![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Biology, life sciences > Botany & plant sciences > Plant physiology
Plants utilize light not only for photosynthesis but also as environmental signals. They are capable of perceiving wavelength, intensity, direction, duration, and other attributes of light to perform appropriate physiological and developmental changes. This volume presents overviews of and the latest findings in many of the interconnected aspects of plant photomorphogenesis, including photoreceptors (phytochromes, cryptochromes, and phototropins), signal transduction, photoperiodism, and circadian rhythms, in 42 chapters. Also included, is a prologue by Prof. Masaki Furuya that gives an overview of the historical background. With contributions from preeminent researchers in specific subjects from around the world, this book will be a valuable source for a range of scientists from undergraduate to professional levels.
Adaptation and evolution of terrestrial plants depend, to a large extent, on their ability to acquire nutrients. This is a modern and integrative treatment of the mechanisms controlling plant nutrient uptake and how plants respond to changes in the environment. The following key topics are covered: soil nutrient bioavailability; root responses to variations in nutrient supply; nitrogen fixation; regulation of nutrient uptake by internal plant demand; root characteristics; kinetics of nutrient uptake; root architecture; life span; mycorrhizae; responses to climate change. This integrated view helps us to understand the mechanisms that govern present-day plant communities and is indispensable in models designed to predict the response of plants to a changing climate.
This book focuses on the plant cytoskeleton and its various cross-talks with other cellular components leading to its role in plant growth and development. It not only allows the geometric and signaling dimensions of cells, but is also very important in physiological processes. The book discusses the recent studies showing the role of actin and microtubule cytoskeleton interactions in cell-wall assembly and dynamics. The authors examine the role of both microtubules in the mechanics of plant cells, and actin filaments in the motility of chloroplasts. Based on recent advances in the study of the acto-myosin complex using high-resolution microscopy, they propose a new model for intracellular transport in plants. Exploring an almost-forgotten field of bioelectricity in the context of the cytoskeleton, the book highlights connections between the dynamic actin filaments and the bioelectricity of membranes and demonstrates that the plant cytoskeleton is involved in the distribution of plant hormones. Lastly, it addresses the role of endomembrane -cytoskeleton interactions to show the importance of the cytoskeleton in organelle morphogenesis and cellular functions. Studies in various plant models have shown how the actin filament and microtubules control and coordinate plant cell growth and development. This book summarizes the mechanisms underlying these functions.
This book addresses the responses of plants to salinity. Although salinity is a common environmental factor for marine organisms, for the majority of land plants high soil salinity is an environmental constraint that limits growth, productivity, and normal plant functions. Salinity is particularly widespread in arid/semiarid climates where crop production depends on irrigation. A comprehensive approach is taken in this book. After discussing salinity as an environmental soil factor and its global impact on ecosystems, plant responses are covered from the whole-plant level through metabolic changes to the underlying molecular and genetic mechanisms. In contrast to other books in this subject area, which focus on certain aspects of plant responses to salinity or are conference proceedings, this is the only comprehensive new book on this subject, written by experts in the field. The intended level of readership is graduate students and advanced researchers interested in environmental biology and specifically in the area of mechanisms of environment-plant interactions.
This book describes nitric oxide (NO) and hydrogen peroxide (H2O2) functions in higher plants. Much progress has been made in the field of NO and H2O2 research regarding the various mechanisms and functions of these two molecules, particularly regarding stress tolerance and signaling processes, but there are still gaps to be filled. NO and H2O2 are both crucial regulators of development, and act as signaling molecules at each step of the plant lifecycle, while also playing important roles in biotic and abiotic responses to environmental cues. The book summarizes key advances in the field of NO and H2O2 research, focusing on a range of processes including: signaling, metabolism, seed germination, development, sexual reproduction, fruit ripening, and defense.
A comprehensive overview of this genus, Artemisia examines all aspects of the herbs uses and applications, its mode of action and clinical importance. Following a comprehensive introduction to the genus, the book discusses the botanical, phytochemical and biological aspects of a number of important species of Artemisis. Considering that the discovery of artemisinin, a highly active antimalarial agent from the Chinese herb A. annua is of considerable importance, this volume devotes several chapters to the traditional uses, cultivation and phytochemistry of this species and to the development of artemisinin-derived antimalarial agents, their mode of action and clinical use.
Progress in Genetic Engineering of the Pyridine and Propane Alkaloid Biosynthetic Pathways of Solanaceous Plants; R.J. Robins, et al. Molecular Genetic Techniques Applied the Analysis of Enzymes of Alkaloid Biosynthesis; T.M. Kutchan. Polyketide Biosynthesis; W.R. Strohl, R. Plater. The Biologists Palatte; N. Courtney-Gutterson. Engineering Altered Glucosinolate Biosynthesis by Two Alternative Strategies; R.K. Ibrahim, et al. Genetic Manipulation of Lignin and Phenylpropanoid Compounds Involved in Interactions with Microorganisms; R.A. Dixon, et al. The Genetic Origins of Biosynthesis and Light-Responsive Control of the Chemical UV Screen of Land Plants; R. Jorgensen. Genetic Control of Monterpene Biosynthesis in Mints; R. Corteau, J. Gershenzon. Genetic Manipulation of Terpenoid Phytoalexins in Gossypium; A.A. Bell. Analysis of Secondary Metabolism in Arabidopsis; C. Chapple. Polyphenol Oxidase; J.C. Steffens, et al. Genetic Regulation of Lignin Biosynthesis and the Potential Modification of Wood by Genetic Engineering in Loblolly Pine; S. Ronald, et al. Index.
Vetiveria is one of the most versatile genera in plant kingdom. For example, the species Vetiveria zizanoides produces oderous roots from which a precious essential oil is distilled and used in a variety of applications from perfumery to ethnopharmacology. The same roots give the plant particular characteristics that make it a valuable natural barrier against erosion. Vetiveria: The Genus Vetiveria describes the anatomy, physiology, biochemistry, essential oil biogenesis and chemical composition, ethnopharmacology and distillation. The book covers the production of plants for oil exploration, the use of Vetiver as an ecological tool against erosion, flood, soil pollution, and many other applications.
This study of plant anatomy is based on newly available data on the structure and spatial organization of the vascular system of plants. For the first time, by means of a new technique of intracellular moulding, the vascular system can be observed in its length. Many examples are chosen from among the major groups of the plant kingdom to illustrate the vast field of applications of histological moulding: anatomical structures that have so far been little understood or unknown are described and hypotheses relative to the cambial functioning are presented. Following a summary of basic concepts of xylem anatomy, the text is illustrated with many diagrams and photographs of moulds made for the most part with scanning electron microscope. The successive steps of the technical implementation of moulding, are described with precision. The book is addressed not only to scientists and students, but also to professionals concerned with wood, trees, and plants in general.
This book presents a comprehensive overview of plant stresses caused by salt, drought, extreme temperatures, oxygen and toxic compounds, which are responsible for huge losses in crop yields. It discusses the latest research on the impact of salinity and global environment changes, and examines the advances in the identification and characterization of the mechanisms that allow plants to tolerate biotic and abiotic stresses. Further it presents our current understanding of metabolic fluxes and the various transporters that collectively open the possibility of applying in vitro technology and genetic engineering to improve stress tolerance. Exploring advanced methods that augment traditional plant tissue culture and breeding techniques toward the development of new crop varieties that can tolerate biotic and abiotic stresses to achieve sustainable food production, this book is a valuable resource for plant scientists and researchers.
In nature, plants are constantly challenged by various abiotic and biotic stresses that can restrict their growth, development and yields. In the course of their evolution, plants have evolved a variety of sophisticated and efficient mechanisms to sense, respond to, and adapt to changes in the surrounding environment. A common defensive mechanism activated by plants in response to abiotic stress is the production and accumulation of compatible solutes (also called osmolytes). This include amino acids (mainly proline), amines (such as glycinebetaine and polyamines), and sugars (such as trehalose and sugar alcohols), all of which are readily soluble in water and non-toxic at high concentrations. The metabolic pathways involved in the biosynthesis and catabolism of compatible solutes, and the mechanisms that regulate their cellular concentrations and compartmentalization are well characterized in many important plant species. Numerous studies have provided evidence that enhanced accumulation of compatible solutes in plants correlates with increased resistance to abiotic stresses. New insights into the mechanisms associated with osmolyte accumulation in transgenic plants and the responses of plants to exogenous application of osmolyte, will further enhance our understanding of the mechanisms by which compatible solutes help to protect plants from damage due to abiotic stress and the potential roles compatible solutes could play in improving plants growth and development under optimal conditions for growth. Although there has been significant progress made in understanding the multiple roles of compatible solute in abiotic stress tolerance, many aspects associated with compatible solute-mediated abiotic stress responses and stress tolerance still require more research. As well as providing basic up-to-date information on the biosynthesis, compartmentalization and transport of compatible solute in plants, this book will also give insights into the direct or indirect involvement of these key compatible solutes in many important metabolic processes and physiological functions, including their antioxidant and signaling functions, and roles in modulating plant growth, development and abiotic stress tolerance. In this book, Osmoprotectant-mediated abiotic stress tolerance in plants: recent advances and future perspectives, we present a collection of 16 chapters written by leading experts engaged with compatible solute-induced abiotic stress tolerance in plants. The main objective of this volume is to promote the important roles of these compatible solutes in plant biology, by providing an integrated and comprehensive mix of basic and advanced information for students, scholars and scientists interested in, or already engaged in, research involving osmoprotectant. Finally, this book will be a valuable resource for future environmental stress-related research, and can be considered as a textbook for graduate students and as a reference book for front-line researchers working on the relationships between osmoprotectant and abiotic stress responses and tolerance in plants.
This book represents the authors' lifetime dedication to the study of inhibitors and phytohormones as well as its practical applications for achieving a more sustainable agriculture. Their work focuses on the functions of various groups of active molecules, their direct effect upon plant growth, but also implications for their impact upon the surrounding environment are explored. The main idea of the book evolved from the need to determine a balance among natural growth inhibitors and phytohormones. This approach was pursued through a better understanding of their biochemical pathways, their effects on plants physiological functions, and their influence upon stress factors on plant ontogenesis. Therefore, this effort proposes a more holistic approach to the study of plant physiology, in which the plant-soil interactions are discussed, with a profound description of different allelochemicals and their effects on plants growth. A rigorous attention is also paid to discuss the role of microorganisms in ecosystems and their capability to synthesize physiologically active substances, which trigger also unique plant-microbial interactions. These synergies are leading scientists to the discovery of major breakthroughs in agriculture and pharmacology that are revolutionizing old epistemologies and thus, contributing to the emergence of a philosophy of interconnectedness for the whole biosphere.
This book presents a study of meaning relations, linking the philosophical tradition of conceptual analysis with recent theories and methodologies in cognitive semantics. Its main concern is the extent to which analyzing meaning relations between cognate words reveal the infrastructure of the actual and mental lexicon, assuming that language mirrors thought. Sovran aims to elucidate their infrastructure and the metaphorical and perceptual models that constitute abstract concepts, dealing finally with the role of abstraction in poetic metaphors. Overall, this volume addresses major contemporary issues in the philosophy of language and theoretical semantics.
The 12th International Symposium on Plant Lipids was held at the University of Toronto, Canada, from July 7th to 12th, 1996. The conference was attended by over 200 scientists from university, government and corporate laboratories from 24 different countries. The topics covered in the symposium ranged from basic physiology, biochemistry and molecular biology of plant lipids to transformation and genetic engineering of crop plants. Oil seed plants were a particular focus of the symposium. There were 62 oral and 96 posters presentations. A special lecture in memory of the founder of this series of symposium, Terry Galliard, was presented by John Shanklin. This Proceedings Book has been dedicated to Grattan Roughan for his important contributions to our knowledge of plant lipid metabolism. This volume contains manuscripts submitted from most of the presentations at the symposium. It provides a useful summary of the major fields of plant lipid studies and our present state of knowledge. The papers are arranged in eight sections covering the major areas in the field of plant physiology, biochemistry and molecular biology of plant lipids. We would like to thank Valerie Imperial, Rajesh Khetarpal and Mary Williams for their invaluable help in organizing and running the meetings and excursions. John P. Williams, Mobashsher U. Khan and Nora W. Lem Toronto, Canada, October 1996 xvii DEDICATION This volume is dedicated to Grattan Roughan.
Environmental stresses represent the most limiting factors for agricultural productivity worldwide. These stresses impact not only current crop species, they are also significant barriers to the introduction of crop plants into areas that are not currently being used for agriculture. Stresses associated with temperature, salinity and drought, singly or in combination, are likely to enhance the severity of problems to which plants will be exposed in the coming decades. The present book brings together contributions from many laboratories around the world to discuss and compare our current knowledge of the role stress genes play in plant stress tolerance. In addition, strategies are discussed to introduce these genes and the processes that they encode into economically important crops, and the effect this will have on plant productivity.
The mechanisms underlying endurance and adaptation to environmental stress factors in plants have long been the focus of intense research. Plants overcome environmental stresses by development of tolerance, resistance or avoidance mechanisms, adjusting to a gradual change in its environment which allows them to maintain performance across a range of adverse environmental conditions. Plant Acclimation to Environmental Stress presents the latest ideas and trends on induced acclimation of plants to environmental stresses under changing environment. Written by experts around the globe, this volume adds new dimensions in the field of plant acclimation to abiotic stress factors. Comprehensive and lavishly illustrated, Plant Acclimation to Environmental Stress is a state-of-the-art guide suited for scholars and researchers working in the field of crop improvement, genetic engineering and abiotic stress tolerance.
Iron is a major constituent of the earth crust. However, under alkaline conditions commonly found in arid and semi-arid environments iron becomes unavailable to plants. When plants are affected by a shortage of iron their leaves become yellow (chlorotic), and both plant growth and crop yield are reduced. The roots of plants affected by iron deficiency may develop a series of responses directed to improve iron uptake, such as increased proton excretion and iron reduction capabilities or excretion of iron chela tors called siderophores. Iron deficiency affects major crops worldwide, including some of major economic importance such as fruit trees and others. Correction of iron deficiency is usually implemented through costly application of synthetic chelates. Since these correction methods are very expensive, the competitivity of farmers is often reduced and iron deficiency may become a limiting factor for the maintenance, introduction or expansion of some crops. In spite of the many years devoted to the study of iron deficiency, the knowledge of iron deficiency in soils and plants is still fragmentary in many aspects. We have only incomplete information on the processes at the molecular level that make some plant species and cultivars unable to take and utilize iron from the soil, whereas other plants grow satisfactorily under the same conditions.
Diversity within and among living organisms is both a biological impera tive and a biological conundrum. Phenotypic and genotypic diversity is the critical currency ofecological interactions and the evolution of life. Thus, it is not unexpected to find vast phytochemical diversity among plants. However, among the most compelling questions which arise among those interested in ecological phytochemistry is the extent, nature, and reasons for the diversity of chemieals in plants. The idea that natural products (secondary metabolites) are accidents of metabolism and have no biological function is an old one which has resurfaced recently under a new term "redundancy. " Redundancy in the broader sense can be viewed as duplication of effort. The co-occurrence of several classes of phytochemieals in a given plant may be redundancy. Is there unnecessary duplication of chemical defense systems and ifso, why? What selective forces have produced this result? On the other hand, why does the same compound often have multiple functions? At a symposium of the Phytochemical Society of North America held in August 1995, in Sault Ste. Marie, Ontario, Canada, the topic "Phytochernical Redundancy in Ecological Interactions" was discussed. The chapters in this volume are based on that symposium. They both stimulate thought and provide some working hypotheses for future research. It is being increasingly recognized that functional diversity and multiplicity of function of natural products is the norm rather than the exception."
With the demonstration of the "triple response" in plants by Neljubow at the turn of the century, ethylene has been identified as a substance specifically affecting plant growth. Yet it took a few more decades to show that ethylene is a naturally occurring product of plants having all the characteristics of a phytohormone. Ever since much effort has been devoted to a wide variety of physiological and biochemical problems relevant to ethylene. A first meeting was organized in Israel in 1984 to bring together many people active in this rapidly expanding field of experimental research. It is the aim of the present symposium to provide once more a forum at which researchers might expose and comment progress in their work over the last few years. Speakers were invi ted and their contri buti ons ordered ina number of sessions, each of which was centered on a particular topiC. Much of the benefit came from ensuing discussion sessions which were conducted with much competence and expertise by Anderson, Ben-Arie, Goren, Morgan and Osborne. All of these colleagues are recognized leaders in ethylene research today and the organizers owe a very special gratitude to them for their substantial contribution to the programme. It is well to remember the friendly atmosphere, so essential to the success of the whole meeting and so much enjoyed by every partiCipant. Prompt publi ca tion of the papers was made possi ble by the camera-ready procedure offered by the publisher.
Written by an experienced researcher in the field, Phytohormones and Patterning provides the most up-to-date and comprehensive information on the processes involved in the patterning of plant organs and tissues, as well as the role of phytohormones in organ development. It also provides an account of the molecular-genetic bases of plant architecture, with several hundred references included to facilitate easier literature search of this important field.Although plant patterning and plant hormones are very active fields of endeavor, there are limited reviews focussing on specific topics such as root patterning and short apex differentiation. This book, which deals with the subject matter extensively, will provide a much needed comprehensive discussion on the entire scope of plant patterning, and the impact of phytohormones on patterning, which was otherwise missing.Students studying plant development will benefit greatly from the book, as will undergraduates in agricultural studies, and those studying plant genetics and plant breeding. As the book covers a wide range of topics, it will also be useful for researchers who may be interested in possible new fields, and to readers who may not be experts but who are interested to enhance their knowledge of plant development.
The chapters presented in Secondary Metabolism in Model Systems are
a microcosm of what the recent completion, or near completion, of
various genome projects are enabling biochemists to understand not
only about control and regulation of secondary metabolism, and how
various pathways relate to each other, but also about its relation
to primary metabolism. A major paradigm shift is occurring in the
way researchers need to view "secondary" metabolism in the
future.It is also clear that model systems, such as the ones
discussed in the symposium, are providing new information and
insight almost faster than researchers can process it . An excellent series volume covering the advances in
understanding of gene functions, a high profile area of research
due to recent genome projects
Human activity is producing changes to our environment on an unprecedented global scale. Learning and understanding how plants respond to these changes will be crucial to our ability to feed human populations in the future. This book gives a broad coverage of the ways in which plants respond and adjust to environmental variables, and identifies unifying concepts spanning different levels of plant organization from the subcellular to the whole natural plant community. The 18 chapters were given as invited contributions at a meeting sponsored by the Rank Prize Funds in October 1992. The book will be of great interest and use to all plant scientists and upper level students concerned with the impact of the environment on plants.
Science is essentially a descriptive and experimental device. It observes nature, constructs hypotheses, plans experiments and proposes theories. The theory is never contemplated as the 'final truth', but remains ever subject to modifications, changes and rejections. The science of allelopathy in a similar way has emerged, and exists on a similar footing; our endeavour should be to keep it fresh and innovative with addition of newer in formation and concepts with the rejection of older ideas and antiquated techniques. During the past few decades encouraging results have been obtained in various aspects of allelopathic researches. However, in addition to continuing efforts in all these directions, constant attempts are to be made to describe the mechanics of allelopathic activity in molecular terms and to discover ways and means to exploit it for the welfare of mankind. We feel that multidisciplinary efforts are the only tool to achieve this goal. It is the hope of the editors that this book will serve as a document which identifies an integrated approach, through which research both to understand and exploit allelopathy can be conducted. The present volume arose out of an attempt to bring together eminent scientists in allelopathy to describe their work, of a highly diverse nature, under one title."
This book summarizes the experimental work conducted during a trans-disciplinary research program conducted for six years by the German Research Foundation. Each chapter includes introductory remarks written by internationally recognized scientists in their research areas. Contributiing authors representing outstanding German scientists from such different disciplines as Physics, Biochemistry, Plant Nutrition, Botany, and Molecular Biology not only report original research but also review the state of knowledge in their fields of research.
The majority of the world's people depend research work should be carried out at the local and regional level by locally trained on plants for their livelihood since they grow them for food, fuel, timber, fodder and people. many other uses. A good understanding Following the success of our earlier book of the practical factors which govern the (Techniques in Bioproductivity and Photo synthesis; Pergamon Press, 1985), which productivity of plants through the process of photosynthesis is therefore of paramount was translated into four major languages, importance, especially in the light of cur the editors and contributors have exten rent concern about global climate change sively revised the content and widened the and the response of both crops and natural scope of the text, . so it now bears a title ecosystems. in line with current concern over global The origins of this book lie in a series of climate change. . In particular, we have training courses sponsored by the United added chapters on remote sensing, con Nations Environment Programme (Project trolled-environment studies, chlorophyll No. FP/6108-88-0l (2855); 'Environment fluorescence, metabolite partitioning and changes and the productivity of tropical the use of mass isotopes, all of which grasslands'), with additional support from techniques are increasing in their applica many international and national agencies. tion and importance to this subject area." |
![]() ![]() You may like...
|