It also explores carbon transformation in soil, biological management and its genetics, microbial transformation of soil carbon, plant growth promoting rhizobacteria (PGPRs), and their role in sustainable agriculture. The book offers a spectrum of ideas of new technological inventions and fundamentals of soil sustainability. It will be suitable for teachers, researchers, and policymakers, undergraduate and graduate students of soil science, soil microbiology, agronomy, ecology, and environmental sciences
This edited book brings out a comprehensive collection of information on the modern omics-based research. The main focus of this book is to educate researchers about utility of omics-based technologies in rapid crop improvement. In last two decades, omics technologies have been utilized significantly in the area of plant sciences and has shown promising results. Omics technology has potential to address the challenge of food security in the near future. The comprehensive use of omics technology occurred in last two decades and helped greatly in the understanding of complex biological problems, improve crop productivity and ensure sustainable use of ecosystem services. This book is of interest to researchers and students of life sciences, biotechnology, plant biotechnology, agriculture, forestry, and environmental sciences. It is also a useful knowledge resource for national and international agricultural scientists.
Analogous to genomics, which defines all genes in a genome irrespective of their functionality, metabolomics seeks to profile all metabolites in a biological sample irrespective of the chemical and physical properties of these molecules. Metabolomics has the potential of defining cellular processes as it provides a measure of the ultimate phenotype of an organism, as defined by the collage of small molecules, whose levels of accumulation is altered in response to genetic and environmentally induced changes in gene expression.This book presents a guide for new practitioners of metabolomics, providing insights as to the current use and applications of metabolomics.
This edited book is focused on antioxidant compounds and their biosynthesis, up-regulation, mechanism of action for selective bioactivity, targeted role and the advancement of their bioactive potential during plant-microbe interaction and other stress conditions. This book also emphasizes on the role of antioxidants in recruiting beneficial microbes in plant surroundings. Antioxidants have multiple biological roles in plants especially in the signalling pathway. These compounds are secondary metabolites produced besides the primary biosynthetic pathway and are associated with growth and development. Besides they also have special role to play during oxidative stress produced via abiotic stimulants or pathogen attack. This understanding of the biosynthesis, signaling and function of antioxidant compounds in plants during stress condition is helpful in restoring plant ecosystem productivity and improve plant responses to a wide range of stress conditions. This book is a useful compilation for researchers and academicians in botany, plant physiology, plant biochemistry and stress physiology. Also the book serves as reading material for undergraduate and graduate students of environmental sciences, agricultural sciences and other plant science courses.
Changes in atmospheric carbon dioxide concentrations and global climate conditions have altered photosynthesis and plant respiration across both geologic and contemporary time scales. Understanding climate change effects on plant carbon dynamics is critical for predicting plant responses to future growing conditions. Furthermore, demand for biofuel, fibre and food production is rapidly increasing with the ever-expanding global human population, and our ability to meet these demands is exacerbated by climate change. This volume integrates physiological, ecological, and evolutionary perspectives on photosynthesis and respiration responses to climate change. We explore this topic in the context of modeling plant responses to climate, including physiological mechanisms that constrain carbon assimilation and the potential for plants to acclimate to rising carbon dioxide concentration, warming temperatures and drought. Additional chapters contrast climate change responses in natural and agricultural ecosystems, where differences in climate sensitivity between different photosynthetic pathways can influence community and ecosystem processes. Evolutionary studies over past and current time scales provide further insight into evolutionary changes in photosynthetic traits, the emergence of novel plant strategies, and the potential for rapid evolutionary responses to future climate conditions. Finally, we discuss novel approaches to engineering photosynthesis and photorespiration to improve plant productivity for the future. The overall goals for this volume are to highlight recent advances in photosynthesis and respiration research, and to identify key challenges to understanding and scaling plant physiological responses to climate change. The integrated perspectives and broad scope of research make this volume an excellent resource for both students and researchers in many areas of plant science, including plant physiology, ecology, evolution, climate change, and biotechnology. For this volume, 37 experts contributed chapters that span modeling, empirical, and applied research on photosynthesis and respiration responses to climate change. Authors represent the following seven countries: Australia (6); Canada (9), England (5), Germany (2), Spain (3), and the United States (12).
This book provides a comprehensive and interactive view of recent advances in the cytology, anatomy, and physiology of roots as presented at the 5th International Symposium on Structure and Function of Roots, held on 31 August-4 September, 1998, in Stara Lesna, Slovakia. This edition differs from previous ones by including some aspects of functional genetics and plant morphogenesis. The book is intended to serve both students and researchers as a valuable source of updated information, ideas, and concepts dealing with the most fundamental questions of development and function of plant roots.
This edited volume is a comprehensive account of plant diseases and insect pests, plant protection and management for various crops using microbial and biotechnological approaches. The book elucidates the role of biotechnology for the enhancement of crop productivity and management of bacterial and fungal diseases via eco-friendly methods. It discusses crop-pest/ pathogen interaction and utilizing this interaction in a beneficial and sustainable way. This book is of interest to teachers, researchers, plant scientists and plant pathologists. Also the book serves as additional reading material for undergraduate and graduate students of agriculture, forestry, ecology, soil science, and environmental sciences.
Molecular Physiology and Biotechnology of Trees, Volume 89 in the Advances in Botanical Research series, highlights new advances in the field, with this new volume presenting interesting chapters on such topics as the Activity of the shoot apical and cambial meristems: Coordination and responses to environmental signals, Conifer functional genomics, Nitrogen storage and cycling, Tree defense against pests and pathogens, The ectomycorrhizal contribution to tree nutrition, Phytoremediation with trees, Transcriptional regulation of wood formation, Transgenic poplars, the Genomics of forest trees, and much more.
In the recent past, threats from climate change and unforeseeable environmental extremes to plant growth and productivity have consistently increased. The climate change-driven effects, especially from unpredictable environmental fluctuations, can result in an increased prevalence of abiotic and biotic stresses in plants. These stresses have slowed down the global yields of crop plants. On the other hand, food security for the rapidly growing human population in a sustainable ecosystem is a major concern of the present-day world. Thus, understanding the core developmental, physiological and molecular aspects that regulate plant growth and productivity in a challenging environment is a pivotal issue to be tackled by the scientific community dealing with sustainable agricultural and horticultural practices. Plants are influenced by the adverse environmental conditions at various levels, their different and diverse responses play a significant role in determining their growth, production and the overall geographical distribution. The chapters in this book focus on the biological mechanisms and fundamental principles that determine how different plant species grow, perform and interact with a challenging environment. This book covers a broad range of topics in plant science, including gene function, molecules, physiology, cell biology and plant ecology, to understand the functioning of plants under harsh environmental conditions. The book elucidates the physiological and molecular mechanisms in different plant species, ecophysiological interactions of plants, interplay between plant roots, arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria, biosensors for monitoring stress, production of secondary metabolites, stress alleviation processes, and more.
Agriculture faces many challenges to fulfil the growing demand for sustainable food production and ensure high-quality nutrition for a rapidly growing population. To guarantee adequate food production, it is necessary to increase the yield per area of arable land. A method for achieving this goal has been the application of growth regulators to modulate plant growth. Plant growth regulators (PGRs) are substances in specific formulations which, when applied to plants or seeds, have the capacity to promote, inhibit, or modify physiological traits, development and/or stress responses. They maintain proper balance between source and sink for enhancing crop yield. PGRs are used to maximize productivity and quality, improve consistency in production, and overcome genetic and abiotic limitations to plant productivity. Suitable PGRs include hormones such as cytokinins and auxins, and hormone-like compounds such as mepiquat chloride and paclobutrazol. The use of PGRs in mainstream agriculture has steadily increased within the last 20 years as their benefits have become better understood by growers. Unfortunately, the growth of the PGR market may be constrained by a lack of innovation at a time when an increase in demand for new products will require steady innovation and discovery of novel, cost-competitive, specific, and effective PGRs. A plant bio-stimulant is any substance or microorganism applied to plants with the aim to enhance nutrition efficiency, abiotic stress tolerance and/or crop quality traits, regardless of its nutrients content. Apart from traditional PGRs, which are mostly plant hormones, there are a number of substances/molecules such as nitric oxide, methyl jasmonate, brassinosteroids, seaweed extracts, strigolactones, plant growth promoting rhizobacteria etc. which act as PGRs. These novel PGRs or bio-stimulants have been reported to play important roles in stress responses and adaptation. They can protect plants against various stresses, including water deficit, chilling and high temperatures, salinity and flooding. This book includes chapters ranging from sensing and signalling in plants to translational research. In addition, the cross-talk operative in plants in response to varied signals of biotic and abiotic nature is also presented. Ultimately the objective of this book is to present the current scenario and the future plan of action for the management of stresses through traditional as well as novel PGRs. We believe that this book will initiate and introduce readers to state-of-the-art developments and trends in this field of study.
Ecological intensification involves using natural resources such as land, water, soil nutrients, and other biotic and abiotic variables in a sustainable way to achieve high performance and efficiency in agricultural yield with minimal damage to the agroecosystems. With increasing food demand there is high pressure on agricultural systems. The concept of ecological intensification presents the mechanisms of ensuring high agricultural productivity by restoration the soil health and landscape ecosystem services. The approach involves the replacement of anthropogenic inputs with eco-friendly and sustainable alternates. Effective ecological intensification requires an understanding of ecosystems services, ecosystem's components, and flow of resources in the agroecosystems. Also, awareness of land use patterns, socio-economic factors, and needs of the farmer community plays a crucial role. It is therefore essential to understand the interaction of ecosystem constituents within the extensive agricultural landscape. The editors critically examined the status of ecological stress in agroecosystems and address the issue of ecological intensification for natural resources management. Drawing upon research and examples from around the world, the book is offering an up-to-date account, and insight into the approaches that can be put in practice for poly-cropping systems and landscape-scale management to increase the stability of agricultural production systems to achieve 'Ecological resilience'. It further discusses the role of farmer communities and the importance of their awareness about the issues. This book will be of interest to teachers, researchers, climate change scientists, capacity builders, and policymakers. Also, the book serves as additional reading material for undergraduate and graduate students of agriculture, forestry, ecology, agronomy, soil science, and environmental sciences. National and international agricultural scientists, policymakers will also find this to be a useful read for green future.
The problems engendered by the conflicting imperatives of development and ecology show no sign of ending, and every day more locations are added to the list of landscapes poisoned by human activity. This vital book, featuring an international set of authors, is a key reference for researchers and environmental managers, as well as anyone involved in the mining industry or landscape remediation. The comprehensive coverage of current approaches to phytoremediation begins by examining the problem. It looks at natural and human-induced toxins, and their effects on natural vegetation as well as agricultural crops. Particular attention is paid to the two largest challenges to remediation -- heavy metals, and the salt stress that is impeding agricultural productivity worldwide. The text moves on to focus on the efficacy of different plant species in removing toxic pollutants from the environment. Along with analysis of a number of case studies, this section includes new and updated information on the mechanism of toxin-tolerance in plants.
A thorough understanding of the mechanisms of photosynthesis, regulation of structure and function and the adaptive strategies of oxygenic photosynthetic organisms is central to any effort directed at improving crop productivity and providing sustainable agriculture. Photosynthesis is the most widely researched topic in plant science. Further probing of its mechanisms, regulation and adaptation, employing a variety of modern tools and techniques, is imperative to gain a better insight of this very intricate process. Unravelling the cause of stress impairments and stress tolerance in plants would help in ensuring the optimum production of food, fibres and fuels. This book presents a study of photosynthesis and provides details of experimental approaches that have been adopted to understand the complex regulatory and adaptive processes. Its 27 chapters have been divided into four sections: "Evolution, Structure and Function"; "Biodiversity, Metabolism and Regulation"; "Stress and Adaptations"; and "Techniques". With contributions from leading subject experts from Australia, Canada, France, Germany, India, Israel, Japan, Sweden, Switzerland, the UK and USA, this comprehensive treatise
Sorghum is the most important cereal crop grown in the semi-arid tropics (SAT) of Africa, Asia, Australia and Americas for food, feed, fodder and fuel. It is the fifth most important cereal crop globally after rice, wheat, maize and barley, and plays a major role in global food security. Sorghum is consumed in different forms for various end-uses. Its grain is mostly used directly for food purposes. After the release of the proceedings of two international symposia in the form of books "Sorghum in Seventies" and "Sorghum in Eighties", global sorghum research and development have not been documented at one place. Of course, few books on sorghum have been released that focus on specific issues/research areas, but comprehensive review of all aspects of recent development in different areas of sorghum science has not been compiled in the form a single book. This book is intended to fill in a void to bridge the gap by documenting all aspects of recent research and development in sorghum encompassing all the progress made, milestones achieved across globe in genetic diversity assessment, crop improvement and production, strategies for high yield, biotic and abiotic stress resistance, grain and stover quality aspects, storage, nutrition, health and industrial applications, biotechnological applications to increase production, including regional and global policy perspectives and developmental needs. This book will be an institutional effort to compile all the latest information generated in research and development in sorghum across the globe at one place.
World population is growing at an alarming rate and may exceed 9.7 billion by 2050, whereas agricultural productivity has been negatively affected due to yield limiting factors such as biotic and abiotic stresses as a result of global climate change. Wheat is a staple crop for ~20% of the world population and its yield needs be augmented correspondingly in order to satisfy the demands of our increasing world population. "Green revolution", the introduction of semi-dwarf, high yielding wheat varieties along with improved agronomic management practices, gave rise to a substantial increase in wheat production and self-sufficiency in developing countries that include Mexico, India and other south Asian countries. Since the late 1980's, however, wheat yield is at a standoff with little fluctuation. The current trend is thus insufficient to meet the demands of an increasing world population. Therefore, while conventional breeding has had a great impact on wheat yield, with climate change becoming a reality, newer molecular breeding and management tools are needed to meet the goal of improving wheat yield for the future. With the advance in our understanding of the wheat genome and more importantly, the role of environmental interactions on productivity, the idea of genomic selection has been proposed to select for multi-genic quantitative traits early in the breeding cycle. Accordingly genomic selection may remodel wheat breeding with gain that is predicted to be 3 to 5 times that of crossbreeding. Phenomics (high-throughput phenotyping) is another fairly recent advancement using contemporary sensors for wheat germplasm screening and as a selection tool. Lastly, CRISPR/Cas9 ribonucleoprotein mediated genome editing technology has been successfully utilized for efficient and specific genome editing of hexaploid bread wheat. In summary, there has been exciting progresses in the development of non-GM wheat plants resistant to biotic and abiotic stress and/or wheat with improved nutritional quality. We believe it is important to highlight these novel research accomplishments for a broader audience, with the hope that our readers will ultimately adopt these powerful technologies for crops improvement in order to meet the demands of an expanding world population.
In this translation of the French edition (L'U. de Saint-'etienne, 1999), the author treats the interrelated factors that inform plants' adaptations to their environments. Applying ecophysiological principles to identify mechanisms of dysfunction in ecosystems, he presents data-based cases for: less stressful growing methods (e.g., using cultivars that require less water and polluting fertilizers); confining genetically modified organisms to the lab; and reality-based holistic studies.
Plants are forced to adapt for a variety of reasons protection, reproductive viability, and environmental and climatic changes. Computational tools and molecular advances have provided researchers with significant new insights into the molecular basis of plant adaptation. Molecular Mechanisms in Plant Adaptation provides a comprehensive overview of a wide variety of these different mechanisms underlying adaptation to these challenges to plant survival. Molecular Mechanisms in Plant Adaptation opens with a chapter that explores the latest technological advances used in plant adaptation research, providing readers with an overview of high-throughput technologies and their applications. The chapters that follow cover the latest developments on using natural variation to dissect genetic, epigenetic and metabolic responses of plant adaptation. Subsequent chapters describe plant responses to biotic and abiotic stressors and adaptive reproductive strategies. Emerging topics such as secondary metabolism, small RNA mediated regulation as well as cell type specific responses to stresses are given special precedence. The book ends with chapters introducing computational approaches to study adaptation and focusing on how to apply laboratory findings to field studies and breeding programs. Molecular Mechanisms in Plant Adaptation interest plant molecular biologists and physiologists, plant stress biologists, plant geneticists and advanced plant biology students.
This book has a broad scope and provides a comprehensive overview of the most up-to-date knowledge of the plant genus Baccharis. The book is organized into four major topics encompassing the evolution, ecology, chemistry, as well as environmental and medical applications of the genus. This publication is a major reference for an audience of practising researchers, academics, PhD students, and other scientists in a wide-ranging collection of fields, from Sociology to Medicine to bioeconomy.
This book focuses on the conventional breeding approach, and on the latest high-throughput genomics tools and genetic engineering / biotechnological interventions used to improve rice quality. It is the first book to exclusively focus on rice as a major food crop and the application of genomics and genetic engineering approaches to achieve enhanced rice quality in terms of tolerance to various abiotic stresses, resistance to biotic stresses, herbicide resistance, nutritional value, photosynthetic performance, nitrogen use efficiency, and grain yield. The range of topics is quite broad and exhaustive, making the book an essential reference guide for researchers and scientists around the globe who are working in the field of rice genomics and biotechnology. In addition, it provides a road map for rice quality improvement that plant breeders and agriculturists can actively consult to achieve better crop production.
Plant biotechnology has now become a key tool in improving crop productivity and enhancing commercial value of plant products. The book complies various methods of in vitro propagation and genetic manipulation of important aromatic and medicinal plants. It puts together latest techniques and innovations in the field of plant biotechnology such as effective protocols of genetic manipulation, isolation of secondary metabolites, use of somaclonal variation, stress management in plants. It also explores the role of various physiological and biochemical factors affecting the genetic stability of in-vitro cultured plants. These themes are of interest to both graduate and postgraduate students. Further this book will be useful for to researchers, academicians and industrialist to review latest progress and future prospects of these technologies.
Sucking pests are most notorious group of pests for agricultural crops. Unlike most pests with chewing mouth parts, sucking pests cause more severe damage to the crops and are complex to get identified until advanced stages of infection. Not only is this late detection detrimental to their effective control, sucking pests also often cause fungal growth and virus transmission. The book emphasizes on sucking pests of most major crops of India. It aims to reflect Indian scenario before the international readership. This book complies comprehensive information on sucking pests of crops and brings the attention of the readers to this multiple damage causing insect complex. The chapters are contributed by highly experienced Indigenous experts from Universities & ICAR institutes, and book collates useful content for students and young researchers in plant pathology, entomology and agriculture.
Now in its third edition, this book describes photosynthesis by considering the partial processes involved throughout the various level of plant (cell, organelle and molecule), and their contributions to the complete process. It also considers the molecular and biochemical events which take place in the photosynthetic system. Finally it explains how these determine the physiological characteristics of plant productivity. The new edition has been extensively revised with comprehensively updated references and many new figures. It includes a new chapter on the applications of genetic modification of photosynthesis systems. |
![]() ![]() You may like...
Biostimulants in Alleviation of Metal…
Sarvajeet Singh Gill, Narendra Tuteja, …
Paperback
R4,344
Discovery Miles 43 440
Plant Life under Changing Environment…
Durgesh Kumar Tripathi, Vijay Pratap Pratap Singh, …
Paperback
R7,236
Discovery Miles 72 360
Wild Germplasm for Genetic Improvement…
Muhammad Tehseen Azhar, Shabir Hussain Wani
Paperback
R4,092
Discovery Miles 40 920
Toxicity of Nanoparticles in Plants - An…
Vishnu D. Rajput, Tatiana Minkina, …
Paperback
R4,069
Discovery Miles 40 690
Physiological Mechanisms and Adaptation…
Parvaiz Ahmad, Mohd Rafiq Wani
Hardcover
Metal and Nutrient Transporters in…
Aryadeep Roychoudhury, Durgesh Kunar Kumar Tripathi, …
Paperback
R3,922
Discovery Miles 39 220
|