![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Biology, life sciences > Botany & plant sciences > Plant reproduction & propagation
To cope with the increasing problems created by agrochemicals such as plant fertilizers, pesticides and other plant protection agents, biological alternatives have been developed over the past years. These include biopesticides, such as bacteria for the control of plant diseases, and biofertilizer to improve crop productivity and quality. Especially plant growth promoting rhizobacteria (PGPR) are as effective as pure chemicals in terms of plant growth enhancement and disease control, in addition to their ability to manage abiotic and other stresses in plants. The various facets of these groups of bacteria are treated in this Microbiology Monograph, with emphasis on their emergence in agriculture. Further topics are Bacillus species that excrete peptides and lipopeptides with antifungal, antibacterial and surfactant activity, plant-bacteria-environment interactions, mineral-nutrient exchange, nitrogen assimilation, biofilm formation and cold-tolerant microorganisms.
This edited book brings together comprehensive information on various aspects of the biofortification of staple crops. It addresses the present status of food and nutritional security and highlights the importance of micronutrients in human health, a historical account of biofortification, current approaches and challenges, crop-specific biofortification efforts and various breeding approaches, including conventional, and genomics enabled improvement. It also explains the efficacy of biofortification, bioavailability, and future thrust. It is an inclusive source of information on different aspects of micronutrients in crops of global importance. Malnutrition is a serious global issue, with millions of people being undernourished, several suffering from micronutrient deficiencies, and the adult population struggling with obesity. Despite significant economic progress, South Asia and Sub-Saharan Africa are still home to an undernourished population. Nutrition-related health problems are related to hidden hunger and are widespread in the developing world. Women and preschool children are more vulnerable. Even though global food production has increased manifolds, estimates indicate that over 60% of the world's population is deficient in essential micronutrients such as iron, zinc, iodine, and selenium, often causing health problems and developmental delays. Linking agricultural production with human nutrition and health is crucial for ensuring nutrition security. Much research has been carried out to assess genetic diversity related to micro-nutrients in staple crops, their bioavailability, and the efficacy of biofortified germplasm. Biofortified varieties developed in different crops through conventional breeding are being up-scaled for reducing the micronutrient deficiencies in other countries. This book is a ready reference for researchers, academicians, extension personnel, policymakers, students, and value chain stakeholders engaged in agriculture, nutrition, and health sectors promoting nutrition-sensitive diets.
Plant secondary metabolites are plant-based natural products that display a variety of pharmacological effects. This book discusses the invaluable bioactivity and multifaceted potential of these compounds. The book describes the physico-chemical and biochemical aspects of the plant secondary metabolites along with the chemistry, therapeutics and future perspectives of these plant secondary metabolites. Moreover, the book also discusses about various sources of plant secondary metabolites, and the metabolite determination through various analytical techniques. It further describes the potential applications of plant secondary metabolites as anticancer and chemo preventive agents, their role as cosmetic ingredients and activity in skin cancer therapy. Further chapters emphasize upon the plethora of roles of plant secondary metabolites, including those as antivirals, anti-bacterial, anti-inflammatory drugs, cardioprotective agents etc. The book culminates with chapters on the impact of certain plant secondary metabolites in plant defence and human healthcare. This book is meant for researchers and students in the field of pharmacology and plant sciences. Moreover, this book is also useful for industry experts especially working in the field of herbal therapeutics.
This volume highlights natural products, molecular methods for identifying, and current trends in designing non-natural natural products. Chapters guide readers through protocols on heterologous expression techniques, gene disruption, modified pathway regulators, and in-vitro studies. Written in the format of the highly successful Methods in Molecular Biology series, each chapter includes an introduction to the topic, lists necessary materials and reagents, includes tips on troubleshooting and known pitfalls, and step-by-step, readily reproducible protocols. Authoritative and cutting-edge, Engineering Natural Product Biosynthesis: Methods and Protocols aims to be a useful and practical guide to new researchers and experts looking to expand their knowledge. Chapter 13 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
This book celebrates the dawn of the rye genomics era with concise, comprehensive, and accessible reviews on the current state of rye genomic research, written by experts in the field for students, researchers and growers. To most, rye is the key ingredient in a flavoursome bread or their favourite American whisky. To a farmer, rye is the remarkable grain that tolerates the harshest winters and the most unforgiving soils, befitting its legacy as the life-giving seed that fed the ancient civilisations of northern Eurasia. Since the mid-1900s, scientists have employed genetic approaches to better understand and utilize rye, but only since the technological advances of the mid-2010s has the possibility of addressing questions using rye genome assemblies become a reality. Alongside the secret of its unique survival abilities, rye genomics has accelerated research on a host of intriguing topics such as the complex history of rye's domestication by humans, the nature of genes that switch fertility on and off, the function and origin of accessory chromosomes, and the evolution of selfish DNA.
Here, the author has compiled data on about 550 oil-bearing plant species with respect to their content of unsaponifiable matters and oils. This unique information resource offers important information for research and development of food products such as neutraceuticals as well as cosmetics. Unsaponifiable matters have varying effects: Conservation and stability (e.g. lignans, tocopherols, tocotrienols), anti-inflammatory properties (triterpene alcohols), cholesterol-lowering (sterols), well tolerated occlusive effect on the skin (squalene). Information is provided in a clear and systematic fashion, including data on relevant chemical families and pertinent chemical structures. Also included is a thesaurus of English, Latin and French plant species names as well as 655 references to the scientific literature.
This textbook contains the material for a course in the major principles of modelling crop growth processes. There is much more to crop growth than what is discussed in this textbook, but it provides a sound basis for further work and study in this field. Chapter by chapter the book leads the reader to different modelled aspects of crop growth, and at the end, the reader will have a good understanding of the Wageningen simulation model SUCROS for the potential production situation. By then, it will be much easier to find one's way through descriptions and listings of other models. Throughout the text, the study of the different topics is facilitated by exercises that support the course in a hands-on computer practical exercise. A very simple crop growth model, almost entirely based on radiation interception, is given first. This skeleton model is then expanded by submodels for respiration, carbon assimilation, plant development, and a more detailed model for radiation interception and reflection. Modelling of transpiration and the leaf energy balance is given by way of introduction. There are many listings of the submodels, written in the simulation language FST (FORTRAN Simulation Translator), as well as of SUCROS itself, together with plentiful comments. Some supporting theory is provided in the form of Appendices. The book is meant for students and scientists who would like to acquire a working knowledge of the technique of crop growth modelling.
To be published in 30 volumes,Flora of North America represents the first and only comprehensive taxonomic guide to the extraordinary diversity of plant life blanketing our continent north of Mexico. The collaborative effort of more than 30 major U.S. and Canadian botanical institutions, this ground-breaking scholarly series revises and synthesizes literally thousands of floristic monographs and regional floras published over the last three centuries. family, Rosaceae. Flora of North America Volume 9 includes four families - Picramniaceae (bitter-bush family), Staphyleaceae (bladdernut family), Crossosomataceae (crossosoma family), and Rosaceae (rose family). This volume contains treatments of nearly 700 species with over 98% of them being species of Rosaceae. Every genus has representative taxa illustrated to aid in plant identification and to demonstrate the morphological variation that exists for these families in North America.by Many economically important plants with edible fruits are members of the Rosaceae, with both native and introducede species known and consumed by people: apples, pears,clature, peaches, almonds, apricots, plums, cherries, strawberries,e blackberries, and raspberries are probably the most commonly utilized. Other members of the Rosaceae, many of greatare horticultural interest worldwide, are also noteworthy in the North American flora, including roses, hawthorns,h keys to cinquefoils, firethorns, quinces, chokecherries, shadbushes, mountain ashes, and loquats. Concise, easy to use, and beautifully bound and illustrated, Flora of North America is an indispensable working resource for botanists, conservationists, ecologists, agronomists,now foresters, range and land managers, horticulturists - anyone with a series interest in the distribution, habitat, morphology, and survival of the wide-ranging plant life around us.
Ferns are representative of genetic inheritance of great value as they include species of ancient vascular plants, which have direct connection with the evolution of plant life on Earth. This volume brings a selection of chapters covering a range of themes on fern biology, its development and growth, useful protocols for propagation and conservation purposes, genetic diversity, as well as medicinal and environmental applications. The content is organized into four parts: Biotechnology of Ferns Propagation of Ferns Ferns in Medicines Environmental Regulation This wide spectrum of the contributions provides quick access to information on the enormous potential of this plant group. This book brings together most recent research work and novel techniques, which is far from the traditional perspective usually followed. It is of interest to teachers, researchers, and botanists. Also the book serves as additional reading material for undergraduate and graduate students of agriculture, botany, forestry, and ecology.
This book focuses on the importance and roles of seed microbiomes in sustainable agriculture by exploring the diversity of microbes vectored on and within seeds of both cultivated and non-cultivated plants. It provides essential insights into how seeds can be adapted to enhance microbiome vectoring, how damaged seed microbiomes can be assembled again and how seed microbiomes can be conserved. Plant seeds carry not only embryos and nutrients to fuel early seedling growth, but also microbes that modulate development, soil nutrient acquisition, and defense against pathogens and other stressors. Many of these microbes (bacteria and fungi) become endophytic, entering into the tissues of plants, and typically exist within plants without inducing negative effects. Although they have been reported in all plants examined to date, the extent to which plants rely on seed vectored microbiomes to enhance seedling competitiveness and survival is largely unappreciated. How microbes function to increase the fitness of seedlings is also little understood. The book is a unique and important resource for researchers and students in microbial ecology and biotechnology. Further, it appeals to applied academic and industrial agriculturists interested in increasing crop health and yield.
Selenium plays a significant role in preventing certain types of cancer and cardiovascular diseases. The level of Selenium in the human body depends on its concentration in food. In turn, the content in vegetable crops is a function of the soil-plant system. There are many countries in the world with low Selenium content in the soil. The average daily human intake is thus limited through food chain. Analysis of Selenium status suggests that fortification of the soil substrate with Sodium Selenate, and foliar application to agricultural crops are both effective means of Selenium enrichment. Our intention for this publication is to present the possibilities of augmenting Selenium content by biofortification of soils and plants through differentiated nutrition. In the first part of the monograph, the results of Selenium supplementation in model vegetation experiments are presented. The next part of the monograph presents the results of foliar supplementation of Selenium in field conditions. This book is an outstanding reference source for plant breeders and researchers engaged in biofortification of horticulture crops. It is also beneficial to agricultural companies and other stakeholders.
This textbook is clearly structured with fourteen richly illustrated chapters and practical examples for easy understanding and direct implementation. The methods and findings developed in the authors' group are presented in detailed, revised chapters. Readers will find valuable updates on the molecular basis of biotechnological processes, secondary metabolite production and genetic engineering. In addition, the basic principles of important biotechnologies, as well as examples of specially designed crops that deliver improved productivity under stress conditions, are presented. This second edition sets the direction for future research on the basic aspects of plant tissue culture and its applications in the fields of secondary metabolite production and genetic engineering. It provides both general and specific information for students, teachers, academic researchers and industrial teams who are interested in new developments in plant tissue culture and its applications.
This is the third annual compendium of a Technical Session of the Physiology Working Group of the Society of American Foresters held at the National Convention. Specialists in a dedicated area of tree physiology were invited to prepare chapter contributions synthesizing the status of knowledge in their area of expertise. Plant growth regulators (PGRs) was selected as the topic for in-depth examination at the 1986 Technical Session because a knowledge of how these "secondary messengers" regulate tree morphogenesis is vital to applications of biocontrol and biotechnology. Plant growth regulators have been the subject of numerous reviews in recent years. However, few have dealt specifically with woody perennials, and they are generally confined to single processes and/or organs. This volume attempts to provide a more comprehensive treatise of PGRs as they influence various ontogenetic events in forest trees. Reproductive physiology, both sexual and asexual, is emphasized because of its relevance to current efforts directed at increasing efficiency in the breeding and production of genetically improved trees for reforestation. The chapters on vegetative growth will be of interest to silviculturists and urban foresters as they consider cultural treatments in the management of forests and individual trees for specific products and purposes. This book should serve as a valuable text and source of reference for students, researchers and other professionals interested in gaining a better understanding of PGRs. The reader, however, who expects definitive answers to how PGRs function or can be used to control specific processes is likely to be disappointed.
Plant improvement has shifted its focus from yield, quality and disease resistance to factors that will enhance commercial export, such as early maturity, shelf life and better processing quality. Conventional plant breeding methods aiming at the improvement of a self-pollinating crop, such as wheat, usually take 10-12 years to develop and release of the new variety. During the past 10 years, significant advances have been made and accelerated methods have been developed for precision breeding and early release of crop varieties. This edited volume summarizes concepts dealing with germplasm enhancement and development of improved varieties based on innovative methodologies that include doubled haploidy, marker assisted selection, marker assisted background selection, genetic mapping, genomic selection, high-throughput genotyping, high-throughput phenotyping, mutation breeding, reverse breeding, transgenic breeding, shuttle breeding, speed breeding, low cost high-throughput field phenotyping, etc. It is an important reference with special focus on accelerated development of improved crop varieties.
Blast is an important foliar disease that infects the majority of cereal crops like rice, finger millet, pearl millet, foxtail millet and wheat, and thus resulting in a huge economic impact. The pathogen is responsible for causing epidemics in many crops and commonly shifts to new hosts. Magnaporthe spp. is the most prominent cause of blast disease on a broad host range of grasses including rice as well as other species of poaceae family. To date, 137 members of Poaceae hosting this fungus have been described in Fungal Databases. This book provides information on all blast diseases of different cereal crops. The pathogen evolves quickly due to its high variability, and thus can quickly adapt to new cultivars and cause an epidemic in a given crop. Some of the topics covered here include historical perspectives, pathogen evolution, host range shift, cross-infectivity, and pathogen isolation, use of chemicals fungicides, genetics and genomics, and management of blast disease in different cereal crops with adoption of suitable methodologies.In the past two decades there have been significant developments in genomics and proteomics approaches and there has been substantial and rapid progress in the cloning and mapping of R genes for blast resistance, as well as in comparative genomics analysis for resolving delineation of Magnaporthe species that infect both cereals and grass species. Blast disease resistance follows a typical gene-for-gene hypothesis. Identification of new Avr genes and effector molecules from Magnaporthe spp. can be useful to understand the molecular mechanisms involved in the fast evolution of different strains of this fungal genus. Advances in these areas may help to reduce the occurrence of blast disease by the identification of potential R genes for effective deployment. Additionally, this book highlights the importance of blast disease that infects different cereal hosts in the context of climate change, and genomics approaches that may potentially help in understanding and applying new concepts and technologies that can make real impact in sustainable management of blast disease in different cereal crops.
The agricultural sector of medicinal (including plant stimulants) and aromatic plants is characterized by an enormous number and diversity of species. Only a few of them can be considered cultivated crops in which significant breeding efforts are made. For most species, however, breeding is performed in short-term projects only. Therefore, basic knowledge about these species is still fragmentary. Our intention is to compile and organize the available information on the most commonly utilized plant species into one publication, thereby providing a standardized resource for the researchers and the grower community. This book therefore provides reference source materials for a wide variety of plant species used for human consumption due to their flavor, medicinal or recreational properties. It is divided into a section of general topics on genetic resources, breeding adaptation of analytic methods and a compilation of basic data for DNA content, chromosome number and mating system followed by a section of 20 monographs on a species or species groups.
This book reviews how the release of the citrus genome facilitates the investigation of ancestral species, the study of their complex biological features, and the genetic basis of agronomic traits of paramount importance for their sustainable cultivation. The first chapters discuss citrus origin and distribution, and the economic importance and varietal composition of the cultivated species, providing an overview of citrus and related genera genetic resources. The book then describes the role of traditional breeding techniques (for scion and rootstocks) as well as the potential of genomic breeding and innovative protocols for biotechnological approaches. The second part provides essential information on the genus Citrus, the attributes of pure citrus species, genetic admixtures, hybrids and citrus relatives, and on the horticultural classification of cultivated species, varieties and rootstocks. The third part then focuses on the different molecular mechanisms, covering various aspects of citrus biology, including the role of beneficial compounds of citrus fruits. In addition, it examines the molecular responses of citrus to abiotic stresses and to field and post-harvest diseases. Providing insights gained in recent years, it is a valuable guide for those who are interested in gene discovery, comparative genomics, molecular breeding and new breeding techniques. It is particularly useful for scientists, breeders and students at universities and public sector institutes involved in research for the citrus industry.
Medicinal plants are globally valuable sources of herbal products. Plant-based remedies have been used for centuries and have had no alternative in the western medicine repertoire, while others and their bioactive derivatives are in high demand and have been the central focus of biomedical research. As Medicinal plants move from fringe to mainstream with a greater number of individuals seeking treatments free of side effects, considerable attention has been paid to utilize plant-based products for the prevention and cure of human diseases. An unintended consequence of this increased demand, however, is that the existence of many medicinal plants is now threatened, due to their small population size, narrow distribution area, habitat specificity, and destructive mode of harvesting. In addition, climate change, habitat loss and genetic drift have further endangered these unique species. Although extensive research has been carried out on medicinal and aromatic plants, there is relatively little information available on their global distribution patterns, conservation and the associated laws prevailing. This book reviews the current status of threatened medicinal plants in light of increased surge in the demand for herbal medicine. It brings together chapters on both wild (non-cultivated) and domestic (cultivated) species having therapeutic values. Thematically, conventional and contemporary approaches to conservation of such threatened medicinal plants with commercial feasibility are presented. The topics of interest include, but not limited to, biotechnology, sustainable development, in situ and ex situ conservation, and even the relevance of IPR on threatened medicinal plants. We believe this book is useful to horticulturists, botanists, policy makers, conservationists, NGOs and researchers in the academia and the industry sectors.
Due to the huge quantity and diverse nature of their metabolic pathways, fungi have great potential to be used for the production of different biofuels such as bioethanol, biobutanol, and biodiesel. This book presents recent advances, as well as challenges and promises, of fungal applications in biofuel production, subsequently discussing plant pathogenic fungi for bioethanol and biodiesel production, including their mechanisms of action. Additionally, this book reviews biofuel production using plant endophytic fungi, wood-rotting fungi, fungal biocontrol agents, and gut fungi, and it investigates highly efficient fungi for biofuel production and process design in fungal-based biofuel production systems. Finally, life cycle assessment of fungal-based biofuel production systems are discussed in this volume.
Jatropha curcas, or physic nut, is a small tree that, in tropical climates, produces fruits with seeds containing ~38% oil. The physic nut has the potential to be highly productive and is amenable to subculture in vitro and to genetic modification. It also displays remarkable diversity and is relatively easy to cross hybridize within the genus. Thanks to these promising features, J. curcas is emerging as a promising oil crop and is gaining commercial interest among the biofuel research communities. However, as a crop, physic nut has been an economic flop since 2012, because the species was not fully domesticated and the average productivity was less than 2 t/ha, which is below the threshold of profitability.^7 t/ha could be reached and it is contributing to new markets in some countries. As such, it is important fro research to focus on the physiology and selective breeding of Jatropha . This book provides a positive global update on Jatropha, a crop that has suffered despite its promising agronomic and economic potential. The editors have used their collective expertise in agronomy, botany, selective breeding, biotechnology, genomics and bioinformatics to seek out high-quality contributions that address the bottleneck features in order to improve the economic trajectory of physic nut breeding.
Global population is mounting at an alarming stride to surpass 9.3 billion by 2050, whereas simultaneously the agricultural productivity is gravely affected by climate changes resulting in increased biotic and abiotic stresses. The genus Brassica belongs to the mustard family whose members are known as cruciferous vegetables, cabbages or mustard plants. Rapeseed-mustard is world's third most important source of edible oil after soybean and oil palm. It has worldwide acceptance owing to its rare combination of health promoting factors. It has very low levels of saturated fatty acids which make it the healthiest edible oil that is commonly available. Apart from this, it is rich in antioxidants by virtue of tocopherols and phytosterols presence in the oil. The high omega 3 content reduces the risk of atherosclerosis/heart attack. Conventional breeding methods have met with limited success in Brassica because yield and stress resilience are polygenic traits and are greatly influenced by environment. Therefore, it is imperative to accelerate the efforts to unravel the biochemical, physiological and molecular mechanisms underlying yield, quality and tolerance towards biotic and abiotic stresses in Brassica. To exploit its fullest potential, systematic efforts are needed to unlock the genetic information for new germplasms that tolerate initial and terminal state heat coupled with moisture stress. For instance, wild relatives may be exploited in developing introgressed and resynthesized lines with desirable attributes. Exploitation of heterosis is another important area which can be achieved by introducing transgenics to raise stable CMS lines. Doubled haploid breeding and marker assisted selection should be employed along with conventional breeding. Breeding programmes aim at enhancing resource use efficiency, especially nutrient and water as well as adoption to aberrant environmental changes should also be considered. Biotechnological interventions are essential for altering the biosynthetic pathways for developing high oleic and low linolenic lines. Accordingly, tools such as microspore and ovule culture, embryo rescue, isolation of trait specific genes especially for aphid, Sclerotinia and alternaria blight resistance, etc. along with identification of potential lines based on genetic diversity can assist ongoing breeding programmes. In this book, we highlight the recent molecular, genetic and genomic interventions made to achieve crop improvement in terms of yield increase, quality and stress tolerance in Brassica, with a special emphasis in Rapeseed-mustard.
This book describes the history of tobacco genomics, from its "discovery" by Europeans to next-generation omics approaches in plant science. The authors primarily focus on the allotetraploid common tobacco plant (N. tabacum); however, separate chapters are dedicated to closely related Nicotiana species, such as N. benthamiana and N. attenuata, for which substantial progress in omics data analysis has been already achieved. While genetic maps, transcriptomes, and physical maps of BAC libraries have significantly enhanced our understanding of the tobacco plant, the genome of tobacco and related Nicotiana species has opened a new era in modern tobacco research. This book addresses current and future industrial and research applications as well as central challenges in tobacco science, including diseases, low variability of cultivars, the genome's large size, polyploidy, and gene duplication.
In the past few decades, it has been realized through research that fungal siderophores epitomize the uptake of iron as well as other essential elements like zinc, magnesium, copper, nickel and arsenic. Understanding the chemical structures of different fungal siderophores and the membrane receptors involved in uptake of mineral ions has opened new areas for research. In this edited volume, recent research is presented on fungal siderophores in one comprehensive volume to provide researchers a strong base for future research. Siderophores are the low molecular weight, high affinity iron-chelating compounds produced by bacteria and fungi. They are responsible for transporting iron across the cell membrane. Fungi produce a range of hydroxamate siderophores involved in the uptake of essential elements in almost all microorganisms and plants. In recent years, siderophores have been used in molecular imaging applications to visualize and understand cellular functions, which thus provide an opportunity to identify new drug targets. Therefore, knowledge of fungal siderophores has become vital in current research. Siderophores have received much attention in recent years because of their potential roles and applications in various research areas. Their significance in these applications is because siderophores have the ability to bind a variety of metals in addition to iron, and they have a wide range of chemical structures and specific properties. For instance, siderophores function as biocontrols, biosensors, and bioremediation and chelation agents, in addition to their important role in weathering soil minerals and enhancing plant growth. This book focuses on siderophores with the following significant points. It discusses leading, state-of-the-art research in all possible areas on fungal siderophores. The contributors are well-known and recognized authorities in the field of fungal siderophores. It discusses a projection of practical applications of fungal siderophores in various domains. This is the first book exclusively on fungal siderophores. In this comprehensive, edited volume, we show leading research on fungal siderophores and provide the most recent knowledge of researchers' work on siderophores. This book presents in-depth knowledge on siderophores to researchers working in areas of health sciences, microbiology, plant sciences, biotechnology, and bioinformatics.
This edited book is focusing on the novel and innovative procedures in tissue culture for large scale production of plantation and horticulture crops. It is bringing out a comprehensive collection of information on commercial scale tissue culture with the objective of producing high quality, disease-free and uniform planting material. Developing low cost commercial tissue culture can be one of the best possible way to attain the goal of sustainable agriculture. Tissue culture provides a means for rapid clonal propagation of desired cultivars, and a mechanism for somatic hybridization and in vitro selection of novel genotypes. Application of plant tissue culture technology in horticulture and plantation crops provides an efficient method to improve the quality and nutrition of the crops. This book includes a description of highly efficient, low cost in vitro regeneration protocols of important plantation and horticulture crops with a detailed guideline to establish a commercial plant tissue culture facility including certification, packaging and transportation of plantlets. The book discusses somatic embryogenesis, virus elimination, genetic transformation, protoplast fusion, haploid production, coculture of endophytic fungi, effects of light and ionizing radiation as well as the application of bioreactors. This book is useful for a wide range of readers such as, academicians, students, research scientists, horticulturists, agriculturists, industrial entrepreneurs, and agro-industry employees.
This second edition volume expands on the previous edition with updated chapters in model systems and new crops. The book contains protocols for plastid engineering in leaves, tissue culture cells, and the shoot apex of plants, as well as for marker excision from the plastid genome and engineering Rubisco, the key enzyme of photosynthesis. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and practical, Chloroplast Biotechnology: Methods and Protocols, Second Edition is a valuable resource for researchers who wish to enter the field, and for practitioners looking for insights of applications in agriculture, industrial biotechnology and healthcare. |
You may like...
Forms of Representation in the…
Christina Thomsen Thoernqvist, Juhana Toivanen
Hardcover
R2,607
Discovery Miles 26 070
PEACEFUL JOURNEY-Original Ecology Hotel…
Sendpoints Publishing Co., Ltd.
Hardcover
Super Thinking - Upgrade Your Reasoning…
Gabriel Weinberg, Lauren McCann
Paperback
(1)
Spying And The Crown - The Secret…
Richard J. Aldrich, Rory Cormac
Paperback
R358
Discovery Miles 3 580
Ontology Engineering in a Networked…
Mari Carmen Suarez-Figueroa, Asuncion Gomez-Perez, …
Hardcover
R1,479
Discovery Miles 14 790
The Death Of Democracy - Hitler's Rise…
Benjamin Carter Hett
Paperback
(1)
|