![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Biology, life sciences > Botany & plant sciences > Plant physiology
Rice is one of the most important foods in the world. As the demand for rice continues to increase, there is an urgent need to increase yields in the face of such challenges as climate change, threats from pests and diseases and the need to make cultivation more resource-efficient and sustainable. Drawing on an international range of expertise, this collection focuses on ways of improving the cultivation of rice at each step in the value chain, from breeding to post-harvest storage. Volume 1 reviews research in physiology and breeding and its application to produce varieties with improved traits such as higher yields. It then goes on to discuss nutritional and other aspects of rice quality and the ways these can be enhanced. Achieving sustainable cultivation of rice Volume 1: Breeding for higher quality and yield will be a standard reference for rice scientists in universities, government and other research centres and companies involved in rice cultivation. It is accompanied by Volume 2 which reviews improvements in cultivation techniques, pest and disease management.
Environmental stresses represent the most limiting factors for agricultural productivity worldwide. These stresses impact not only current crop species, they are also significant barriers to the introduction of crop plants into areas that are not currently being used for agriculture. Stresses associated with temperature, salinity and drought, singly or in combination, are likely to enhance the severity of problems to which plants will be exposed in the coming decades. The present book brings together contributions from many laboratories around the world to discuss and compare our current knowledge of the role stress genes play in plant stress tolerance. In addition, strategies are discussed to introduce these genes and the processes that they encode into economically important crops, and the effect this will have on plant productivity.
The mechanisms underlying endurance and adaptation to environmental stress factors in plants have long been the focus of intense research. Plants overcome environmental stresses by development of tolerance, resistance or avoidance mechanisms, adjusting to a gradual change in its environment which allows them to maintain performance across a range of adverse environmental conditions. Plant Acclimation to Environmental Stress presents the latest ideas and trends on induced acclimation of plants to environmental stresses under changing environment. Written by experts around the globe, this volume adds new dimensions in the field of plant acclimation to abiotic stress factors. Comprehensive and lavishly illustrated, Plant Acclimation to Environmental Stress is a state-of-the-art guide suited for scholars and researchers working in the field of crop improvement, genetic engineering and abiotic stress tolerance.
Iron is a major constituent of the earth crust. However, under alkaline conditions commonly found in arid and semi-arid environments iron becomes unavailable to plants. When plants are affected by a shortage of iron their leaves become yellow (chlorotic), and both plant growth and crop yield are reduced. The roots of plants affected by iron deficiency may develop a series of responses directed to improve iron uptake, such as increased proton excretion and iron reduction capabilities or excretion of iron chela tors called siderophores. Iron deficiency affects major crops worldwide, including some of major economic importance such as fruit trees and others. Correction of iron deficiency is usually implemented through costly application of synthetic chelates. Since these correction methods are very expensive, the competitivity of farmers is often reduced and iron deficiency may become a limiting factor for the maintenance, introduction or expansion of some crops. In spite of the many years devoted to the study of iron deficiency, the knowledge of iron deficiency in soils and plants is still fragmentary in many aspects. We have only incomplete information on the processes at the molecular level that make some plant species and cultivars unable to take and utilize iron from the soil, whereas other plants grow satisfactorily under the same conditions.
Diversity within and among living organisms is both a biological impera tive and a biological conundrum. Phenotypic and genotypic diversity is the critical currency ofecological interactions and the evolution of life. Thus, it is not unexpected to find vast phytochemical diversity among plants. However, among the most compelling questions which arise among those interested in ecological phytochemistry is the extent, nature, and reasons for the diversity of chemieals in plants. The idea that natural products (secondary metabolites) are accidents of metabolism and have no biological function is an old one which has resurfaced recently under a new term "redundancy. " Redundancy in the broader sense can be viewed as duplication of effort. The co-occurrence of several classes of phytochemieals in a given plant may be redundancy. Is there unnecessary duplication of chemical defense systems and ifso, why? What selective forces have produced this result? On the other hand, why does the same compound often have multiple functions? At a symposium of the Phytochemical Society of North America held in August 1995, in Sault Ste. Marie, Ontario, Canada, the topic "Phytochernical Redundancy in Ecological Interactions" was discussed. The chapters in this volume are based on that symposium. They both stimulate thought and provide some working hypotheses for future research. It is being increasingly recognized that functional diversity and multiplicity of function of natural products is the norm rather than the exception."
This edited book covers all aspects of omics approaches used for the varietal improvement of millets in changing climatic conditions. Millets are the collection of small-grained cereal grasses, that are grown for human carbohydrate needs. They are among the oldest crops, mainly divided into two groups - Major and small millets based on seed size. Small millets are earlier considered orphan crops, but recently due to their nutritional values, they are getting importance in cultivation. This book explores the genomics, transcriptomics, proteomics, metabolomics, bioinformatics, and other omics tools that are being widely used to get a clear understanding of mechanistic approaches taken by plant genes to tolerate stress. Various reports are published based on field breeding on these crops, and recently the genome of some of the small millets is released, and many omics studies are published related to its application in varietal improvements. This book reviewed all those recent studies and is of interest to research students, plant breeding scientists, teachers that are working in agriculture and plant biotech universities. Along with this, the book serves as reference material for undergraduate and graduate students of agriculture, and biotechnology. National and international agricultural scientists, policymakers will also find this to be a useful read.
With the demonstration of the "triple response" in plants by Neljubow at the turn of the century, ethylene has been identified as a substance specifically affecting plant growth. Yet it took a few more decades to show that ethylene is a naturally occurring product of plants having all the characteristics of a phytohormone. Ever since much effort has been devoted to a wide variety of physiological and biochemical problems relevant to ethylene. A first meeting was organized in Israel in 1984 to bring together many people active in this rapidly expanding field of experimental research. It is the aim of the present symposium to provide once more a forum at which researchers might expose and comment progress in their work over the last few years. Speakers were invi ted and their contri buti ons ordered ina number of sessions, each of which was centered on a particular topiC. Much of the benefit came from ensuing discussion sessions which were conducted with much competence and expertise by Anderson, Ben-Arie, Goren, Morgan and Osborne. All of these colleagues are recognized leaders in ethylene research today and the organizers owe a very special gratitude to them for their substantial contribution to the programme. It is well to remember the friendly atmosphere, so essential to the success of the whole meeting and so much enjoyed by every partiCipant. Prompt publi ca tion of the papers was made possi ble by the camera-ready procedure offered by the publisher.
Human activity is producing changes to our environment on an unprecedented global scale. Learning and understanding how plants respond to these changes will be crucial to our ability to feed human populations in the future. This book gives a broad coverage of the ways in which plants respond and adjust to environmental variables, and identifies unifying concepts spanning different levels of plant organization from the subcellular to the whole natural plant community. The 18 chapters were given as invited contributions at a meeting sponsored by the Rank Prize Funds in October 1992. The book will be of great interest and use to all plant scientists and upper level students concerned with the impact of the environment on plants.
The chapters presented in Secondary Metabolism in Model Systems are
a microcosm of what the recent completion, or near completion, of
various genome projects are enabling biochemists to understand not
only about control and regulation of secondary metabolism, and how
various pathways relate to each other, but also about its relation
to primary metabolism. A major paradigm shift is occurring in the
way researchers need to view "secondary" metabolism in the
future.It is also clear that model systems, such as the ones
discussed in the symposium, are providing new information and
insight almost faster than researchers can process it . An excellent series volume covering the advances in
understanding of gene functions, a high profile area of research
due to recent genome projects
Science is essentially a descriptive and experimental device. It observes nature, constructs hypotheses, plans experiments and proposes theories. The theory is never contemplated as the 'final truth', but remains ever subject to modifications, changes and rejections. The science of allelopathy in a similar way has emerged, and exists on a similar footing; our endeavour should be to keep it fresh and innovative with addition of newer in formation and concepts with the rejection of older ideas and antiquated techniques. During the past few decades encouraging results have been obtained in various aspects of allelopathic researches. However, in addition to continuing efforts in all these directions, constant attempts are to be made to describe the mechanics of allelopathic activity in molecular terms and to discover ways and means to exploit it for the welfare of mankind. We feel that multidisciplinary efforts are the only tool to achieve this goal. It is the hope of the editors that this book will serve as a document which identifies an integrated approach, through which research both to understand and exploit allelopathy can be conducted. The present volume arose out of an attempt to bring together eminent scientists in allelopathy to describe their work, of a highly diverse nature, under one title."
This book summarizes the experimental work conducted during a trans-disciplinary research program conducted for six years by the German Research Foundation. Each chapter includes introductory remarks written by internationally recognized scientists in their research areas. Contributiing authors representing outstanding German scientists from such different disciplines as Physics, Biochemistry, Plant Nutrition, Botany, and Molecular Biology not only report original research but also review the state of knowledge in their fields of research.
The majority of the world's people depend research work should be carried out at the local and regional level by locally trained on plants for their livelihood since they grow them for food, fuel, timber, fodder and people. many other uses. A good understanding Following the success of our earlier book of the practical factors which govern the (Techniques in Bioproductivity and Photo synthesis; Pergamon Press, 1985), which productivity of plants through the process of photosynthesis is therefore of paramount was translated into four major languages, importance, especially in the light of cur the editors and contributors have exten rent concern about global climate change sively revised the content and widened the and the response of both crops and natural scope of the text, . so it now bears a title ecosystems. in line with current concern over global The origins of this book lie in a series of climate change. . In particular, we have training courses sponsored by the United added chapters on remote sensing, con Nations Environment Programme (Project trolled-environment studies, chlorophyll No. FP/6108-88-0l (2855); 'Environment fluorescence, metabolite partitioning and changes and the productivity of tropical the use of mass isotopes, all of which grasslands'), with additional support from techniques are increasing in their applica many international and national agencies. tion and importance to this subject area."
which individuals are heterozygous (H). A review by Selander (1976] comparing these param eters in various populations has been followed by many other studies. In the present volume, J. B. Mitton has used H to evaluate the importance of heterozygosity in natural populations. The degree of polymorphism expressed by P, has been used in several contributions to approach various problems of population genetics. particularly breeding structure and mating systems by Hamrick, Barrett and Shore, Brown, Burdon and Jarosz. as well as Soltis and Soltis, and Wyatt. Stoneburner. and Odrzykoski. New knowledge derived from these investigations has strengthened a point of view already stressed by Darwin: evolution takes place in a complex environment, that can be constantly changing over long periods of time. or can alternate between long periods of relative stability and cycles of rapid change. The most successful plant species become adjusted to these vagaries in several ways, including shifts in heterozygosity. polymorphism and mating systems. The strength of isozyme ana ysis for testing hypotheses is well illustrated by the contribution of the Soltises, who have shown clearly that a previously held hypothesis, predicting self fertilization fortified by polyploid genetic segregations in ferns, must be rejected."
Plant improvement has shifted its focus from yield, quality and disease resistance to factors that will enhance commercial export, such as early maturity, shelf life and better processing quality. Conventional plant breeding methods aiming at the improvement of a self-pollinating crop usually take 10-12 years to develop and release of the new variety. During the past 10 years, significant advances have been made and accelerated methods have been developed for precision breeding and early release of crop varieties. This book focuses on the accelerated breeding technologies that have been adopted for major oil crops. It summarizes concepts dealing with germplasm enhancement and development of improved varieties based on innovative methodologies that include doubled haploidy, marker assisted selection, marker assisted background selection, genetic mapping, genomic selection, high-throughput genotyping, high-throughput phenotyping, mutation breeding, reverse breeding, transgenic breeding, shuttle breeding, speed breeding, low cost high-throughput field phenotyping, etc. This edited volume is therefore an excellent reference on accelerated development of improved crop varieties.
This book provides a comprehensive and systematic overview of the recent developments in cotton production and processing, including a number of genetic approaches, such as GM cotton for pest resistance, which have been hotly debated in recent decades. In the era of climate change, cotton is facing diverse abiotic stresses such as salinity, drought, toxic metals and environmental pollutants. As such, scientists are developing stress-tolerant cultivars using agronomic, genetic and molecular approaches. Gathering papers on these developments, this timely book is a valuable resource for a wide audience, including plant scientists, agronomists, soil scientists, botanists, environmental scientists and extention workers.
The threat of climate displacement looms large over a growing number of countries. Based on the more than six years of work by Displacement Solutions in ten climate-affected countries, academic work on displacement and climate adaptation, and the country-level efforts of civil society groups in several frontline countries, this report explores the key contention that land will be at the core of any major strategy aimed at preventing and resolving climate displacement. This innovative and timely volume coordinated and edited by the Founder of Displacement Solutions, Scott Leckie, examines a range of legal, policy and practical issues relating to the role of land in actively addressing the displacement consequences of climate change. It reveals the inevitable truth that climate displacement is already underway and being tackled in countries such as Bangladesh, Kiribati, Papua New Guinea, Solomon Islands, Tuvalu and the United States, and proposes a series of possible land solution tools that can be employed to protect the rights of people and communities everywhere should they be forced to flee the places they call home.
This book presents a study of meaning relations, linking the philosophical tradition of conceptual analysis with recent theories and methodologies in cognitive semantics. Its main concern is the extent to which analyzing meaning relations between cognate words reveal the infrastructure of the actual and mental lexicon, assuming that language mirrors thought. Sovran aims to elucidate their infrastructure and the metaphorical and perceptual models that constitute abstract concepts, dealing finally with the role of abstraction in poetic metaphors. Overall, this volume addresses major contemporary issues in the philosophy of language and theoretical semantics.
The Boron '97 meeting was a great success in summarising all recent developments in basic and applied research on boron's function, especially in plants. New techniques have since been developed and new insight has been gained into the role of boron in plant and animal metabolism. Nevertheless, there were still lots of open questions. The aim of the present workshop held in Bonn as a satellite meeting to the International Plant Nutrition Colloquium was thus to gather all actual information which has been gained since the Boron '97 meeting and to compile knowledge, both from animal and plant sciences. Furthermore, applied aspects had to be addressed too, as there is an increasing awareness of boron deficiencies even in crops such as wheat, which have formerly not been considered as responsive to boron application. Genetic differences in boron demand and efficiency within one species are a further important topic which has gained importance since the 1997 meeting. More in-depth knowledge on the mechanisms of boron efficiency are required as an increased efficiency will be one major possibility to maintain and improve crop yields for resource-poor farmers. Nevertheless, it has also clearly been shown that an adequate supply of boron is needed to obtain high yields of crops with a high quality, and that a sustainable agriculture has to provide an adequate boron supply to compensate for inevitable losses through leaching (especially in the humid tropics and temperate regions) and for the boron removal by the crop.
This title includes a number of Open Access chapters. The field of plant physiology includes the study of all chemical and physical processes of plants, from the molecular-level interactions of photosynthesis and the diffusion of water, minerals, and nutrients within the plant, to the larger-scale processes of plant growth, dormancy and reproduction. This new book covers a broad array of topics within the field. Plant Physiology focuses on the study of the internal activities of plants, including research into the molecular interactions of photosynthesis and the internal diffusion of water, minerals, and nutrients. Also included are investigations into the processes of plant development, seasonality, dormancy, and reproductive control. The chapters focus on various aspects of plant physiology, including phytochemistry; interactions within a plant between cells, issues, and organs; ways in which plants regulate their internal functions; and how plants respond to conditions and variations within the environment. Given the environmental crises brought about by pollution and climate change, this is a particularly vital area of study, since stress from water loss, changes in air chemistry, or crowding by other plants can lead to changes in the way a plant function. Readers of this book will gain the information they need to stay current with the latest research being done in this essential field of study.
In the modern world, to meet increasing energy demands we need to develop new technologies allowing us to use eco-friendly carbon-neutral energy sources. Solar energy as the most promising renewable source could be the way to solve that problem, but it is variable depending on day time and season. From this side, the understanding of photosynthesis process could be of significant help for us to develop effective strategies of solar energy capturing, conversion, and storage. Plants, algae, and cyanobacteria perform photosynthesis, annually producing around 100 billion tons of dry biomass. Presently, the detailed studies of photosynthetic system structure make functional investigations of the photosynthetic process available, allowing scientists to construct artificial systems for solar energy transduction. This book summarizes exciting achievements in understanding of photosynthetic structures and mechanisms of this process made by world leaders in photosynthesis field, and contains information about modern ideas in development of revolutionary new technologies of energy conversion. Organized according to the natural sequence of events occurring during photosynthesis, the book includes information of both photosynthetic structures and mechanisms and its applications in bioenergetics issues.
From the reviews of the 3rd edition: "The textbook of Walter Larcher (...) belongs certainly to the most successful manuals that ever existed." (Photosynthetica, Czech Republic)"(...) it continues to be one of the major texts in the field of ecophysiology."(Plant Growth Regulation, The Netherlands) "This book is really a must reading for those interested in sustainable forestry." (Journal of Sustainable Forestry, USA)"The book, (...), should be on the shelf of any scientist, teacher, or student seeking an introduction to the field of plant ecophysiology that is also an excellent reference." (The Quarterly Review of Biology, USA)
"Advances in Botanical Research" publishes in-depth and up-to-date
reviews on a wide range of topics in plant sciences. The series
features a wide range of reviews by recognized experts on all
aspects of plant genetics, biochemistry, cell biology, molecular
biology, physiology and ecology. Thisthematic volume features
reviews on cutting-edge topics on BIOSYNTHESIS OF VITAMINS IN
PLANTS. Covers cutting-edge topics on BIOSYNTHESIS OF VITAMINS IN PLANTS Each chapter covers biological functions and requirements, distribution, Biosynthesis and location of the pathway, regulation, turnover and catabolism, Main differences with other autotrophic organisms, and engineering the pathway for nutritional enhancement."
Provides the latest information on nearly all of the phytoalexins of crop plants studied worldwide over the past 50 years-describing experimental approaches to the research of specific plants and offering detailed explanations on methods of isolation and characterization. Supplies in-depth coverage of cotton, soybean, groundnut, citrus, mustard, grapevine, potato, pepper, sweet potato, yam, sesame, tea, tobacco, pea, pigeon pea, and many more.
Orchid Biotechnology II presents a series of recent works on both basic and applied researches in biotechnology progress for Phalaenopsis and Oncidium orchids. These include the development of flower, ovule, gynostemium and perianth, the discovery of new orchid-infecting viruses and virus movement, secondary metabolites, technology of DNA endoduplication and genetic transformation, growth regulation by micronutrition and orchid mycorrhiza, and plant growth substances for flowering. The diversity and specialization in orchid floral morphology have fascinated botanists and collectors for centuries. The orchid industry has been growing substantially in the past ten years worldwide. This book focuses on the recent advances in the research of orchid biotechnology from the past ten years in Taiwan. To advance the orchid industry, enhancement of basic research as well as advanced biotechnology will provide a good platform to improve flower quality and breeding of new varieties.
This third book in the three-volume Plant Secondary Metabolites examines the relationship between environmental stress and the physiology of plants, leading to stimulation of secondary metabolites. Various stressors are discussed, including plant and soil interfaces, changing climate elements, essential plant nutrients, pest insects, plant pathogens and microrganisms, and more. The chapters, written by experienced experts, also address the diverse utilization of plant-originated secondary metabolites and more. |
![]() ![]() You may like...
Phytohormones: A Window to Metabolism…
Lam-Son Phan Tran, Sikander Pal
Hardcover
Physiological Mechanisms and Adaptation…
Parvaiz Ahmad, Mohd Rafiq Wani
Hardcover
Plant Life under Changing Environment…
Durgesh Kumar Tripathi, Vijay Pratap Pratap Singh, …
Paperback
R7,236
Discovery Miles 72 360
Toxicity of Nanoparticles in Plants - An…
Vishnu D. Rajput, Tatiana Minkina, …
Paperback
R4,069
Discovery Miles 40 690
Plant Stress Physiology - Perspectives…
Mirza Hasanuzzaman, Kamran Nahar
Hardcover
R3,415
Discovery Miles 34 150
Metal and Nutrient Transporters in…
Aryadeep Roychoudhury, Durgesh Kunar Kumar Tripathi, …
Paperback
R3,922
Discovery Miles 39 220
|