![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Biology, life sciences > Botany & plant sciences > Plant physiology
Soil salinity is a key abiotic-stress and poses serious threats to crop yields and quality of produce. Owing to the underlying complexity, conventional breeding programs have met with limited success. Even genetic engineering approaches, via transferring/overexpressing a single 'direct action gene' per event did not yield optimal results. Nevertheless, the biotechnological advents in last decade coupled with the availability of genomic sequences of major crops and model plants have opened new vistas for understanding salinity-responses and improving salinity tolerance in important glycophytic crops. Our goal is to summarize these findings for those who wish to understand and target the molecular mechanisms for producing salt-tolerant and high-yielding crops. Through this 2-volume book series, we critically assess the potential venues for imparting salt stress tolerance to major crops in the post-genomic era. Accordingly, perspectives on improving crop salinity tolerance by targeting the sensory, ion-transport and signaling mechanisms are presented here in volume 1. Volume 2 will focus on the potency of post-genomic era tools that include RNAi, genomic intervention, genome editing and systems biology approaches for producing salt tolerant crops.
This volume provides the plant scientific community with a collection of established and recently developed experimental protocols to study plant gravitropism. The first few chapters in this book discuss topics such as methods to properly orient plant material for gravitropism studies; protocols for data collection and image analysis; and techniques to investigate ion, organelle, and auxin transporter dynamics, particularly in living cells, as the plant is responding to a change in its orientation. The next few chapters talk about topics that are essential for understanding the complexities underlying tropisms and plant movements in general, and outline basic protocols on handling ornamental flowering shoots for basic plant gravitropism studies. The book concludes with chapters that discuss plant biological studies in space in order to take advantage of unique microgravity conditions not available in Earth-based studies. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Informative and cutting-edge, Plant Gravitropism is the perfect book for researchers in the plant scientific community because it is not only useful for plant gravitropism studies, but also addresses a range of interesting problems in plant growth and development.
With a focus on food safety, this book highlights the importance of microbes in sustainable agriculture. Plants, sessile organisms that are considered as primary producers in the ecosystem and communicate with above- and below-ground communities that consist of microbes, insects, and other vertebrate and invertebrate animals, are subjected to various kinds of stress. Broadly speaking, these can be subdivided into abiotic and biotic stresses. Plants have evolved to develop elaborate mechanisms for coping with and adapting to the environmental stresses. Among other stresses, habitat-imposed biotic stress is one serious condition causing major problems for crop productivity. Most plants employ plant-growth-promoting microorganisms (PGPMs) to combat and protect themselves from stresses and also for better growth. PGPMs are bacteria associated with plant roots and they augment plant productivity and immunity. They are also defined as root-colonizing bacteria that have beneficial effects on plant growth and development. Remarkably, PGPMs including mycorrhizae, rhizobia, and rhizobacteria (Acinetobacter, Agrobacterium, Arthrobacter, Azospirillum, Bacillus, Bradyrhizobium, Frankia, Pseudomonas, Rhizobium, Serratia, Thiobacillus) form associations with plant roots and can promote plant growth by increasing plants' access to soil minerals and protecting them against pathogens. To combat the pathogens causing different diseases and other biotic stresses, PGPMs produce a higher level of resistance in addition to plants' indigenous immune systems in the form of induced systemic resistance (ISR). The ISR elicited by PGPMs has suppressed plant diseases caused by a range of pathogens in both the greenhouse and field. As such, the role of these microbes can no longer be ignored for sustainable agriculture. Today, PGPMs are also utilized in the form of bio-fertilizers to increase plant productivity. However, the use of PGPMs requires a precise understanding of the interactions between plants and microbes, between microbes and microbiota, and how biotic factors influence these relationships. Consequently, continued research is needed to develop new approaches to boost the efficiency of PGPMs and to understand the ecological, genetic and biochemical relationships in their habitat. The book focuses on recent research concerning interactions between PGPMs and plants under biotic stress. It addresses key concerns such as - 1. The response of benign microbes that benefit plants under biotic stress 2. The physiological changes incurred in plants under harsh conditions 3. The role of microbial determinants in promoting plant growth under biotic stress The book focuses on a range of aspects related to PGPMs such as their mode of action, priming of plant defence and plant growth in disease challenged crops, multifunctional bio-fertilizers, PGPM-mediated disease suppression, and the effect of PGPMs on secondary metabolites etc. The book will be a valuable asset to researchers and professionals working in the area of microbial-mediated support of plants under biotic stress.
From climate change to farming systems to genetic modification of organisms, Crop Physiology, Second Edition provides a practical tool for understanding the relationships and challenges of successful cropping. With a focus on genetic improvement and agronomy, this book addresses the challenges of environmentally sound production of bulk and quality food, fodder, fiber, and energy which are of ongoing international concern. The second edition of Crop Physiology continues to provide a unique analysis of these topics while reflecting important changes and advances in the relevant science and implementation systems. Contemporary agriculture confronts the challenge of increasing demand in terms of quantitative and qualitative production targets. These targets have to be achieved against the background of soil and water scarcity, worldwide and regional shifts in the patterns of land use driven by both climate change and the need to develop crop-based sources of energy, and the environmental and social aspects of agricultural sustainability.
The entire range of the developmental process in plants is regulated by a shift in the hormonal concentration, tissue sensitivity and their interaction with the factors operating around the plants. Phytohormones play a crucial role in regulating the direction of plant in a coordinated fashion in association with metabolism that provides energy and the building blocks to generate the form that we recognize as a plant. Out of the recognized hormones, attention has largely been focused on Auxins, Gibberellins, Cytokinins, Abscisic acid, Ethylene and more recently on Brassinosteroids. In this book we are providing the information about a brassinosteroids that again confirm its status as phytohormones because it has significant impact on various aspects of the plant life and its ubiquitous distribution throughout the plant kingdom. Brassinosteroids are generating a significant impact on plant growth and development, photosynthesis, transpiration, ion uptake and transport, induces specific changes in leaf anatomy and chloroplast structure. This book is not an encyclopedia of reviews but includes a selected collection of newly written, integrated, illustrated reviews describing our knowledge of brassinosteroids. The aim of this book is to tell all about brassinosteroids, by the present time. The various chapters incorporate both theoretical and practical aspects and may serve as baseline information for future researches through which significant development is possible. It is intended that this book will be useful to the students, teachers and researchers, both in universities and research institutes, especially in relation to biological and agricultural sciences.
Post-translational modifications are now known to play a fundamental role in regulating the activity, location and function of a wide range of proteins. In plant cells work on different types of post-translational modifications has progressed largely along independent lines. This book brings research workers together to allow an exchange of ideas, and reflects a diversity of interest whilst also revealing common ground. An introductory chapter reviewing recent progress in the field is followed by reviews of protein phosphorylation in bacteria and animals which provide a useful perspective on this subject in plants. Consideration is then given to plant protein kinases and the processes they control. Acylation and glycosylation, and their functions in protein targeting and folding are reviewed, along with the roles of glycoproteins in plant development and of ubiquitination in plant senescence.
This book discusses and addresses the rapidly increasing world population demand for food, which is expected to double by 2050. To meet these demands farmers will need to improve crop productivity, which relies heavily on nitrogen (N) fertilization. Production of N fertilizers, however, consumes huge amounts of energy and the loss of excess N fertilizers to leaching results in the pollution of waterways and oceans. Therefore, increasing plant nitrogen use efficiency (NUE) is essential to help farmers produce more while conserving the environment. This book assembles some of the best work of top researchers from academic and industrial institutions in the area of NUE and provides valuable insight to scholars and researchers by its comprehensive discussion of current and future strategies to improve NUE through genetic manipulation. This book should also be highly valuable to policy makers, environmentalists, farmers, biotechnology executives, and to the hard-core researchers working in the lab.
The importance of the plant growth regulator auxin for plant growth has long been recognized, even before the discovery of its chemical structures in the early 20th century. Physiological studies in the decades since have demonstrated that auxin is unidirectionally transported in plants, a process dubbed polar auxin transport. It is the polar auxin transport process that generates a local auxin concentration gradient and regulates a broad array of physiological and developmental processes. The discoveries of auxin transport carrier proteins that mediate auxin influx into and efflux out of transport-competent cells and auxin receptor proteins for auxin signaling in the last few decades represent significant milestones in auxin research and open up opportunities to probe the cellular and molecular processes that regulate auxin transport and integrate environmental cues with signaling processes. Remarkably, components of the polar auxin transport machinery are present in both lower plants such as mosses and higher plants including monocots and eudicots, illustrating the key role of polar auxin transport in plant evolution. This book highlights topics ranging from physiological and genetic studies of polar auxin transport in plant development, to growth responses to the environment and plant-microbe interactions, to hormonal cross-talks with various cellular and molecular regulatory processes essential for polar auxin transport.
This volume presents the issues and challenges of crop pathogens and plant protection. Composed of the latest knowledge in plant pathology, the book covers topics such as fungal diseases of the groundnut, plant growth promoting rhizobacteria, plant pathogenic fungi in the genomics era, the increased virulence of wheat rusts and oat fungal diseases. Written by experienced and internationally recognized scientists in the field, "Future Challenges in Crop Protection Against Fungal Pathogens "is a concise yet comprehensive resource valuable for both novice as well as experienced plant scientists and researchers.
This book will shed light on the effect of salt stress on plants development, proteomics, genomics, genetic engineering, and plant adaptations, among other topics. Understanding the molecular basis will be helpful in developing selection strategies for improving salinity tolerance. The book will cover around 25 chapters with contributors from all over the world.
Plants are endowed with innate immune system, which acts as a surveillance system against possible attack by pathogens. Plant innate immune systems have high potential to fight against viral, bacterial, oomycete and fungal pathogens and protect the crop plants against wide range of diseases. However, the innate immune system is a sleeping system in unstressed healthy plants. Fast and strong activation of the plant immune responses aids the host plants to win the war against the pathogens. Plant hormone signaling systems including salicylate (SA), jasmonate (JA), ethylene (ET), abscisic acid (ABA), auxins, cytokinins, gibberellins and brassinosteroids signaling systems play a key role in activation of the sleeping immune systems. Suppression or induction of specific hormone signaling systems may result in disease development or disease resistance. Specific signaling pathway has to be activated to confer resistance against specific pathogen in a particular host. Two forms of induced resistance, systemic acquired resistance (SAR) and induced systemic resistance (ISR), have been recognized based on the induction of specific hormone signaling systems. Specific hormone signaling system determines the outcome of plant-pathogen interactions, culminating in disease development or disease resistance. Susceptibility or resistance against a particular pathogen is determined by the action of the signaling network. The disease outcome is often determined by complex network of interactions among multiple hormone signaling pathways. Manipulation of the complex hormone signaling systems and fine tuning the hormone signaling events would help in management of various crop diseases. The purpose of the book is to critically examine the potential methods to manipulate the multiple plant hormone signaling systems to aid the host plants to win the battle against pathogens.
This book describes the unique characean experimental system, which provides a simplified model for many aspects of the physiology, transport and electrophysiology of higher plants. The first chapter offers a thorough grounding in the morphology, taxonomy and ecology of Characeae plants. Research on characean detached cells in steady state is summarised in Chapter 2, and Chapter 3 covers characean detached cells subjected to calibrated and mostly abiotic types of stress: touch, wounding, voltage clamp to depolarised and hyperpolarised potential difference levels, osmotic and saline stress. Chapter 4 highlights cytoplasmic streaming, cell-to-cell transport, gravitropism, cell walls and the role of Characeae in phytoremediation. The book is intended for researchers and students using the characean system and will also serve as an invaluable reference resource for electrophysiologists working on higher plants.
This book reviews the current state of information on reactive oxygen and nitrogen species and their role in cell communication during plant growth, development and adaptation to stress conditions. It addresses current research advances made in the area of reactive oxygen and nitrogen species (ROS and RNS) signaling. These free radical molecules are important in plant-microbe interactions, responses to abiotic stress, stomatal regulation and a range of developmental processes. Due to their short half-life, high diffusion capability and ability to react with different components in the cell, ROS and RNS participate in various processes connected with signaling and communication in plants. The book's respective chapters address the latest advances made in the niche area of ROS and RNS in plants. It offers a valuable guide for researchers and students alike, providing insights into cutting-edge free radical research. The information on specialized topics presented is also highly relevant for applied fields such as food security, agricultural practices and medicinal use of plants.
Ascorbic acid (AsA), vitamin C, is one of the most abundant water-soluble antioxidant in plants and animals. In plants AsA serves as a major redox buffer and regulates various physiological processes controlling growth, development, and stress tolerance. Recent studies on AsA homeostasis have broadened our understanding of these physiological events. At the mechanistic level, AsA has been shown to participate in numerous metabolic and cell signaling processes, and the dynamic relationship between AsA and reactive oxygen species (ROS) has been well documented. Being a major component of the ascorbate-glutathione (AsA-GSH) cycle, AsA helps to modulate oxidative stress in plants by controlling ROS detoxification alone and in co-operation with glutathione. In contrast to the single pathway responsible for AsA biosynthesis in animals, plants utilize multiple pathways to synthesize AsA, perhaps reflecting the importance of this molecule to plant health. Any fluctuations, increases or decreases, in cellular AsA levels can have profound effects on plant growth and development, as AsA is associated with the regulation of the cell cycle, redox signaling, enzyme function and defense gene expression. Although there has been significant progress made investigating the multiple roles AsA plays in stress tolerance, many aspects of AsA-mediated physiological responses require additional research if AsA metabolism is to be manipulated to enhance stress-tolerance. This book summarizes the roles of AsA that are directly or indirectly involved in the metabolic processes and physiological functions of plants. Key topics include AsA biosynthesis and metabolism, compartmentation and transport, AsA-mediated ROS detoxification, as well as AsA signaling functions in plant growth, development and responses to environmental stresses. The main objective of this volume is therefore to supply comprehensive and up-to-date information for students, scholars and scientists interested in or currently engaged in AsA research.
Estimation of the metabolite complement of plant material involves a wide range of techniques and technologies and that breadth continues to increase. Metabolomics research typically involves multiple sites for material preparation and analysis and most investigations are "high throughput", meaning that chemical analysis of sample sets are inevitably carried out over an extended period of time. In, Plant Metabolomics: Methods and Protocols expert researchers in the field detail many of the stages which are now commonly used to study plant metabolomics workflow. Stages of this workflow, up to and including the statistical analysis, accurate and detailed collection of meta-data are also essential for good process management, to satisfy reporting requirements and to ensure wider interpretability and reuse results.Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Through and intuitive Plant Metabolomics: Methods and Protocols, seeks to aid scientists in the further study of the methods for all the stages of the plant metabolomics workflow.
This book provides extensive and comprehensive information to researchers and academicians who are interested in radionuclide contamination, its sources and environmental impact. It is also useful for graduate and undergraduate students specializing in radioactive-waste disposal and its impact on natural as well as manmade environments. A number of sites are affected by large legacies of waste from the mining and processing of radioactive minerals. Over recent decades, several hundred radioactive isotopes (radioisotopes) of natural elements have been produced artificially, including 90Sr, 137Cs and 131I. Several other anthropogenic radioactive elements have also been produced in large quantities, for example technetium, neptunium, plutonium and americium, although plutonium does occur naturally in trace amounts in uranium ores. The deposition of radionuclides on vegetation and soil, as well as the uptake from polluted aquifers (root uptake or irrigation) are the initial point for their transfer into the terrestrial environment and into food chains. There are two principal deposition processes for the removal of pollutants from the atmosphere: dry deposition is the direct transfer through absorption of gases and particles by natural surfaces, such as vegetation, whereas showery or wet deposition is the transport of a substance from the atmosphere to the ground by snow, hail or rain. Once deposited on any vegetation, radionuclides are removed from plants by the airstre am and rain, either through percolation or by cuticular scratch. The increase in biomass during plant growth does not cause a loss of activity, but it does lead to a decrease in activity concentration due to effective dilution. There is also systemic transport (translocation) of radionuclides within the plant subsequent to foliar uptake, leading the transfer of chemical components to other parts of the plant that have not been contaminated directly.
This volume covers protocols on techniques ranging from MAMP isolations from diverse microorganisms, PRR identifications from different plant species, MAMP-PRR binding, and a series of signaling responses and events revealed by various biochemical, cellular, genetic and bioinformatic tools. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Plant Pattern Recognition Receptors: Methods and Protocols aims to ensure successful results in the further study of this vital field.
This volume summarizes recent advances in our understanding of the mechanisms that produce successful symbiotic partnerships involving microorganisms. It begins with a basic introduction to the nature of and mechanistic benefits derived from symbiotic associations. Taking that background knowledge as the starting point, the next sections include chapters that examine representative examples of coevolutionary associations that have developed between species of microbes, as well as associations between microbes and plants. The authors conclude with a section covering a broad range of associations between microbes and invertebrate animals, in which they discuss the spectrum of hosts, with examples ranging from bryozoans and corals to nematodes, arthropods, and cephalopods. Join the authors on this journey of understanding!
"Advances in Botanical Research" publishes in-depth and up-to-date
reviews on a wide range of topics in plant sciences. The series
features a wide range of reviews by recognized experts on all
aspects of plant genetics, biochemistry, cell biology, molecular
biology, physiology and ecology. Thisthematic volume features
reviews on cutting-edge topics on BIOSYNTHESIS OF VITAMINS IN
PLANTS. Covers cutting-edge topics on BIOSYNTHESIS OF VITAMINS IN PLANTS Each chapter covers biological functions and requirements, distribution, Biosynthesis and location of the pathway, regulation, turnover and catabolism, Main differences with other autotrophic organisms, and engineering the pathway for nutritional enhancement."
This book highlights the advances in essential oil research, from the plant physiology perspective to large-scale production, including bioanalytical methods and industrial applications. The book is divided into 4 sections. The first one is focused on essential oil composition and why plants produce these compounds that have been used by humans since ancient times. Part 2 presents an update on the use of essential oils in various areas, including food and pharma industries as well as agriculture. In part 3 readers will find new trends in bioanalytical methods. Lastly, part 4 presents a number of approaches to increase essential oil production, such as in vitro and hairy root culture, metabolic engineering and biotechnology. Altogether, this volume offers a comprehensive look at what researchers have been doing over the last years to better understand these compounds and how to explore them for the benefit of the society.
Experience shows that biotic stresses occur with different levels of intensity in nearly all agricultural areas around the world. The occurrence of insects, weeds and diseases caused by fungi, bacteria or viruses may not be relevant in a specific year but they usually harm yield in most years. Global warming has shifted the paradigm of biotic stresses in most growing areas, especially in the tropical countries, sparking intense discussions in scientific forums. This book was written with the idea of collecting in a single publication the most recent advances and discoveries concerning breeding for biotic stresses, covering all major classes of biotic challenges to agriculture and food production. Accordingly, it presents the state-of-the-art in plant stresses caused by all microorganisms, weeds and insects and how to breed for them. Complementing Plant Breeding for Abiotic Stress Tolerance, this book was written for scientists and students interested in learning how to breed for biotic stress scenarios, allowing them to develop a greater understanding of the basic mechanisms of resistance to biotic stresses and develop resistant cultivars.
The book focuses on the principles and practices of tropical maize improvement with special emphasis on early and extra-early maize to feed the increasing population in Sub-Saharan Africa. It highlights the similarities and differences between results obtained in temperate regions of the world and WCA in terms of corroboration or refutation of genetic principles and theory of maize breeding. The book is expected to be of great interest to maize breeders, advanced undergraduates, graduate students, professors and research scientists in the national and international research institutes all over the world, particularly Sub-Saharan Africa. It will also serve as a useful reference for agricultural extension and technology transfer systems, Non-governmental Organizations (NGOs) and Community-Based Organizations (CBOs), seed companies and community-based seed enterprises, policy makers, and all those who are interested in generating wealth from agriculture and alleviating hunger and poverty in Sub-Saharan Africa.
This volume illustrates the complex root system, including the various essential roles of roots as well as their interaction with diverse microorganisms localized in or near the root system. Following initial chapters describing the anatomy and architecture as well as the growth and development of root systems, subsequent chapters focus on the various types of root symbiosis with bacteria and fungi in the rhizosphere. A third section covers the physiological strategies of roots, such as nitrate assimilation, aquaporins, the role of roots in plant defense responses and in response to droughts and salinity changes. The book s final chapters discuss the prospects of applied engineering of roots, i.e., inventing new root structures or functions through genetic modification, but also with conventional breeding and manipulation of root symbionts. The budding field of root engineering is expected to promote a second green revolution."
The present edited book is an attempt to update the state of art of the knowledge on metabolism of ROS and antioxidants and their relationship in plant adaptation to abiotic stresses involving physiological, biochemical and molecular processes. The chapters are much focused on the current climate issues and how ROS metabolism can manipulate with antioxidant system to accelerate detoxification mechanism. It will enhance the mechanistic understanding on ROS and antioxidants system and will pave the path for agricultural scientists in developing tolerant crops to achieve sustainability under the changing environmental conditions. The increase in abiotic stress factors has become a major threat to sustainability of crop production. This situation has led to think ways which can help to come out with potential measures; for which it is necessary to understand the influence of abiotic stress factors on crops performance and the mechanisms by which these factors impact plants. It has now become evident that abiotic stress impacts negatively on plant growth and development at every stage of plant's life. Plants adapt to the changing environment with the adjustment at physiological, biochemical and molecular levels. The possible mechanisms involved in the negative effects of abiotic stress factors are excess production of reactive oxygen species (ROS). They alter physiological and molecular mechanisms leading to poor performance of plants. Plants however, are able to cope with these adverse effects by inducing antioxidant systems as the priority. Nevertheless, the dual role of ROS has now been ascertained which provides an evidence for regulation of plant metabolism positively on a concentration-dependent manner. Under conditions of high ROS production, the antioxidant system plays a major role in diminishing the effects of ROS. Thus, ROS production and antioxidant system are interwoven with abiotic stress conditions. The antioxidants have the capacity to hold the stability in metabolism in order to avoid disruption due to environmental disturbances. |
You may like...
Computer-Graphic Facial Reconstruction
John G. Clement, Murray K. Marks
Hardcover
R2,327
Discovery Miles 23 270
Smart Multicore Embedded Systems
Massimo Torquati, Koen Bertels, …
Hardcover
Database Principles - Fundamentals of…
Carlos Coronel, Keeley Crockett, …
Paperback
|