![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Biology, life sciences > Botany & plant sciences > Plant physiology
Discusses and explains the major advances that the new technology of applying molecular genetic techniques of modifying carbon and nitrogen in plants has provided, giving insights into its applications for the benefits of agriculture, the environment and man. The text is divided into three sections, the first focusing on primary nitrogen and carbon assimilation and carbon partitioning; the second looking at compartmentation, transport and whole plant interactions; and the third to related metabolism to provide a comprehensive and up-to-date account of this subject.
Spirulena Platensis, a blue-green algae, has been recognized and used worldwide as a traditional source of protein in the food industry. The uses and mass cultivation of this algae have risen substantially due to an increased understanding of its biological systems. This text contains detailed descriptions of both the biology and the biotechnological uses of Spirulena Platensis. Part One focuses on the physiology, morphology, photosyntheses and genetics of laboratory cultures. Part Two discusses the practical uses in biotechnology industries, such as: the cultivation on flat-plate reactors; mass cultures outdoors; uses in wastewater treatment and the use of biomass. It offers critiques of the problems encountered and discussions of the future commercial prospects for large-scale production.
This book provides students and researchers in plant sciences with
a concise general account of plant biochemistry. The edited format
allows recognized experts in plant biochemistry to contribute
chapters on their special topics. Up-to-date surveys are divided
into four sections: the cell, primary metabolism, special
metabolism, and the plant and the environment. There is a strong
emphasis on plant metabolism as well as enzymological,
methodological, molecular, biological, functional, and regulatory
aspects of plant biochemistry. Illustrations of metabolic pathways
are used extensively, and further reading lists are also included.
This is the first truly modern book solely devoted to seed reproduction of forest trees-from flowering to establishment, with emphasis on the interaction of environment with physiological processes.
This book presents a comprehensive and coherent picture of how molecules diffuse across a liquid that is, on average, only two molecules thick. It begins by characterizing bilayers structurally, using X-ray diffraction, and then mechanically by measuring elastic moduli and mechanisms of failure. Emphasis is placed on the stability and mechanical properties of plant membranes that are subject to very large osmotic and thermal stresses. Using this information, the transport of molecules of increasing complexity across bilayers is analyzed.
This text is intended for plant physiologists, molecular biologists, biochemists, biotechnologists, geneticists, horticulturalists, agromnomists and botanists, and upper-level undergraduate and graduate students in these disciplines. It integrates advances in the diverse and rapidly-expanding field of seed science, from ecological and demographic aspects of seed production, dispersal and germination, to the molecular biology of seed development. The book offers a broad, multidisciplinary approach that covers both theoretical and applied knowledge.
These exciting new companion handbooks are the only ones of their kind devoted solely to the effects of environmental variables on the physiology of the world's major fruit and nut crops. Their cosmopolitan scope includes chapters on tropical and temperate zone species written by scientists from several continents. The influence of environmental factors, such as irradiance, temperature, water and salinity on plant physiology and on vegetative and reproductive growth, is comprehensively discussed for each crop. In addition to being a thorough and up-to-date set of textbooks, the organzation of the two volumes makes them an excellent reference tool. Each chapter focuses on a single crop, or a group of genetically or horticulturally related crop, and is appropriately divided into subsections that address individual environmental factors. Some chapters emphasize whole-plant physiology and plant growth and development, while other chapters feature theoretical aspects of plant physiology. Several chapters provide botanical background discussions to enhance understanding of the crop's response to its environment.
Plant Genome Analysis presents outstanding analyses of
technologies, as well as explanations of molecular technology as it
pertains to agriculture. Advances in genome analysis, including DNA
amplification (DAF and RAPD) markers, RFLPs, and microsatellites
are reviewed by accomplished scientists, many of whom are the
developers of the technique. Articles by patent lawyers experienced
in plant biotechnology present the legal viewpoint.
Rice is the staple food for half of the world's population. Consumption of rice is the major exposure route globally to the class one, non-threshold carcinogen inorganic arsenic. This book explains the sources of arsenic to paddy soils and the biogeochemical processes and plant physiological attributes of paddy soil-rice ecosystems that lead to high concentrations of arsenic in rice grain. It presents the global pattern of arsenic concentration and speciation in rice, discusses human exposures to inorganic arsenic from rice and the resulting health risks. It also highlights particular populations that have the highest rice consumptions, which include Southern and South East Asians, weaning babies, gluten intolerance sufferers and those consuming rice milk. The book also presents the information of arsenic concentration and speciation in other major crops and outlines approaches for lowering arsenic in rice grain and in the human diet through agronomic management.
Apomixis in Plants presents a comprehensive review of different aspects of asexual seed formation in plants. This is important in plant research since apomixis could greatly facilitate breeding in important crops. It is also interesting theoretically because it carries problems related to genetic variation and evolution to its extreme. The book features a broad selection of topics, including a historical review of ideas and landmarks in the field; comparisons with other types of asexual reproduction in higher plants and with related phenomena in animals and related plants; a presentation of cytology and embryology of apomicts and the diversified terminology in the field; views on the genetic background of apomixis and environmental effects on its expression; and the interrelation between apomixis and other traits. Additional topics covered include classical and modern theories of sexual versus asexual reproduction; geographical and taxonomical trends in apomicts; ecological implications of apomixis, and a review of future possibilities for using apomixis in plant breeding. Apomixis in Plants is an important reference volume for researchers and students in all areas of botany, ecology, and plant breeding.
A textbook for a graduate or advanced undergraduate course in biotechnology in a wide range of fields concerned with plants. Describes the use of both endogenous and introduced biochemical regulators to manipulate plant responses. Annotation copyright Book News, Inc. Portland, Or.
Ecophysiology of Vascular Halophytes provides a useful update to existing literature describing the ecophysiological responses of vascular halophytes to environmental stresses present in saline habitats. The success of species growing in these extreme environments is related to a number of adaptations, including the timing of phenological events, phenotypic plasticity and genetic selection for specific ecophysiological responses at different stages of development. Factors discussed that influence the growth and distribution of halophytes include seed germination, salinity stress, salt stimulation, flooding, ion content, nitrogen, plant water status, growth regulators, photosynthesis, and genecology. The book also discusses the effects of both interspecific and intraspecific competition on the growth and survival of halophytes. Researchers and students of stress ecology, as well as agricultural research organizations, will find a tremendous store of information in this volume.
Endocytosis is a fundamental cellular process by means of which cells internalize extracellular and plasma membrane cargos for recycling or degradation. It is important for the establishment and maintenance of cell polarity, subcellular signaling and uptake of nutrients into specialized cells, but also for plant cell interactions with pathogenic and symbiotic microbes. Endocytosis starts by vesicle formation at the plasma membrane and progresses through early and late endosomal compartments. In these endosomes cargo is sorted and it is either recycled back to the plasma membrane, or degraded in the lytic vacuole. This book presents an overview of our current knowledge of endocytosis in plants with a main focus on the key molecules undergoing and regulating endocytosis. It also provides up to date methodological approaches as well as principles of protein, structural lipid, sugar and microbe internalization in plant cells. The individual chapters describe clathrin-mediated and fluid-phase endocytosis, as well as flotillin-mediated endocytosis and internalization of microbes. The book was written for a broad spectrum of readers including students, teachers and researchers.
The cropping system is one of the important components of sustainable agriculture, since it provides more efficient nutrient cycling. As such, balanced fertilization must be based on the concept of sustainable crop production. Feeding the rapidly growing world population using environmentally sustainable production systems is a major challenge, especially in developing countries. A number of studies have highlighted the fact that degradation of the world's cultivated soils is largely responsible for low and plateauing yields. Soil is lost rapidly but only formed over millennia, and this represents the greatest global threat to nutrient dynamics in agriculture. This means that nutrient management is essential to provide food and nutritional security for current and future generations. Nutrient dynamics and soil sustainability imply the maintenance of the desired ecological balance, the enhancement and preservation of soil functions, and the protection of biodiversity above and below ground. Understanding the role of nutrient management as a tool for soil sustainability and nutritional security requires a holistic approach to a wide range of soil parameters (biological, physical, and chemical) to assess the soil functions and nutrient dynamics of a crop management system within the desired timescale. Further, best nutrient management approaches are important to advance soil sustainability and food and nutritional security without compromising the soil quality and productive potential. Sustainable management practices must allow environmentally and economically sustainable yields and restore soil health and sustainability. This book presents soil management approaches that can provide a wide range of benefits, including improved fertility, with a focus on the importance of nutrient dynamics. Discussing the broad impacts of nutrients cycling on the sustainability of soil and the cropping systems that it supports, it also addresses nutrient application to allow environmentally and economically sustainable agroecosystems that restore soil health. Arguing that balanced fertilization must be based on the concept of INM for a cropping system rather than a crop, it provides a roadmap to nutrient management for sustainability. This richly illustrated book features tables, figures and photographs and includes extensive up-to-date references, making it a valuable resource for policymakers and researchers, as well as undergraduate and graduate students of Soil Science, Agronomy, Ecology and Environmental Sciences.
This volume contains the proceedings of the 3rd Tannin Conference, held in July 1998, with the objective of promoting collaboration between chemists and biologists to improve our understanding of the biological significance of plant polyphenols and to expand possibilities for their use. Special efforts were made to summarize late-1990s research on the influence of these compounds on human health. Some of the topics included are: hydrolyzable tannins; condensed tannins and related compounds; biotechnology; antioxidant properties and heart disease; conformation, complexation, and antimicrobial properties; polyphenols and cancer; polyphenols in commerce; polyphenols and ecology. A comparison of the contributions to the proceedings of the first, second, and third of these conferences shows important growth in the recognition of the significance of these compounds on the part of biologists and biochemists and increasing relevance in medically-oriented disciplines.
A Personal Note I decided to initiate Orchid Biology: Reviews and Perspectives in about 1972 and (alone or with co-authors) started to write some of the chapters and the appendix for the volume in 1974 during a visit to the Bogor Botanical Gardens in Indonesia. Professor H. C. D. de Wit of Holland was also in Bogor at that time and when we discovered a joint interest in Rumphius he agreed to write a chapter about him. I visited Bangkok on my way home from Bogor and while there spent time with Professor Thavorn Vajrabhaya. He readily agreed to write a chapter. The rest of the chapters were solicited by mail and I had the complete manuscript on my desk in 1975. With that in hand I started to look for a publisher. Most of the publishers I contacted were not interested. Fortunately Mr James Twiggs, at that time editor of Cornell University Press, grew orchids and liked the idea. He decided to publish Orchid Biology: Reviews and Per spectives, and volume I saw the light of day in 1977. I did not know if there would be a volume II but collected manuscripts for it anyway. Fortunately volume I did well enough to justify a second book, and the series was born. It is still alive at present - 20 years, seven volumes and three publishers later. I was in the first third of my career when volume I was published."
Molecular Genetics of Colorectal Neoplasia A Primer for the Clinician provides the latest information on the genetics of colorectal cancer within a context of basic genetics, describing the subject in understandable language and making it clinically relevant. In this way, clinicians can become familiar with genetic terms and techniques related to colorectal neoplasia, providing a background upon which to build an appreciation of future advances and an ability to include them in the practicalities of patient care. This edition is intended for the healthcare provider or industry concerned with colorectal neoplasia: including general and colorectal surgeons, pathologists, oncologists, gastroenterologists, internal medicine and family practice physicians, nurses, geneticists, counsellors, registry co-ordinators, epidemiologists, and statisticians.
The use of microbial plant protection products is growing and their importance will strongly increase due to political and public pressure. World population is growing and the amount of food needed by 2050 will be double of what is produced now whereas the area of agricultural land is decreasing. We must increase crop yield in a sustainable way. Chemical plant growth promoters must be replaced by microbiological products. Also here, the use of microbial products is growing and their importance will strongly increase. A growing area of agricultural land is salinated. Global warming will increase this process. Plants growth is inhibited by salt or even made impossible and farmers tend to disuse the most salinated lands. Microbes have been very successfully used to alleviate salt stress of plants. Chemical pollution of land can make plant growth difficult and crops grown are often polluted and not suitable for consumption. Microbes have been used to degrade these chemical pollutants.
Advancement in Crop Improvement Techniques presents updates on biotechnology and molecular biological approaches which have contributed significantly to crop improvement. The book discusses the emerging importance of bioinformatics in analyzing the vast resources of information regarding crop improvement and its practical application and utilization. Throughout this comprehensive resource, emphasis is placed on various techniques used to improve agricultural crops, providing a common platform for the utility of these techniques and their combinations. Written by an international team of contributors, this book provides an in-depth analysis of existing tools and a framework for new research.
This title includes a number of Open Access chapters. This volume includes the latest research into the diseases that affect non-vascular plants. The chapters bring to light the most recent studies of pathogen identification, disease etiology, disease cycles, economic impact, plant disease epidemiology, plant disease resistance, how plant diseases affect humans and animals, pathosystem genetics, and management of plant diseases. The information provided here helps readers to stay current with this field's ongoing research and ever-developing knowledge base.
Terricolous lichens, a habitat specialist group of lichens play a vital role in maintenance and ecological stability of soil crusts with reference to their physical stability, hydrology and growth of soil microflora. Terricolous lichens in Indian lichenological studies haven t been taken up as a functional group. "Terricolous Lichens in India, Volume 1: Diversity Patterns and Distribution Ecology "is the first ever publication dealing with soil lichens of India. Divided into five chapters, this volume discusses the lichenological researches in India with reference to terricolous lichens, the altitudinal distribution patterns of terricolous lichens, comparative assessment of distribution with global patterns, and the photobiont diversity and influence of novel molecular clades of photobiont in determining ecological preferences of soil lichens in India. Written by experts in the field and supplemented with numerous photographs, "Terricolous Lichens in India, Volume 1: Diversity Patterns and Distribution Ecology "is a comprehensive resource that addresses the major drivers of terricolous lichens distribution in India."
Global climate change is bound to create a number of abiotic and biotic stresses in the environment, which would affect the overall growth and productivity of plants. Like other living beings, plants have the ability to protect themselves by evolving various mechanisms against stresses, despite being sessile in nature. They manage to withstand extremes of temperature, drought, flooding, salinity, heavy metals, atmospheric pollution, toxic chemicals and a variety of living organisms, especially viruses, bacteria, fungi, nematodes, insects and arachnids and weeds. Incidence of abiotic stresses may alter the plant-pest interactions by enhancing susceptibility of plants to pathogenic organisms. These interactions often change plant response to abiotic stresses. Plant growth regulators modulate plant responses to biotic and abiotic stresses, and regulate their growth and developmental cascades. A number of physiological and molecular processes that act together in a complex regulatory network, further manage these responses. Crosstalk between autophagy and hormones also occurs to develop tolerance in plants towards multiple abiotic stresses. Similarly, biostimulants, in combination with correct agronomic practices, have shown beneficial effects on plant metabolism due to the hormonal activity that stimulates different metabolic pathways. At the same time, they reduce the use of agrochemicals and impart tolerance to biotic and abiotic stress. Further, the use of bio- and nano-fertilizers seem to hold promise to improve the nutrient use efficiency and hence the plant yield under stressful environments. It has also been shown that the seed priming agents impart stress tolerance. Additionally, tolerance or resistance to stress may also be induced by using specific chemical compounds such as polyamines, proline, glycine betaine, hydrogen sulfide, silicon, -aminobutyric acid, -aminobutyric acid and so on. This book discusses the advances in plant performance under stressful conditions. It should be very useful to graduate students, researchers, and scientists in the fields of botanical science, crop science, agriculture, horticulture, ecological and environmental science.
Wood Microbiology, Second Edition, presents the latest advances in wood decay and its prevention. Coverage includes classification of fungi and bacteria, factors affecting growth and survival, fungal metabolism, and wood chemistry. There are also chapters that focus on the anatomical aspects, chemical changes, and ultrastructural effects of wood decay. Additionally, this book discusses major issues associated with wood decay, detecting decay, and how to take protective action against it. This is a one-stop reference resource for wood scientists, wood processing and preserving professionals, foresters and forest pathologists, as well as students of forestry, and wood science and technology courses. It is authored by two leading experts with over 80 years of experience working with timber durability.
The entire range of the developmental processes in plants is regulated by the shift in the hormonal concentration, tissue sensitivity and their interaction with the factors operating around the plants. Out of the recognized hormones, attention has largely been focused on five (Auxins, Gibberellins, Cytokinin, Abscisic acid and Ethylene). However, in this book, the information about the most recent group of phytohormones (Brassinosteroids) has been compiled by us. It is a class of over 40 polyhydroxylated sterol derivatives, ubiquitously distributed throughout the plant kingdom. A large portion of these steroids is restricted to the reproductive organs (pollens and immature seeds). Moreover, their strong growth-inducing capacity, recognized as early as prior to their identification in 1979, tempted the scientists to visualize the practical importance of this group of phytohormones. The brassin solution, from rape pollen, was used in a collaborative project by the scientists of Brazil and U. S. A. in a p- sowing seed treatment to augment the yield. This was followed by large-scale scientific programmes in U. S. , Japan, China, Germany and erstwhile U. S. S. R. , after the isolation of the brassinosteroids. This approach suits best in today's context where plants are targeted only as producers and hormones are employed to get desired results. Chapter 1 of this book (which embodies a total of 10 chapters), gives a comprehensive survey of the hitherto known brassinosteroids, isolated from lower and higher plants.
This book focuses on the effects of genotoxic agents causing oxidative stress in plants. The book explores different kind of chemicals which induces genotoxicity, their mechanism of action and effects on plant health. Impacts at the physiological and molecular levels are discussed. The book is of interest to teachers, researchers and plant scientists. Also the book serves as additional reading material for undergraduate and graduate students of agriculture, forestry, ecology, soil science, and environmental sciences. National and international agricultural scientists will also find this to be a useful read. |
![]() ![]() You may like...
Induced Genotoxicity and Oxidative…
Zeba Khan, Mohd Yunus Khalil Ansari, …
Hardcover
R5,144
Discovery Miles 51 440
Plant Transcription Factors…
Vikas Srivastava, Sonal Mishra, …
Paperback
R4,325
Discovery Miles 43 250
Toxicity of Nanoparticles in Plants - An…
Vishnu D. Rajput, Tatiana Minkina, …
Paperback
R4,069
Discovery Miles 40 690
Biostimulants in Alleviation of Metal…
Sarvajeet Singh Gill, Narendra Tuteja, …
Paperback
R4,344
Discovery Miles 43 440
Transporters and Plant Osmotic Stress
Aryadeep Roychoudhury, Durgesh Kunar Kumar Tripathi, …
Paperback
R4,642
Discovery Miles 46 420
The Chemical Dialogue Between Plants and…
Vivek Sharma, Richa Salwan, …
Paperback
R4,087
Discovery Miles 40 870
|