![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Biology, life sciences > Botany & plant sciences > Plant reproduction & propagation
Ascorbic acid (AsA), vitamin C, is one of the most abundant water-soluble antioxidant in plants and animals. In plants AsA serves as a major redox buffer and regulates various physiological processes controlling growth, development, and stress tolerance. Recent studies on AsA homeostasis have broadened our understanding of these physiological events. At the mechanistic level, AsA has been shown to participate in numerous metabolic and cell signaling processes, and the dynamic relationship between AsA and reactive oxygen species (ROS) has been well documented. Being a major component of the ascorbate-glutathione (AsA-GSH) cycle, AsA helps to modulate oxidative stress in plants by controlling ROS detoxification alone and in co-operation with glutathione. In contrast to the single pathway responsible for AsA biosynthesis in animals, plants utilize multiple pathways to synthesize AsA, perhaps reflecting the importance of this molecule to plant health. Any fluctuations, increases or decreases, in cellular AsA levels can have profound effects on plant growth and development, as AsA is associated with the regulation of the cell cycle, redox signaling, enzyme function and defense gene expression. Although there has been significant progress made investigating the multiple roles AsA plays in stress tolerance, many aspects of AsA-mediated physiological responses require additional research if AsA metabolism is to be manipulated to enhance stress-tolerance. This book summarizes the roles of AsA that are directly or indirectly involved in the metabolic processes and physiological functions of plants. Key topics include AsA biosynthesis and metabolism, compartmentation and transport, AsA-mediated ROS detoxification, as well as AsA signaling functions in plant growth, development and responses to environmental stresses. The main objective of this volume is therefore to supply comprehensive and up-to-date information for students, scholars and scientists interested in or currently engaged in AsA research.
This book highlights the advances in essential oil research, from the plant physiology perspective to large-scale production, including bioanalytical methods and industrial applications. The book is divided into 4 sections. The first one is focused on essential oil composition and why plants produce these compounds that have been used by humans since ancient times. Part 2 presents an update on the use of essential oils in various areas, including food and pharma industries as well as agriculture. In part 3 readers will find new trends in bioanalytical methods. Lastly, part 4 presents a number of approaches to increase essential oil production, such as in vitro and hairy root culture, metabolic engineering and biotechnology. Altogether, this volume offers a comprehensive look at what researchers have been doing over the last years to better understand these compounds and how to explore them for the benefit of the society.
Experience shows that biotic stresses occur with different levels of intensity in nearly all agricultural areas around the world. The occurrence of insects, weeds and diseases caused by fungi, bacteria or viruses may not be relevant in a specific year but they usually harm yield in most years. Global warming has shifted the paradigm of biotic stresses in most growing areas, especially in the tropical countries, sparking intense discussions in scientific forums. This book was written with the idea of collecting in a single publication the most recent advances and discoveries concerning breeding for biotic stresses, covering all major classes of biotic challenges to agriculture and food production. Accordingly, it presents the state-of-the-art in plant stresses caused by all microorganisms, weeds and insects and how to breed for them. Complementing Plant Breeding for Abiotic Stress Tolerance, this book was written for scientists and students interested in learning how to breed for biotic stress scenarios, allowing them to develop a greater understanding of the basic mechanisms of resistance to biotic stresses and develop resistant cultivars.
At present, plants and agricultural sciences are playing a leading role in providing solutions to problems created by an ever growing world population. Through plant biotechnology scientists are seeking ways to improve crop functions that rapidly promote food production. Agricultural science is being used to experiment with producing plants tolerant to environmental stresses such as drought, salinity and coldness.
Topics include:
The book focuses on the principles and practices of tropical maize improvement with special emphasis on early and extra-early maize to feed the increasing population in Sub-Saharan Africa. It highlights the similarities and differences between results obtained in temperate regions of the world and WCA in terms of corroboration or refutation of genetic principles and theory of maize breeding. The book is expected to be of great interest to maize breeders, advanced undergraduates, graduate students, professors and research scientists in the national and international research institutes all over the world, particularly Sub-Saharan Africa. It will also serve as a useful reference for agricultural extension and technology transfer systems, Non-governmental Organizations (NGOs) and Community-Based Organizations (CBOs), seed companies and community-based seed enterprises, policy makers, and all those who are interested in generating wealth from agriculture and alleviating hunger and poverty in Sub-Saharan Africa.
This book presents the genetics and genomics of Jatropha, which is used for biofuel, and shows how plant genomics can be used to improve plant breeding. The utilization of plant biofuels is a promising solution to global issues such as the depletion of fossil fuels and resources and climate change. Jatropha curcas L. (jatropha) is a species of shrub belonging to the Euphorbiaceae family. Native to Mesoamerica, it is now grown widely in tropical and subtropical areas in America, Africa and Asia. The seed oil of Jatropha is a suitable source for biodiesel or bio jet fuel, and since it is not edible and can grow in semi-arid lands unsuitable for the cultivation of food crops, its production does not compete with that of food to inflate its price. The characteristics of this promising biofuel plant, however, have not been fully exploited in terms of breeding, mainly because of the lack of information on its genetics and genomics. The structure of the whole genome of Jatropha is analyzed, providing insights into on the plant's genetic system and accelerating the molecular breeding process.
This volume will be the only existing single-authored book offering a science-based breeder 's manual directed at breeding for water-limited environments. Plant breeding is characterized by the need to integrate information from diverse disciplines towards the development and delivery of a product defines as a new cultivar. Conventional breeding draws information from disciplines such as genetics, plant physiology, plant pathology, entomology, food technology and statistics. Plant breeding for water-limited environments and the development of drought resistant crop cultivars is considered as one of the more difficult areas in plant breeding while at the same time it is becoming a very pressing issue. This volume is unique and timely in that it develops realistic solutions and protocols towards the breeding of drought resistant cultivars by integrating knowledge from environmental science, plant physiology, genetics and molecular biology.
Genetic engineering and biotechnology along with conventional breeding have played an important role in developing superior cultivars by transferring economically important traits from distant, wild and even unrelated species to the cultivated varieties which otherwise could not have been possible with conventional breeding. There is a vast amount of literature pertaining to the genetic improvement of crops over last few decades. However, the wonderful results achieved by crop scientists in food legumes' research and development over the years are scattered in different journals of the World. The two volumes in the series 'Alien Gene Transfer in Crop Plants' address this issue and offer a comprehensive reference on the developments made in major food crops of the world. These volumes aim at bringing the contributions from globally renowned scientists at one platform in a reader-friendly manner. The second volume entitled, "Alien Gene Transfer in Crop Plants: Achievements and Impact" will deal more with the practical aspects. This volume will cover achievements of alien gene transfer in major food crops of the world and their impact on development of newer genetic variability and additional avenues for selection; development of superior cultivars for increased yield, resistance to biotic and abiotic stresses, improved nutritional and industrial quality; innovation of new techniques and positive as well as negative environmental implications. This volume has been divided into four groups with an aim to cover all major cereals, pulses, oilseeds and other crops (vegetable and horticultural crops) which are of economic importance.
During the past 15 years, cellular and molecular approaches have emerged as valuable adjuncts to supplement and complement conventional breeding methods for a wide variety of crop plants. Biotechnology increasingly plays a role in the creation, conservation, characterization and utilization of genetic variability for germplasm enhancement. For instance, anther/microspore culture, somaclonal variation, embryo culture and somatic hybridization are being exploited for obtaining incremental improvement in the existing cultivars. In addition, genes that confer insect- and disease-resistance, abiotic stress tolerance, herbicide tolerance and quality traits have been isolated and re-introduced into otherwise sensitive or susceptible species by a variety of transgenic techniques. Together these transformative methodologies grant access to a greater repertoire of genetic diversity as the gene(s) may come from viruses, bacteria, fungi, insects, animals, human beings, unrelated plants or even be artificially derived. Remarkable achievements have been made in the production, characterization, field evaluation and commercialization of transgenic crop varieties worldwide. Likewise, significant advances have been made towards increasing crop yields, improving nutritional quality, enabling crops to be raised under adverse conditions and developing resistance to pests and diseases for sustaining global food and nutritional security. The overarching purpose of this 3-volume work is to summarize the history of crop improvement from a technological perspective but to do so with a forward outlook on further advancement and adaptability to a changing world. Our carefully chosen "case studies of important plant crops" intend to serve a diverse spectrum of audience looking for the right tools to tackle complicated local and global issues.
This book provides insights into some of the key achievements made in the study of Lotus japonicus (birdsfoot trefoil), as well as a timely overview of topics that are pertinent for future developments in legume genomics. Key topics covered include endosymbiosis, development, hormone regulation, carbon/nitrogen and secondary metabolism, as well as advances made in high-throughput genomic and genetic approaches. Research focusing on model plants has underpinned the recent growth in plant genomics and genetics and provided a basis for investigations of major crop species. In the legume family Fabaceae, groundbreaking genetic and genomic research has established a significant body of knowledge on Lotus japonicus, which was adopted as a model species more than 20 years ago. The diverse nature of legumes means that such research has a wide potential and agricultural impact, for example, on the world's protein production.
The entire range of the developmental processes in plants is regulated by a shift in the hormonal concentration, tissue sensitivity and their interaction with the factors operating around them. Out of the recognized hormones, attention has largely been focused on five - Auxins, Gibberellins, Cytokinin, Abscisic acid and Ethylene. However, the information about the most recent group of phytohormone (Brassinosteroids) has been incorporated in this book. This volume includes a selection of newly written, integrated, illustrated reviews describing our knowledge of Brassinosteroids and aims to describe them at the present time. Various chapters incorporate both theoretical and practical aspects and may serve as baseline information for future researches through which significant developments are possible. This book will be useful to the students, teachers and researchers, both in universities and research institutes, especially in relation to biological and agricultural sciences.
This volume discusses the sustainability of Egypt's agriculture and the challenges involved. It provides a comprehensive review and the latest research findings, and covers a variety of topics under the following themes: * Applicability of sustainable agriculture in Egypt * Sustainable agriculture under water scarcity and polluted soil environments * Improved crop productivity using a variety of tried and tested procedures * Biotechnology application for agricultural sustainability and food security * Potentiality of soil-sensing for a more sustainable agricultural environment The volume closes with a summary of the key conclusions and recommendations from all chapters. Together with the companion volume Sustainability of Agricultural Environment in Egypt: Part II, it offers an essential source of information for postgraduate students, researchers, and stakeholders alike.
"Global Tea Breeding: Achievements, Challenges and Perspectives" provides a global review on biodiversity and biotechnology issues in tea breeding and selection. The contributions are written by experts from China, India, Kenya, Sri Lanka, Vietnam, Turkey, Indonesia, Japan, Bangladesh, Korea, Nigeria, and etc., which countries amount to 90% of the world tea production. This book focuses on the germplasm, breeding and selection of tea cultivars for the production of black, green and Oolong teas from the tea plant, "Camellia sinensis "(L.) O. Kuntze. It can benefit the tea breeders in the global tea industry, as well as the breeders of other woody cash crops like coffee and other sub-tropical fruit trees. Liang Chen is a Professor and Associate Director at National Center for Tea Improvement, Tea Research Institute of the Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, China. Zeno Apostolides is a Professor at the Department of Biochemistry, University of Pretoria, South Africa. Zong-Mao Chen is the Academician of the Chinese Academy of Engineering and a Professor at the Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, China.
Plant cells house highly dynamic cytoskeletal networks of microtubules and actin microfilaments. They constantly undergo remodeling to fulfill their roles in supporting cell division, enlargement, and differentiation. Following early studies on structural aspects of the networks, recent breakthroughs have connected them with more and more intracellular events essential for plant growth and development. Advanced technologies in cell biology (live-cell imaging in particular), molecular genetics, genomics, and proteomics have revolutionized this field of study. Stories summarized in this book may inspire enthusiastic scientists to pursue new directions toward understanding functions of the plant cytoskeleton. The Plant Cytoskeleton is divided into three sections: 1) Molecular Basis of the Plant Cytoskeleton; 2) Cytoskeletal Reorganization in Plant Cell Division; and 3) The Cytoskeleton in Plant Growth and Development. This book is aimed at serving as a resource for anyone who wishes to learn about the plant cytoskeleton beyond ordinary textbooks. "
This detailed volume explores barley as both a crop and a model, with practical techniques such as crossing barley, a range of tissue culture methods, the preparation of barley tissues for different forms of microscopy, and the assessment of sensitivity to abiotic stresses. Efficient protocols are provided for transformation, TILLING, virus-induced gene silencing and genome editing. There is also particular emphasis on a range of protocols for genotyping and for the analysis of gene expression. Written for the highly successful Methods in Molecular Biology series, chapters include introductions on their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and easy-to-use, Barley: Methods and Protocols serves as a valuable reference volume for cereal researchers and breeders by providing detailed protocols covering important traditional skills such as crossing and tissue culture through to the latest technologies for genotyping, expression analysis, and genome editing.
The current scenario of increasing sensitivity towards the sustainable agriculture has given a large space to extensively utilize natural resources that are environmental friendly and are a good replacement of chemicals in agriculture. Application of organic additives in the sustainable disease management can provide new insight in sustenance of plant productivity along with improved host stress tolerance. In the present book we have focussed upon a range of organic strategies to control plant pathogens of wide spectrum in addition to maintaining robust plant health. A detailed account on the application of organic additives has been discussed, irrespective of their origin and nature. In addition, the methods of utilising these organic supplements in the management of plant diseases and promotion of plant yield in more economic way have also been presented with reference to developing, underdeveloped and developed countries. The book has included the works of eminent scholars from across the world thus flashing light on the key literature related to application of organic matters including phytoextracts, chopped leaves, composted organic manures and liquid manures in eco-friendly agriculture. The mechanisms underlying the effectiveness of these organic amendments in promoting plant health has also been presented and discussed in understandable ways.
This book details sorghum breeding technologies, grain compounds, nutrition and digestibility, biotechnology methods, broad renewable applications and an economic study. Chapters are divided into five review chapters, five case study chapters, and nine protocol chapters providing comprehensive reviews, new study results or state-of-the-art protocols. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Sorghum: Methods and Protocols aims to provide useful information and tools to an array of readers looking to research and utilize sorghum.
This book provides exhaustive information on several recent technologies that are employed for sugarcane improvement through biotechnology and will be of great interest to plant scientists, biotechnologists, molecular biologists and breeders who work on sugarcane crop. Topics discussed in this volume include genomics and transcriptomics, transgenic sugarcane for trait improvement, potential candidate promoters, new strategies for transformation, molecular farming, sugarcane as biofuel, chloroplast transformation, and genome editing.
Crop production in greenhouses is a growing industry, especially in mild climates, and is very important for the population as a source of income and clean, fresh food. Greenhouses create optimal climate conditions for crop growth and protect crops from outside pests. At the same time greenhouse production increases water use efficiency and makes integrated production and protection (IPP) possible. This book provides technical instructions for practice (what to do and what not to do) and gives answers to the question: How to produce more clean crops and better quality with less water, less land and less pesticide. Suitable greenhouse constructions and their design, adapted to local climates in subtropical, tropical and arid regions and infrastructure conditions are presented. The necessary climate control measures - light transmittance, ventilation, cooling, heating, and CO2 enrichment - and physical measures for pest control, as well as methods for using solar energy to desalinate salty water are described. The results of theoretical research are transferred into methods for practical use, so that readers are equipped to solve their problems in practice as well as to get stimulation for further research and development.
The book illustrates the use of putative microbial agents which provide good protection to the plant from biotic pathogens attack. An up to date knowledge on plant-microbiome interaction strategies in terms of improved sustainability has been discussed. Information from experts across the globe on the application of microbes for providing amicable solution in sustainable agriculture has been gathered. In addition, information related to microbes mediated resistance levels leading to enhanced plant health has been well presented. The chapters have emphasised the use of Plant Growth Promoting Rhizobacteria (PGPR) and other potential biocontrol agents/antagonists in the management of plant diseases which provide extensive information to the readers. Literature on microbial root colonization, plant growth promotions, and also on the protection of plants from attack of various soil borne pathogens have been presented in a coherent way. Information on the application of potential strain of the bio-control fungi, endophytes, actinomycetes strengthening the plants ability which rescue the plant from pathogens attack leading to improved plant health has also been underpinned.
"Use of Microbes for the Alleviation of Soil Stresses, Volume 1" describes the most important details and advances related to the alleviation of soil stresses by soil microbes. Comprised of seven chapters, the book reviews the mechanisms by which plant growth promoting rhizobacteria (PGPR) alleviate plant growth under stress; the role of mycorrhizal fungi on the alleviation of drought stress in host plants; how PGPR may alleviate salinity stress on the growth of host plants; and the role of PGPR on the growth of the host plant under the stress of sub optimal root zone temperature. Written by experts in their respective fields, "Use of Microbes for the Alleviation of Soil Stresses, Volume 1 "is a comprehensive and valuable resource for researchers and students interested in the field of microbiology and soil stresses.
Over the past 50 years, biotechnology has been the major driving force for increasing crop productivity. Particularly, advances in plant genetic engineering technologies have opened up vast new opportunities for plant researchers and breeders to create new crop varieties with desirable traits. Recent development of precise genome modification methods, such as targeted gene knock-out/knock-in and precise gene replacement, moves genetic engineering to another level and offers even more potentials for improving crop production. The work provides an overview of the latest advances on precise genomic engineering technologies in plants. Topics include recombinase and engineered nucleases-mediated targeted modification, negative/positive selection-based homologous recombination and oligo nucleotide-mediated recombination. Finally, challenges and impacts of the new technologies on present regulations for genetic modification organisms (GMOs) will be discussed.
This book discusses the role of salt in current agricultural approaches, including the low salt tolerance of agricultural crops and trees, impact of saline soils, and salt-resistant plants. Halophytes are extremely salt tolerant plants, which are able to grow and survive under salt at concentrations as high as 5 g/l by maintaining negative water potential. The salt-tolerant microbes inhabiting the rhizospheres of halophytes may contribute to their salt tolerance, and the rhizospheres of halophytic plants provide an ideal opportunity for isolating various groups of salt-tolerant microbes that could enhance the growth of different crops under salinity stress. The book offers an overview of salt-tolerant microbes' ability to increase plant tolerance to salt to facilitate plant growth, the potential of the halophytes' rhizospheres as a reservoir of beneficial salt-tolerant microbes, their future application as bio-inoculants in agriculture and a valuable resource for an alternative way of improving crop tolerance to salinity and promoting saline soil-based agriculture. This special collection of reviews highlights some of the recent advances in applied aspects of plant (halophytes)-microbe interactions and their contribution towards eco-friendly approaches saline soil-based agriculture.
This book explores the agricultural, commercial, and ecological future of plants in relation to mineral nutrition. It covers various topics regarding the role and importance of mineral nutrition in plants including essentiality, availability, applications, as well as their management and control strategies. Plants and plant products are increasingly important sources for the production of energy, biofuels, and biopolymers in order to replace the use of fossil fuels. The maximum genetic potential of plants can be realized successfully with a balanced mineral nutrients supply. This book explores efficient nutrient management strategies that tackle the over and under use of nutrients, check different kinds of losses from the system, and improve use efficiency of the plants. Applied and basic aspects of ecophysiology, biochemistry, and biotechnology have been adequately incorporated including pharmaceuticals and nutraceuticals, agronomical, breeding and plant protection parameters, propagation and nutrients managements. This book will serve not only as an excellent reference material but also as a practical guide for readers, cultivators, students, botanists, entrepreneurs, and farmers.
This book introduces the reader to synthetic or artificial seeds, which refer to alginate encapsulated somatic embryos, vegetative buds or any other micropropagules that can be used as seeds and converted into plantlets after propagating under in vitro or in vivo conditions. Moreover, synthetic seeds retain their potential for regeneration even after low-temperature storage. The production of synthetic or artificial seeds using micropropagules opens up new vistas in agricultural biotechnology. Encapsulated propagules could be used for in vitro regeneration and mass multiplication at reasonable cost. In addition, these propagules may be used for germplasm preservation of elite plant species and the exchange of plant materials between national and international laboratories. This book offers state-of-the-art findings on methods, applications and prospects of synthetic or artificial seeds. |
You may like...
Renegades - Born In The USA
Barack Obama, Bruce Springsteen
Hardcover
(1)
Sitting Pretty - White Afrikaans Women…
Christi van der Westhuizen
Paperback
(1)
|