![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Biology, life sciences > Botany & plant sciences > Plant physiology
Plants cannot move away from their environments. As a result, all plants that have survived to date have evolved sophisticated signaling mechanisms that allow them to perceive, respond, and adapt to constantly changing environmental conditions. Among the many cellular processes that respond to environmental changes, elevation of calcium levels is by far the most universal messenger that matches primary signals to cellular responses. Yet it remains unclear how calcium, a simple cation, translates so many different signals into distinct responses - how is the "specificity" of signal-response coupling encoded within the calcium changes? This book will attempt to answer this question by describing the cellular and molecular mechanisms underlying the coding and decoding of calcium signals in plant cells.
Compartmentation in Aromatic Metabolism; F. Hrazdina. Immunolocalization of Flavonoid Conjugates and their Enzymes; R.K. Ibrahim. General Phenylpropanoid Metalbolism; C.J. Douglas, et al. Molecular Biology of Stress-Induced Phenylpropanoid and Isoflavonoid Biosynthesis in Alfalfa; R.A. Dixon, et al. Biosynthesis and Metabolism of Isoflavones and Pterocarpan Phytoalexins in Chickpea, Soybean, and Phytopathogenic Fungi; W. Barz, R. Welle. Flavonoid Synthesis in Petunia Hybrida; A.G.M. Gerats, C. Martin. Flavonoids; D.A. Phillips. Flavonoid Sulfation; L. Varin. Synthesis and Base-Catalyzed Transformations of Proanthocyanidins; D. Ferreira, et al. Enzymatic Synthesis of Gallotanins and Related Compounds G.G. Gross. Enantioselective Separations in Phytochemsitry; L.B. Davin, et al. The Phytochemical Society of North America; S.A. Brown. Index.
Soybean Seed Composition covers three decades of advances in quantitative trait loci (QTL) mapping of seed protein, oil, fatty acids, amino acids, sugars, mineral nutrients, isoflavones, lunasin, and other beneficial compounds. It opens with coverage of seed protein, oil, fatty acids, and amino acids and the effects that genetic and environmental factors have on them. Detailed discussion of QTL that control seed protein, oil, and fatty acids follows, and the book also covers seed amino acids, macronutrients, micronutrients, sugars, and other compounds that are key to selection for crop improvement. The book also provides an overview of two decades of QTL mapping of mineral deficiencies in soybean, which sheds light on the importance of a balanced mineral nutrition in soybean and other crops, elucidates salt stress tolerance QTL mapping, which is another challenge that faces soybean and other crop production worldwide. The importance of soybean seed isoflavones from their biosynthesis and quantification methods to locations and variations in seeds, roots, and leaves, to their QTL mapping is discussed, as well as providing key information on lunasin, a bioactive anticancer peptide in soybean seeds that will help farmers and breeders to develop soybean cultivars with improved seed isoflavones and lunasin content. The book will be of interest to graduate students, academics, and researchers in the fields of genetic and QTL mapping of important agronomic traits in soybean and other crops.
The nutritive endosperm of angiosperms is mankind 's most important source of food, livestock feed and industrial raw material. This book is the first comprehensive overview of the developmental and molecular biology of endosperm. The text covers cereal endosperm development from fertilization to maturity, including molecular and cell biology of the syncytial phase. It also goes into the cellularization process and cell fate specification of the embryo surrounding region cells, the basal transfer cells, the starchy endosperm and aleurone cells.
As this book will demonstrate, there have been numerousdevelopments in the instrumentation and approaches for use ofchlorophyll fluorescence as a probe to plant adaptation to anenvironment or as an indicator of the level of stress. The advantageof chlorophyll fluorescence over many other techniques is that itprovides rapid and nondestructive measures. The first two chapters ofthis book are devoted to provide a clear, understandable explanationof the theoretical basis for chlorophyll fluorescence analysis. Thedefinitions and terminology that are specific to chlorophyllfluorescence analysis are included in this discussion, which leads tothe bridging of chlorophyll fluorescence analysis to plant tissuecondition status. Subsequent chapters focus on the monitoring ofstress in the natural terrestrial and aquatic environments, assessingseedling quality in forestry, and postharvest quality in fruits andvegetables. A final chapter is devoted to a newly emerging use for thetechnique in plant breeding programs. It is the hope of the editorsand authors that readers who have not used this technique will beencouraged to explore the possibilities in their area of study. Forthose who have used the technique previously, we hope that this bookwill offer some new insights, which may encourage development and/orrefinement of approaches. Ultimately, we hope that the contents ofthis work will contribute in some manner to advances in theunderstanding of plant-environment interactions and hence toimprovements in the environmental quality, as well as in forestry andagri-food industries.
The germ plasm of numerous plant species, especially those of forest trees, some agricultural crops, and medicinal plants, is endangered and threatened with extinction. This depletion of germplasm pools and the shrinkage of naturally occurring genetic resources have caused international concern. Conventionally, the germplasm of plants is conserved through seeds, tubers, roots, corms, rhizomes, bulbs, cuttings, etc. However, the germ plasm of a number of trees and plantation crops (such as coconut, cocao, coffee, oil palm, rubber, mango, horse chestnut, etc. ) cannot be preserved since their seed are short-lived (recalcitrant). Likewise, germplasm of vegetatively propagated crops (such as potato and cassava) cannot be stored on a long term basis and has to be grown and multiplied periodically in nurseries and fields. The plants are thus exposed to unpredictable weather conditions and diseases, with the result that instances are known where entire genetic stocks are lost. Therefore, unconventional methods are being developed for the storage and international exchange of germplasm. For this purpose in vitro cultures have been employed, but they can only enable short-to medium term preservation; moreover, cell cultures upon repeated subculture undergo genetic erosion. In view of the recent developments in the in vitro induction of genetic variability through somaclonal variation, somatic hybridization, recombinant DNA technology, etc., new methods need to be employed for the storage of desirable cultures. In this regard freeze preservation of cells in liquid nitrogen (-196 0q, like that of semen, enables long-term storage, theoretically, for an indefinite period of time."
This book provides detailed and comprehensive information on oxidative damage caused by stresses in plants with especial reference to the metabolism of reactive oxygen species (ROS). In plants, as in all aerobic organisms, ROS are common by-products formed by the inevitable leakage of electrons onto O2 from the electron transport activities located in chloroplasts, mitochondria, peroxisomes and in plasma membranes or as a consequence of various metabolic pathways confined in different cellular loci. Environmental stresses such as heat, cold, drought, salinity, heavy-metal toxicity, ozone and ultraviolet radiation as well as pathogens/contagion attack lead to enhanced generation of ROS in plants due to disruption of cellular homeostasis. ROS play a dual role in plants; at low concentrations they act as signaling molecules that facilitate several responses in plant cells, including those promoted by biotic and abiotic agents. In divergence, at high levels they cause damage to cellular constituents triggering oxidative stress. In either case, small antioxidant molecules and enzymes modulate the action of these ambivalent species.
The main application of genomic markers is the mapping, diagnosis, understanding, manipulation and eventual molecular cloning of loci of medical, biologic or economic interest. These achievements are likely to have a practical impact not only in basic science, e.g. in the elucidation of the basic processes involved in a particular pathway or in retracing the history of plant speciation, but also in breeding practice. In agriculture this translates into the exploitation of this knowledge for further genetic improvement since traits of agronomic interest are often polygenic. The elucidation of the genetic basis of polygenic inheritance and the subsequent efficient utilization of this knowledge in breeding schemes require the availability of an adequate network of genetic markers spanning the entire genome. The purpose of the present manual is to provide new investigators in this area with an introduction and a basic practical state-of-the-art description of how to proceed.
This book summarizes our current knowledge on belowground defence strategies in plants by world-class scientists actively working in the area. The volume includes chapters covering belowground defence to main soil pathogens such as Fusarium, Rhizoctonia, Verticillium, Phytophthora, Pythium and Plasmodiophora, as well as to migratory and sedentary plant parasitic nematodes. In addition, the role of root exudates in belowground plant defence will be highlighted, as well as the crucial roles of pathogen effectors in overcoming root defences. Finally, accumulating evidence on how plants can differentiate beneficial soil microbes from the pathogenic ones will be covered as well. Better understanding of belowground defences can lead to the development of environmentally friendly plant protection strategies effective against soil-borne pathogens which cause substantial damage on many crop plants all over the world. The book will be a useful reference for plant pathologists, agronomists, plant molecular biologists as well as students working on these and related areas.
Chloroplast development is a key feature of leaf developmental program. Recent advances in plant biology reveal that chloroplasts also determine the development, the structure and the physiology of the entire plant. The books, published thus far, have emphasized the biogenesis of the organelle, but not the events associated with the transformation of the mature chloroplast to the gerontoplast during senescence. This book, with 28 chapters, is unique because it describes how the chloroplast matures and how it is subsequently transformed to become the gerontoplast during senescence, a process required for nutrient recycling in plants. This book includes a state-of-the-art survey of the current knowledge on the regulation and the mechanisms of chloroplast development.Some of the chapters critically discuss the signaling process, the expression potential of plastid DNA, the interaction of cellular organelles, and the molecular mechanisms associated with the assembly and the disassembly of organellar complexes and finally the modulation of chloroplast development by environmental signals."
Sixty years ago at the Waite Agricultural Research Institute, G. Samuel, a plant pathologist, and C. S. Piper, a chemist, published their conclusion that the cause of roadside take-all, a disease of oats, was manganese deficiency. This report, together with the concurrent and independent studies of W. M. Carne in Western Australia were the first records of manganese deficiency in Australia and came only six years after McHargue's paper which is generally accepted as the final proof of the essentiality of this element. There must have been a few doubts for some people at the time, however, as the CAB publication, 'The Minor Elements of the Soil' (1940) expressed the view that further evidence to this effect was provided by Samuel and Piper. Their historic contributions are recognised by the International Symposium on Manganese in Soils and Plants as it meets on the site of their early labours to celebrate the 60th anniversary. This year Australians also acknowledge 200 years of European settlement in this country and so the Symposium is both a Bicentennial and a diamond jubilee event which recognises the impact of trace elements on agricultural development in Australia. In a broader sense, a symposium such as this celebrates, as it reviews, the efforts of all who over the ages have contributed to our knowledge of manganese in soils and plants.
A collection of papers that comprehensively describe the major areas of research on lipid metabolism of plants. State-of-the-art knowledge about research on fatty acid and glycerolipid biosynthesis, isoprenoid metabolism, membrane structure and organization, lipid oxidation and degradation, lipids as intracellular and extracellular messengers, lipids and environment, oil seeds and gene technology is reviewed. The different topics covered show that modern tools of plant cellular and molecular biology, as well as molecular genetics, have been recently used to characterize several key enzymes of plant lipid metabolism (in particular, desaturases, thioesterases, fatty acid synthetase) and to isolate corresponding cDNAs and genomic clones, allowing the use of genetic engineering methods to modify the composition of membranes or storage lipids. These findings open fascinating perspectives, both for establishing the roles of lipids in membrane function and intracellular signalling and for adapting the composition of seed oil to the industrial needs. This book will be a good reference source for research scientists, advanced students and industrialists wishing to follow the considerable progress made in recent years on plant lipid metabolism and to envision the new opportunities offered by genetic engineering for the development of novel oil seeds.
The formation of roots is in some respects one of the least fundamentally understood of all plant functions. Propagation by cuttings is the aspect that will occur first to most gardeners and horticulturists, and it is certainly the most useful application. But any observant traveller in the tropics can notice that some trees have the habit of forming roots in the air. Climbers like Cissus bear long fine strings of roots hanging down. Pandanus trees tend to have stout aerial roots issuing from the bases of the long branches, while the tangle of roots around the trunk of many of the Ficus species is characteristic. In Ficus bengalensis, in particular, stout cylindrical roots firmly embedded in the ground from a height of 3 to 5 meters give support to the long horizontal branches, enabling them to spread still further. In the big old specimen at Adyar near Madras, the spread of these branches all around the tree, each with a strong root growing out every few meters, makes a shaded area under which meetings of almost 5000 people are sometimes held. The history of how the formation of roots on stem cuttings was found to be under hormonal control is worth repeating here.
The plasma membrane is at once the window through which the cell senses the environment and the portal through which the environment influences the structure and activities of the cell. Its importance in cellular physiology can thus hardly be overestimated, since constant flow of materials between cell and environment is essential to the well-being of any biological system. The nature of the materials mov ing into the cell is also critical, since some substances are required for maintenance and growth, while others, because of their toxicity, must either be rigorously excluded or permitted to enter only after chemical alteration. Such alteration frequently permits the compounds to be sequestered in special cellular compartments having different types of membranes. This type of homogeneity, plus the fact that the wear and tear of transmembrane molecular traffic compels the system to be constantly monitored and repaired, means that the membrane system of any organism must be both structurally complex and dy namic. Membranes have been traditionally difficult to study because of their fragility and small diameter. In the last several decades, however, remarkable advances have been made because of techniques permit ting the bulk isolation of membranes from homogenized cells. From such isolated membranes have come detailed physical and chemical analyses that have given us a detailed working model of membrane. We now can make intelligent guesses about the structural and func tional interactions of membrane lipids, phospholipids, proteins, sterols and water.
Metal contamination is an increasing ecological and eco-toxicological risk. Understanding the processes involved in metal mobilization, sorption and mineralization in soils are key features for soil bioremediation. Following an introduction to the physical, chemical and biological components of contaminated soils, various chapters address the interactions of soil, microorganisms, plants and the water phase necessary to transfer metals into biological systems. These include topics such as potential hazards at mining sites; rare earth elements in biotic and abiotic acidic systems; manganese redox reactions; biomineralisation, uranium in seepage water; metal-resistant streptomycetes; mycorrhiza in re-forestation; metal (hyper)accummulation in plants; microbial metal uptake; and their potential for bioremediation. This book will be of interest to soil biologists, geologists and chemists, researchers and graduate students, as well as consulting companies and small enterprises involved in bioremediation.
The NATO Advanced Research Workshop (ARW) on "Regulation of Enzymatic Systems Detoxifying Xenobiotics in Plants" intended to provide a forum to scientists from academia, industry, and govemment for discussing and critically assessing recent advances in the field of xenobiotic metabolism in plants and for identifying new directions for future research. Plants function in a chemical environment made up of nutrients and xenobiotics. Xenobiotics (foreign chemicals) are natural or synthetic compounds that can not be utilized by plants for energy-yielding metabolism. Plants may be exposed to xenobiotics either deliberately, due to their use as pesticides or accidentally, from industrial, agricultural, and other uses. Plants, like most other organisms, evolved a remarkable battery or metabolic reactions to defend themselves against the potentially toxic effects of xenobiotics. The main enzymatic reactions utilized by plants for xenobiotic detoxification include oxidation, reduction, hydrolysis and conjugation with glutathione, sugars (e.g., glucose), and amino acids. Eventually, xenobiotic conjugates are converted to insoluble bound residues or to secondary conjugates, which are deposited in the vacuole of plant cells.
This book was developed from the proceedings of the 2nd North American Tan nin Conference held in Houghton, Michigan, June, 1991. The objective of this con ference was to bring together people with a common interest in plant polyphenols and to promote interdisciplinary interactions that will lead to a bet ter understand ing of the importance of these substances. Another objective of this conference was to extend the 'tannin family' by making special efforts to encourage participation by scientists outside the United States, obtain more coverage of the hydrolyzable tannins, and further broaden the scope of coverage from the initial concentration on forestry and forest products. Com parison of the contents of this book with 'Chemistry and Significance of Condensed Tannins' that resulted from the proceedings of the 1st North American Tannin Conference shows the degree that these objectives were met. In developing the second conference, care was taken to assure that this book extends rather than duplicates the coverage of the first conference. Therefore, the two books should be taken together to obtain an up to date coverage of the broad area of chemistry and significance of plant polyphenols. Our thanks go to the authors who so kindly contributed chapters and so pa tiently responded to our requests. We thank the Conference Assistance Staff of Michigan Technological University for their help in planning and conducting the conference."
The beginnings of human civili zation can be traced back to the time , ne- ly 12 ,000 years ago , when th e early humans gradually ch anged from a life of hunting and gathering food , to producing food. This beginning of pri- tive agriculture ensured a dependable supply of food , and fostered the living together of people in groups and the development of s o c i e ty. During th is time, plant s e e ds were recognized a s a valuable s o ur c e of food and nutrition , and began to be used for growing plants for food. Ever s i n c e , plant seeds have played an important role in the development of the human civilization . Even today, s e e ds of a few crop s p e c i e s , s uc h as the cereals and legume s, are the primary s o u r c e of most human food , and the predominant commodity in international agriculture. Owing to their great importance as food for human s and in international trade , seeds have been a favorite object of s t u d y by developmental biologists and physiologi sts , nutritionist s and chem i sts . A wealth of useful information i s available on th e biology of seed s .
Historically, scientists and laymen have regarded salinity as a hazar dous, detrimental phenomenon. This negative view was a principal reason for the lack of agricultural development of most arid and semi arid zones of the world where the major sources of water for biological production are saline. The late Hugo Boyko was probably the first scientist in recent times to challenge this commonly held, pessimistic view of salinity. His research in Israel indicated that many plants can be irrigated with saline water, even at seawater strength, if they are in sandy soil - a technique that could open much barren land to agriculture. This new, even radical, approach to salinity was clearly enunciated in the book he edited and most appropriately entitled 'Salinity and Aridity: New Approaches to Old Problems' (1966). A decade later, three members of the United States National Science Foundation (NSF), Lewis Mayfield, James Aller and Oskar Zaborsky, formulated the 'Biosaline Concept'; namely, that poor soils, high solar insolation and saline water, which prevail in arid lands, should be viewed as useful resources rather than as disadvantages, and that these resources can be used for non-traditional production of food, fuels and chemicals. The First International Workshop on Biosaline Research was con vened at Kiawah Island, South Carolina, in 1977 by A. San Pietro."
Rinie Hofstra has been a member of the Department of Plant Physiology, University of Groningen, the Netherlands, for 24 years. The nearer we came to 31 March 1985, her 65th birthday, the more we all realized how we would miss her - not only scientifically, but also socially. She left her mark on both research and teaching, always with an open mind and willing to change. After her PhD Thesis on 'Nitrogen Metabolism in Tomato Plants' she first continued working in that field, but soon started a joint project with the Department of Plant Ecology on hemiparasites. She then became involved in carbon metabolism, which resulted in her giving a Biotrop Course on C /C metabolism in 3 4 Indonesia. Her own research group, originally working on 'Nitrogen Metabolism', soon embraced 'Energy and Nitrogen Metabolism', as the research on respiration became more and more important. In running her group she showed all sides of her person. She used to stimulate and encourage everyone around her and to integrate the various lines of research. At the same time she always had an open mind for the opinion of all members of her group. And together they regularly criticized and evaluated the various projects and decided how to continue.
DeFelice presents this intricate subject in an easy-to-follow, stepwise fashion: he reviews the fundamentals of electricity; transfers those principles to a biological context; and expands the discussion to encompass the subject's practical dimensions. Clear definitions and intuitive descriptions characterize the presentation, which is complemented by over 150 drawings and graphs. Mathematics is kept to the minimum necessary. The text covers both excitable and non-excitable membranes and includes the plasma membrane as well as intracellular membranes. A unique, electronics-made-simple' appendix, designed specifically for biologists, treats the operational amplifiers used in patch clamp, and other appendices offer solutions to equations and examples that illustrate principles.
Environmental stresses represent the most limiting factors for agricultural productivity. Apart from biotic stress caused by plant pathogens, there are a number of abiotic stresses such as extremes in temperature, drought, salinity, heavy metals and radiation which all have detrimental effects on plant growth and yield. However, certain plant species and ecotypes have developed various mechanisms to adapt to such stress conditions. Recent advances in the understanding of these abiotic stress responses provided the impetus for compiling up-to-date reviews discussing all relevant topics in abiotic stress signaling of plants in a single volume. Topical reviews were prepared by selected experts and contain an introduction, discussion of the state of the art and important future tasks of the particular fields.
In continuation of Volumes 8, 9, 22, and 23, this new volume deals
with the regeneration of plants from isolated protoplasts and
genetic transformation in various species of "Actinidia,"
"Allocasuarina," "Anthurium," "Antirrhinum," "Asparagus," "Beta,"
"Brassica," "Carica," "Casuarina," "Cyphomandra," "Eucalyptus,"
"Ipomoea," "Larix," "Limonium," "Liriodendron," "Malus," "Musa,"
"Physcomitrella," "Physalis," "Picea," "Rosa," "Tagetes,"
"Triticum," and "Ulmus."
In the past there were many attempts to change natural foodstuffs into high-value products. Cheese, bread, wine, and beer were pro duced, traditionally using microorganisms as biological tools. Later, people influenced the natural process of evolution by artificial selection. In the 19th century, observations regarding the depen dence of growth and reproduction on the nutrient supply led to the establishment of agricultural chemistry. Simultaneously, efforts were directed at defining the correlation between special forms of morphological differentiation and related biochemical processes. New experimental systems were developed after the discovery of phytohormones and their possible use as regulators of growth and differentiation. In these systems, intact plants or only parts of them are cultivated under axenic conditions. These methods, called "in vitro techniques," were introduced to modern plant breeding. In the field of basic research, plant cell cultures were increasingly developed and the correlations between biochemical processes and visible cell variations were explored further. It should be possible to manipulate the basic laws of regulation and the respective biochemi cal processes should be regarded as being independent of morpho logical processes of plant development."
Plants are sessile, highly sensitive organisms that actively compete for environmental resources both above and below the ground. They assess their surroundings, estimate how much energy they need for particular goals, and then realise the optimum variant. They take measures to control certain environmental resources. They perceive themselves and can distinguish between 'self' and 'non-self'. They process and evaluate information and then modify their behaviour accordingly. These highly diverse competences are made possible by parallel sign(alling)-mediated communication processes within the plant body (intraorganismic), between the same, related and different species (interorganismic), and between plants and non-plant organisms (transorganismic). Intraorganismic communication involves sign-mediated interactions within cells (intracellular) and between cells (intercellular). This is crucial in coordinating growth and development, shape and dynamics. Such communication must function both on the local level and between widely separated plant parts. This allows plants to coordinate appropriate response behaviours in a differentiated manner, depending on their current developmental status and physiological influences. Lastly, this volume documents how plant ecosphere inhabitants communicate with each other to coordinate their behavioural patterns, as well as the role of viruses in these highly dynamic interactional networks. |
![]() ![]() You may like...
The Joy of Being Online All the F*cking…
Jennifer McCartney
Hardcover
|