0
Your cart

Your cart is empty

Browse All Departments
Price
  • R500+ (937)
  • -
Status
Format
Author / Contributor
Publisher

Books > Science & Mathematics > Biology, life sciences > Botany & plant sciences > Plant reproduction & propagation

Instant Insights: Improving Crop Nutrient Use Efficiency (Paperback): Ulrike Mathesius, Jian Jin, Yansheng Li, Michelle Watt,... Instant Insights: Improving Crop Nutrient Use Efficiency (Paperback)
Ulrike Mathesius, Jian Jin, Yansheng Li, Michelle Watt, J. F. Angus, …
R1,187 Discovery Miles 11 870 Ships in 18 - 22 working days

This specially curated collection features four reviews of current and key research on improving crop nutrient use efficiency. The first chapter explores the relationship between rhizobacteria and plant roots, looking primarily at the recruitment of rhizobacteria by the plant to carry out particular functions, such as nutrient acquisition. The chapter highlights our current understanding of the molecular determinants of legume nodulation as well as challenges for improvements of biological nitrogen fixation in legumes and non-legumes. The second chapter considers the rising use of nitrogen (N) fertilizer in agriculture and its role in the shrinking contribution of soil organic N. The chapter explores the impact of the inefficient management of N (low nitrogen-use efficiency) and the consequent developments of major environmental issues, such as pollution to groundwater, oceans and the atmosphere. The third chapter addresses key issues in using N fertilizers in wheat production, such as product cost and environmental impact. The chapter summarises the development of N-efficient cultivars and their economic benefits, as well as their role in reducing the environmental impact of excessive N fertilizer inputs, whilst maintaining respectable yields. The final chapter considers the use of breeding techniques, including genetic variability, to develop more efficient wheat varieties with improved traits related to nitrogen capture, nitrogen assimilation and nitrogen remobilization.

Etiology and Integrated Management of Economically Important Fungal Diseases of Ornamental Palms (Hardcover, 1st ed. 2020):... Etiology and Integrated Management of Economically Important Fungal Diseases of Ornamental Palms (Hardcover, 1st ed. 2020)
Imran Ul Haq, Siddra Ijaz
R4,041 Discovery Miles 40 410 Ships in 18 - 22 working days

Palms are monocots, Angiosperms, belonging to the family Palmae (Arecaceae), perennials having woody stems. Palmae (Arecaceae) family comprised of about six subfamilies, 200 genera and 2,700 species that are distributed all over the tropical, subtropical and Mediterranean landscape. Palms are diverse (ecologically and morphologically) group of plants. Ornamental palms are important component of landscape as well as interiorscapes. Additionally, these plants are good source of food, feed and shelter with numerous other commercial benefits. Likewise other trees and crops, landscape and field nurseries of palms are also subjected to various threats of insect pest and diseases (caused by different plant pathogens). Amongst fungal diseases leaf spots, leaf blights, Fusarium wilts, butt rots, bud rots, root rots, lethal yellowing and decline of palms are major growth constraints of palm growth. In developing countries very little attention has been paid on the etiology and management of these fungal diseases on ornamental palms. Accurate diagnosis and reliable management plan of palm fungal diseases usually requires expertise in both modern and advanced plant pathological approaches. Historically it was general belief that plant pathogens are not associated with human diseases. Since 19th century, several clinical reports are available indicating many plant pathogenic fungi (Aspergillus spp., Penicillium spp., Alternaria spp., Trichoderma spp., Fusarium spp., Curvularia spp. and Colletotrichum Spp) as novel agents of human diseases. Besides the association of fungal plant pathogens infecting ornamental palms, harbouring any of earlier mentioned or other fungal species (capable of causing certain diseases in human beings or pets) by the ornamental palms cultivation (either grown indoor or outdoor) is an important area of research to be explored and addressed thoroughly. This book will provide the deep information regarding major fungal diseases of ornamental palms, their symptoms, disease identification, and etiology and management strategies. This book will also provide unique knowledge regarding the ornamental palms harbouring kinds of human fungal pathogens and their practical management at domestic and commercial scale, in order to make cultivation of these plant more beneficial for humans, animals and environment.

Alien Gene Transfer in Crop Plants, Volume 1 - Innovations, Methods and Risk Assessment (Hardcover, 2014 ed.): Aditya Pratap,... Alien Gene Transfer in Crop Plants, Volume 1 - Innovations, Methods and Risk Assessment (Hardcover, 2014 ed.)
Aditya Pratap, Jitendra Kumar
R5,096 R4,775 Discovery Miles 47 750 Save R321 (6%) Ships in 10 - 15 working days

Genetic engineering and biotechnology along with conventional breeding have played an important role in developing superior cultivars by transferring economically important traits from distant, wild and even unrelated species to the cultivated varieties which otherwise could not have been possible with conventional breeding. There is a vast amount of literature pertaining to the genetic improvement of crops over last few decades. However, the wonderful results achieved by crop scientists in food legumes' research and development over the years are scattered in different journals of the World. The two volumes in the series 'Alien Gene Transfer in Crop Plants' address this issue and offer a comprehensive reference on the developments made in major food crops of the world. These volumes aim at bringing the contributions from globally renowned scientists at one platform in a reader-friendly manner. The 1st volume entitled, 'Alien Gene Transfer in Crop Plants: Innovations, Methods and Risk Assessment" will deal exclusively with the process and methodology. The contents of this volume have been designed to appraise the readers with all the theoretical and practical aspects of wide hybridization and gene transfer like processes and methods of gene transfer, role of biotechnology with special reference to embryo rescue, genetic transformation, protoplast fusion and molecular marker technology, problems such as cross incompatibility and barriers to distant hybridization and solutions to overcome them. Since wild and weedy relatives of crop plants may have negative traits associated with them, there are always possibilities of linkage drag while transferring alien alleles. Therefore, problems and limitations of alien gene transfer from these species will also be discussed in this series. Further, the associated risks with this and assessment of risks will also be given due weightage.

Cisgenics and Transgenics - Strategies for Sustainable Crop Development and Food Security (Hardcover, 1st ed. 2022): Bhupendra... Cisgenics and Transgenics - Strategies for Sustainable Crop Development and Food Security (Hardcover, 1st ed. 2022)
Bhupendra Koul
R4,080 Discovery Miles 40 800 Ships in 18 - 22 working days

This book presents up-to-date information on various vector-less/direct (physical, chemical) and vector-mediated/indirect (Agrobacterium-mediated) plant transformation techniques. It summarizes various strategies that facilitate a gene from lower organism to be expressed in higher plants and also in silico designing of synthetic gene for higher expression. It also highlights the importance of strong promoters to drive the expression of transgene(s). This book encompasses the advantages and drawbacks of cisgenesis and transgenesis, their implications towards sustainable crop improvement, and their future prospects. The importance, limitations, challenges, recent developments, and future prospects of molecular pharming is also discussed. The book concludes with a chapter that summarizes the major contribution of GM-crops towards global food security and economy, advances in genome editing for crop improvement, challenges and risk associated with the release of GM-crops, and the future of GM technology. This book is meant for students and researchers in the field of life sciences, food science, and agriculture.

Plant Growth Promoting Rhizobacteria for Sustainable Stress Management - Volume 1: Rhizobacteria in Abiotic Stress Management... Plant Growth Promoting Rhizobacteria for Sustainable Stress Management - Volume 1: Rhizobacteria in Abiotic Stress Management (Hardcover, 1st ed. 2019)
R.Z. Sayyed, Naveen Kumar Arora, M.S. Reddy
R4,063 Discovery Miles 40 630 Ships in 18 - 22 working days

Increasing agro productivity to feed a growing global population under the present climate scenario requires optimizing the use of resources and adopting sustainable agricultural production. This can be achieved by using plant beneficial bacteria, i.e., those bacteria that enhance plant growth under abiotic stress conditions, and more specifically, microorganisms such as plant growth promoting rhizobacteria (PGPR), which are the most promising candidates in this regard. Attaining sustainable agricultural production while preserving environmental quality, agro-ecosystem functions and biodiversity represents a major challenge for current agricultural practices; further, the traditional use of chemical inputs (fertilizers, pesticides, nutrients etc.) poses serious threats to crop productivity, soil fertility and the nutritional value of farm produce. Given these risks, managing pests and diseases, maintaining agro-ecosystem health, and avoiding health issues for humans and animals have now become key priorities. The use of PGPR as biofertilizers, plant growth promoters, biopesticides, and soil and plant health managers has attracted considerable attention among researchers, agriculturists, farmers, policymakers and consumers alike. Using PGPR can help meet the expected demand for global agricultural productivity to feed the world's booming population, which is predicted to reach roughly 9 billion by 2050. However, to do so, PGPR strains must be safe for the environment, offer considerable plant growth promotion and biocontrol potential, be compatible with useful soil rhizobacteria, and be able to withstand various biotic and abiotic stresses. Accordingly, the book also highlights the need for better strains of PGPR to complement increasing agro-productivity.

Plant Genetic Resources - A Review of Current Research and Future Needs (Hardcover): M. Ehsan Dulloo Plant Genetic Resources - A Review of Current Research and Future Needs (Hardcover)
M. Ehsan Dulloo; Contributions by Chikelu Mba, M. Ehsan Dulloo, Kent Nnadozie, Melinda Smale, …
R4,689 Discovery Miles 46 890 Ships in 18 - 22 working days

"It is likely that Plant genetic resources will become the essential methods manual to facilitate their international exchange and local dissemination. It may well become the standard reference for researchers at universities, institutes, government departments and plant nurseries for many years. It provides an indispensable contribution as a handbook for plant collectors." (Plant Science Bulletin - Botanical Society of America) Maintaining and benefitting from plant genetic diversity are key challenges facing agriculture. Challenges include a narrowing genetic base for many key crops, the loss of landraces and wild varieties with agricultural intensification and urbanisation, and the need to develop the role of existing gene banks from repository of genetic diversity to enablers of the flow of germplasm and genetic information for breeding more robust varieties. Plant genetic resources: A review of current research and future needs surveys the wealth of research addressing these challenges and the opportunity for a more integrated, global approach to protecting and leveraging plant genetic diversity for a more sustainable agriculture. The book assesses ways of valuing and monitoring plant genetic diversity and discusses advances in in-situ and ex-situ strategies for conserving plant genetic diversity. The book concludes by reviewing ways of enhancing the use of plant genetic diversity, including participatory plant breeding programmes and more effective seed systems. With its eminent editor and range of international expertise, Plant genetic resources: A review of current research and future needs will be a standard reference for university and other researchers studying crop genetic resources and breeding, staff managing genebanks and germplasm collections, government and other agencies regulating the collection, storage and exchange of germplasm, as well as companies involved in crop breeding.

Genomic Designing of Climate-Smart Oilseed Crops (Hardcover, 1st ed. 2019): Chittaranjan Kole Genomic Designing of Climate-Smart Oilseed Crops (Hardcover, 1st ed. 2019)
Chittaranjan Kole
R4,100 Discovery Miles 41 000 Ships in 18 - 22 working days

This book highlights modern strategies and methods to improve oilseed crops in the era of climate change, presenting the latest advances in plant molecular breeding and genomics-driven breeding. Spectacular achievements in the fields of molecular breeding, transgenics and genomics in the last three decades have facilitated revolutionary changes in oilseed- crop-improvement strategies and techniques. Since the genome sequencing of rice, as the first crop plant, in 2002, the genomes of about one dozen oilseed crops have been sequenced and more are to follow. This has made it possible to decipher the exact nucleotide sequence and chromosomal positions of agroeconomic genes. Most importantly, comparative genomics and genotyping-by-sequencing have opened up new vistas for exploring available biodiversity, particularly of wild crop relatives, for identifying useful donor genes.

Genomics of Plant-Associated Fungi and Oomycetes: Dicot Pathogens (Hardcover, 2014 ed.): Ralph A. Dean, Ann Lichens-Park,... Genomics of Plant-Associated Fungi and Oomycetes: Dicot Pathogens (Hardcover, 2014 ed.)
Ralph A. Dean, Ann Lichens-Park, Chittaranjan Kole
R4,508 R3,437 Discovery Miles 34 370 Save R1,071 (24%) Ships in 10 - 15 working days

This book describes how genomics has revolutionized our understanding of agriculturally important plant-associated fungi and oomycetes. It illustrates some fundamental discoveries about these eukaryotic microbes with regard to the overall structure of their genomes, their lifestyles and the molecular mechanisms that form the basis of their interactions with plants. Genomics has provided new insights into fungal lifestyles and led to practical advances in plant breeding and crop protection, such as predictions about the spread and evolution of new pathogens.This volume focuses on fungi and oomycetes that are typical dicot plant pathogens and includes: Sclerotinia sclerotiorum, Botrytis cinerea, Alternaria sp.,Verticillium alfalfae and Verticillium dahliae, Fusarium oxysporum, Phytophthora capsici, Phytophthora sojae, Phytophthora ramorum, Phytophthora infestans, Hyaloperonospora arabidopsidis.

Dictionary of Plant Breeding (Hardcover, 3rd edition): Rolf H. J Schlegel Dictionary of Plant Breeding (Hardcover, 3rd edition)
Rolf H. J Schlegel
R5,267 Discovery Miles 52 670 Ships in 10 - 15 working days

One of the oldest scientific traditions, plant breeding began in Neolithic times with methods as simple as saving the seeds of desirable plants and sowing them later. It was not until the re-encounter with Mendel's discoveries thousands of years later, the genetic basis of breeding was understood. Developments following have provided further insight into how genes acting alone or in concert with other genes and the environment, result in a particular phenotype. From Abaxial to Zymogram, the third edition of Dictionary of Plant Breeding contains clear and useful definitions of the terms associated with plant breeding and related scientific/technological disciplines. It defines jargon; provides helpful tables, examples, and breeding schemes; and includes a list of crop plants with salient details. Packed with data and organized to make that data easy to access, this revised and expanded reference provides comprehensive coverage of the latest discoveries in cytogenetics, molecular genetics, marker-assisted selection, experimental gene transfer, CRISPR technology, seed sciences, crop physiology, and genetically modified crops. Features: Provides a comprehensive list of technical terms used in plant breeding Explores the historical development of crop improvement Discusses applications of molecular genetics and biotechnology Includes numerous figures, drawings, tables, and schemes supplementing the glossary A complex subject, plant breeding draws from many scientific and technological disciplines, often making it difficult to know the precise meanings of many terms and to accurately interpret specific concepts. As in the previous editions, this dictionary unifies concepts by including the specific terms of plant breeding and terms that are adjusted from other disciplines. Drawing on Rolf Schlegel's 50 years of experience, the book provides an encyclopedic list of commonly used technical terms that reflect the latest developments in the field.

Triticale (Hardcover, 1st ed. 2015): Francois Eudes Triticale (Hardcover, 1st ed. 2015)
Francois Eudes
R4,984 Discovery Miles 49 840 Ships in 10 - 15 working days

Triticale crop species has received substantial research support since the mid-20th century making it a commercial success in many countries, in diverse value propositions. However, no recent book captures the new knowledge and progresses made in more than 2 decades. The purpose of this work is to review and collate the new knowledge of triticale plant biology and agronomy, while considering the contribution of biotechnology enablers such as molecular markers, doubled haploid technology and genetic engineering in breeding for traits important for crop production, feed, food and industrial end-uses.

Cinnamon - Botany, Agronomy, Chemistry and Industrial Applications (Hardcover, 1st ed. 2020): Ranjith Senaratne, Ranjith... Cinnamon - Botany, Agronomy, Chemistry and Industrial Applications (Hardcover, 1st ed. 2020)
Ranjith Senaratne, Ranjith Pathirana
R4,763 Discovery Miles 47 630 Ships in 18 - 22 working days

Cinnamon is the common name for the spice obtained from the dried inner bark of several species of the genus Cinnamomum in the Lauraceae family. In world trade, Cinnamomum cassia (L.) J. Presl Cinnamomum burmannii dominate, but it is of a different quality to 'true' or 'Ceylon' cinnamon produced from Cinnamomum zeylanicum Blume (C. verum J. Presl), with the latter much easier to process, giving a more delicate, sweeter flavor with nuances of clove, but more importantly with only traces (often below detection thresholds) of coumarin, compared with 5-7 g/kg in other species. Cinnamon has been a popular and expensive spice in many civilizations, including ancient Egypt, Rome and in 14th and 15th century Europe, where it was used primarily to preserve meat for its antibacterial properties, fine aroma and flavor. Ancient Egyptians used cinnamon in mummification process due to its antibacterial properties and fragrance. The quest for cinnamon brought many explorers to Ceylon, whose ancient history is intertwined with the cinnamon trade. Ancient Egyptians and Romans used cinnamon as a valued spice and as an incense. In recent years, much research has been conducted in crop improvement, processing and value addition in cinnamon. In addition to direct use as a condiment/spice, cinnamon has found a multitude of uses in the food and beverage, traditional medicine, pharmacology, nutraceutical and cosmetics industries. Ceylon cinnamon is unique in that oils distilled from the bark (major constituents are cinnamaldehyde and oleoresins), leaf (eugenol is the major constituent used in dentistry, perfumes, flavorings and as an antioxidant) and roots (camphor) have different industrial uses. Cinnamaldehyde is now a proven natural bactericide widely used in food and beverage industry, effective against Salmonella spp. and Escherichia coli. Thus, it has become an important natural component of organic fruit and vegetable juices to enhance microbial safety of these nutritious beverages. Because of its manifold uses, cinnamon is an important crop. There have been many recent publications on its ethnobotany, genetics, crop improvement, agronomy, processing, biotechnology, chemistry, food and medicinal uses, and industrial applications. However, one book condensing all these findings is lacking. Our publication, with chapters devoted to all these aspects of cinnamon written by experts in these fields, condenses current knowledge into a single source and contribute to the advancement and dissemination of knowledge and technology. Contributors to the book constitute internationally renowned senior scientists and academics with hands-on experience as well as movers and shakers of industry, thereby striking a right balance between theory and practice. Therefore it is a valuable source for students, teachers, scientists, planners policy makers, practicing agriculturists and industrialists, and a prized acquisition to any library in higher education institutions, R & D institutions and public and private sector institutions in agriculture and allied fields.

Biofuels and Biodiesel (Hardcover, 1st ed. 2021): Chhandak Basu Biofuels and Biodiesel (Hardcover, 1st ed. 2021)
Chhandak Basu
R4,659 Discovery Miles 46 590 Ships in 10 - 15 working days

This volume provides methods and protocols on principle, production, molecular aspects, and sustainability of biofuel and biodiesel. Chapters are divided into four sections detailing biofuel production, biodiesel production, molecular genetics, biotechnology of biofuel and biodiesel production, economics, and sustainability of biofuel production. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Biofuels and Biodiesel aims to be useful for researchers, students, and enthusiasts in the field of biofuel and biodiesel.

Fruit Breeding (Hardcover, 2012): Maria Luisa Badenes, David H. Byrne Fruit Breeding (Hardcover, 2012)
Maria Luisa Badenes, David H. Byrne
R5,332 Discovery Miles 53 320 Ships in 18 - 22 working days

Fruit Breeding is the eighth volume in the Handbook of Plant Breeding series. Like the other volumes in the series, this volume presents information on the latest scientific information in applied plant breeding using the current advances in the field, from an efficient use of genetic resources to the impact of biotechnology in plant breeding. The majority of the volume showcases individual crops, complemented by sections dealing with important aspects of fruit breeding as trends, marketing and protection of new varieties, health benefits of fruits and new crops in the horizon. The book also features contributions from outstanding scientists for each crop species. Maria Luisa Badenes Instituto Valenciano de Investigaciones Agrarias (IVIA), Valencia, Spain David Byrne Department of Horticultural Sciences, Texas A&M University, College Station, TX, USA

Bee Pollination in Agricultural Eco-systems (Hardcover): Rosalind James, Theresa L. Pitts-Singer Bee Pollination in Agricultural Eco-systems (Hardcover)
Rosalind James, Theresa L. Pitts-Singer
R2,799 Discovery Miles 27 990 Ships in 10 - 15 working days

For many agricultural crops, bees play a vital role as pollinators, and this book discusses the interplay among bees, agriculture, and the environment. Although honey bees are well recognized as pollinators, managed bumble bees and solitary bees are also critical for the successful pollination of certain crops, while wild bees provide a free service. As bees liberally pass pollen from one plant to the next, they also impact the broader ecosystem, and not always to the benefit of humankind. Bees can enhance the unintentional spread of genes from genetically engineered plants, and may increase the spread of invasive weeds. Conversely, genetically engineered plants can impact pollinators, and invasive weeds can supply new sources of food for these insects. Bees' flower-visiting activities also can be exploited to help spread biological control agents that control crop pests, and they are important for native plant reproduction. Managing bees for pollination is complex and the factors that must be taken into consideration are treated here, including bee natural history, physiology, pathology, and behavior. Furthermore, transporting bees from native ranges to new areas for pollination services can be controversial, and needs to be done only after assuring that it will not disrupt various ecosystems. Even though bees are small, unobtrusive creatures, they play large roles in the ecosystem. The connection between bees and humankind also is symbolic of a broader interconnection between humans and the natural world.

Quantum Dots for Plant Systems (Hardcover, 1st ed. 2022): Abdul Majid, Humaira Arshad, Muhammad Azmat Ullah Khan Quantum Dots for Plant Systems (Hardcover, 1st ed. 2022)
Abdul Majid, Humaira Arshad, Muhammad Azmat Ullah Khan
R2,658 Discovery Miles 26 580 Ships in 18 - 22 working days

Quantum dots (QDs) are important in the research and industrial fields due to their diverse properties and technological importance. Recently, QDs have been found to be suitable for biological, biomedical, agricultural, and food science applications. Many research articles, review papers, and internet sources have published on the use of QDs to improve plant growth and yield, but a comprehensive overview in book form has not been available to date. This book provides detailed information on synthesis, functionalization, and the use of various types of quantum dots for plant systems. It also addresses the current state of knowledge on sensing mechanisms of QD-based biosensors used for microorganisms, including bacteria, fungi, and plant virus detection. This book also offers in-depth knowledge related to QDs used for plant growth, nutrients, and plant protection from micro-organisms. This volume is beneficial as one comprehensive resource for students, researchers, scientists, technicians, academicians, and industrialists.

Biotechnological Approaches for Medicinal and Aromatic Plants - Conservation, Genetic Improvement and Utilization (Hardcover,... Biotechnological Approaches for Medicinal and Aromatic Plants - Conservation, Genetic Improvement and Utilization (Hardcover, 1st ed. 2018)
Nitish Kumar
R5,954 Discovery Miles 59 540 Ships in 18 - 22 working days

For the majority of the world's population, medicinal and aromatic plants are the most important source of life-saving drugs. Biotechnological tools represent important resources for selecting, multiplying and conserving the critical genotypes of medicinal plants. In this regard, in-vitro regeneration holds tremendous potential for the production of high-quality plant-based medicines, while cryopreservation - a long-term conservation method using liquid nitrogen - provides an opportunity to conserve endangered medicinal and aromatic plants. In-vitro production of secondary metabolites in plant cell suspension cultures has been reported for various medicinal plants, and bioreactors represent a key step toward the commercial production of secondary metabolites by means of plant biotechnology. Addressing these key aspects, the book contains 29 chapters, divided into three sections. Section 1: In-vitro production of secondary metabolites Section 2: In-vitro propagation, genetic transformation and germplasm conservation Section 3: Conventional and molecular approaches

Quantitative Genetics in Maize Breeding (Hardcover, 3rd ed. 2010): Arnel R. Hallauer, Marcelo J. Carena, J. B. Miranda Filho Quantitative Genetics in Maize Breeding (Hardcover, 3rd ed. 2010)
Arnel R. Hallauer, Marcelo J. Carena, J. B. Miranda Filho
R8,919 Discovery Miles 89 190 Ships in 18 - 22 working days

Maize is used in an endless list of products that are directly or indirectly related to human nutrition and food security. Maize is grown in producer farms, farmers depend on genetically improved cultivars, and maize breeders develop improved maize cultivars for farmers. Nikolai I. Vavilov defined plant breeding as plant evolution directed by man. Among crops, maize is one of the most successful examples for breeder-directed evolution. Maize is a cross-pollinated species with unique and separate male and female organs allowing techniques from both self and cross-pollinated crops to be utilized. As a consequence, a diverse set of breeding methods can be utilized for the development of various maize cultivar types for all economic conditions (e.g., improved populations, inbred lines, and their hybrids for different types of markets). Maize breeding is the science of maize cultivar development. Public investment in maize breeding from 1865 to 1996 was $3 billion (Crosbie et al., 2004) and the return on investment was $260 billion as a consequence of applied maize breeding, even without full understanding of the genetic basis of heterosis. The principles of quantitative genetics have been successfully applied by maize breeders worldwide to adapt and improve germplasm sources of cultivars for very simple traits (e.g. maize flowering) and very complex ones (e.g., grain yield). For instance, genomic efforts have isolated early-maturing genes and QTL for potential MAS but very simple and low cost phenotypic efforts have caused significant and fast genetic progress across genotypes moving elite tropical and late temperate maize northward with minimal investment. Quantitative genetics has allowed the integration of pre-breeding with cultivar development by characterizing populations genetically, adapting them to places never thought of (e.g., tropical to short-seasons), improving them by all sorts of intra- and inter-population recurrent selection methods, extracting lines with more probability of success, and exploiting inbreeding and heterosis. Quantitative genetics in maize breeding has improved the odds of developing outstanding maize cultivars from genetically broad based improved populations such as B73. The inbred-hybrid concept in maize was a public sector invention 100 years ago and it is still considered one of the greatest achievements in plant breeding. Maize hybrids grown by farmers today are still produced following this methodology and there is still no limit to genetic improvement when most genes are targeted in the breeding process. Heterotic effects are unique for each hybrid and exotic genetic materials (e.g., tropical, early maturing) carry useful alleles for complex traits not present in the B73 genome just sequenced while increasing the genetic diversity of U.S. hybrids. Breeding programs based on classical quantitative genetics and selection methods will be the basis for proving theoretical approaches on breeding plans based on molecular markers. Mating designs still offer large sample sizes when compared to QTL approaches and there is still a need to successful integration of these methods. There is a need to increase the genetic diversity of maize hybrids available in the market (e.g., there is a need to increase the number of early maturing testers in the northern U.S.). Public programs can still develop new and genetically diverse products not available in industry. However, public U.S. maize breeding programs have either been discontinued or are eroding because of decreasing state and federal funding toward basic science. Future significant genetic gains in maize are dependent on the incorporation of useful and unique genetic diversity not available in industry (e.g., NDSU EarlyGEM lines). The integration of pre-breeding methods with cultivar development should enhance future breeding efforts to maintain active public breeding programs not only adapting and improving genetically broad-based germplasm but also developing unique products and training the next generation of maize breeders producing research dissertations directly linked to breeding programs. This is especially important in areas where commercial hybrids are not locally bred. More than ever public and private institutions are encouraged to cooperate in order to share breeding rights, research goals, winter nurseries, managed stress environments, and latest technology for the benefit of producing the best possible hybrids for farmers with the least cost. We have the opportunity to link both classical and modern technology for the benefit of breeding in close cooperation with industry without the need for investing in academic labs and time (e.g., industry labs take a week vs months/years in academic labs for the same work). This volume, as part of the Handbook of Plant Breeding series, aims to increase awareness of the relative value and impact of maize breeding for food, feed, and fuel security. Without breeding programs continuously developing improved germplasm, no technology can develop improved cultivars. Quantitative Genetics in Maize Breeding presents principles and data that can be applied to maximize genetic improvement of germplasm and develop superior genotypes in different crops. The topics included should be of interest of graduate students and breeders conducting research not only on breeding and selection methods but also developing pure lines and hybrid cultivars in crop species. This volume is a unique and permanent contribution to breeders, geneticists, students, policy makers, and land-grant institutions still promoting quality research in applied plant breeding as opposed to promoting grant monies and indirect costs at any short-term cost. The book is dedicated to those who envision the development of the next generation of cultivars with less need of water and inputs, with better nutrition; and with higher percentages of exotic germplasm as well as those that pursue independent research goals before searching for funding. Scientists are encouraged to use all possible breeding methodologies available (e.g., transgenics, classical breeding, MAS, and all possible combinations could be used with specific sound long and short-term goals on mind) once germplasm is chosen making wise decisions with proven and scientifically sound technologies for assisting current breeding efforts depending on the particular trait under selection. Arnel R. Hallauer is C. F. Curtiss Distinguished Professor in Agriculture (Emeritus) at Iowa State University (ISU). Dr. Hallauer has led maize-breeding research for mid-season maturity at ISU since 1958. His work has had a worldwide impact on plant-breeding programs, industry, and students and was named a member of the National Academy of Sciences. Hallauer is a native of Kansas, USA. Jose B. Miranda Filho is full-professor in the Department of Genetics, Escola Superior de Agricultura Luiz de Queiroz - University of Sao Paulo located at Piracicaba, Brazil. His research interests have emphasized development of quantitative genetic theory and its application to maize breeding. Miranda Filho is native of Pirassununga, Sao Paulo, Brazil. M.J. Carena is professor of plant sciences at North Dakota State University (NDSU). Dr. Carena has led maize-breeding research for short-season maturity at NDSU since 1999. This program is currently one the of the few public U.S. programs left integrating pre-breeding with cultivar development and training in applied maize breeding. He teaches Quantitative Genetics and Crop Breeding Techniques at NDSU. Carena is a native of Buenos Aires, Argentina. http://www.ag.ndsu.nodak.edu/plantsci/faculty/Carena.htm

Plant Small RNA - Biogenesis, Regulation and Application (Paperback): Praveen Guleria, Vineet Kumar Plant Small RNA - Biogenesis, Regulation and Application (Paperback)
Praveen Guleria, Vineet Kumar
R4,033 Discovery Miles 40 330 Ships in 10 - 15 working days

Plant Small RNA: Biogenesis, Regulation and Application describes the biosynthesis of small RNA in plant systems. With an emphasis on the various molecular mechanisms affected by small RNA and their applications in supporting plant growth and survival, this books presents the basics and most recent advancements in small RNA mediated plant genomics, metabolomics, proteomics and physiology. In addition, it emphasizes the various molecular mechanisms affected by small RNA and their applications in supporting plant growth and survival. Final sections cover the most recent advancements in small RNA mediated plant genomics, metabolomics, proteomics and physiology.

Root and Tuber Crops (Hardcover, 2010 Ed.): J.E. Bradshaw Root and Tuber Crops (Hardcover, 2010 Ed.)
J.E. Bradshaw
R5,176 Discovery Miles 51 760 Ships in 18 - 22 working days

It is important to include Tuber and Root Crops in the Handbook of Plant Breeding. They include starchy staple crops that are of increasing importance for global food security and relief of poverty, important millennium goals for the United Nations. Indeed, 2008 was the UN International Year of the Potato in recognition of this role of the potato as the world s third most important food crop after wheat and rice. The other major staples are cassava, sweetpotato and yam. Together they occupy about 50 million hectares, with production at 640 million metric tons, of which 70% is in developing countries. In total there are more than 30 species of Root and Tuber Crops grown in the world today. Given the content of other volumes in the series, it makes sense to include sugar and fodder beets; swedes and turnips; and minor root and tuber crops so that the book series is as complete as possible. Like the other volumes in the series, this one will present information on the latest in applied plant breeding using the current advances in the field, from an efficient use of genetic resources to the impact of biotechnology in plant breeding. Seven crop specific chapters are proposed, together with an introduction to this diverse set of plant species. Outstanding scientists for each crop species are proposed as senior authors, who may invite co-authors to contribute part of a chapter. In order to increase the overall acceptance of the volume, balance will be sought with authors from different research groups/countries who will be asked to contribute and collaborate where appropriate. The book should be of interest to researchers in both academic and industrial settings, and in both developed and developing countries, as well as students and teachers of plant breeding. It is currently extremely important to educate and train a new generation of plant breeders given the challenges faced by humankind in producing more food for an expanding global population during a period of environmental (including climate) change."

Mycoremediation and Environmental Sustainability - Volume 3 (Hardcover, 1st ed. 2021): Ramprasad, S. Chandra Nayak, Ravindra... Mycoremediation and Environmental Sustainability - Volume 3 (Hardcover, 1st ed. 2021)
Ramprasad, S. Chandra Nayak, Ravindra Nath Kharwar, Nawal Kishor Dubey
R4,297 Discovery Miles 42 970 Ships in 18 - 22 working days

Volume 3 covers recent research with expanded coverage on this important area of remediation. Mycoremediation is the form of bioremediation in which fungi-based technology is used to decontaminate the environment. Fungi are among the primary saprotrophic organisms in an ecosystem, as they are efficient in the decomposition of organic matter. Wood-decay fungi, especially white rot, secretes extracellular enzymes and acids that break down lignin and cellulose. Fungi have been proven to be a very cost-effective and environmentally-friendly way for helping to remove a wide array of toxins from damaged environments or wastewater. These toxins include heavy metals, persistent organic pollutants, textile dyes, leather tanning industry chemicals and wastewater, petroleum fuels, polycyclic aromatic hydrocarbon, pharmaceuticals and personal care products, pesticides and herbicides, in land, fresh water and marine environments. Bioremediation of toxic organics by fungi is the most sustainable and green route for cleanup of contaminated sites and we discuss the multiple modes employed by fungi for detoxification of different toxic and recalcitrant compounds including prominent fungal enzymes viz., catalases, general lipase, laccases, peroxidases and sometimes intracellular enzymes, especially the cyrochrome P450 monooxygeneses. Fungi play an important role in the biogeochemical cycling of manganese and other redox-active metals, which is related to their ability to survive radiation and other oxidative challenges. This book covers recent research with more detail on the various types of fungi and associated fungal processes used to clean up wastes and wastewaters in contaminated environments, and discusses their potential for environmental applications.

Current Trends in the Embryology of Angiosperms (Hardcover, 2001 ed.): Sant Saran Bhojwani, Woong-Young Soh Current Trends in the Embryology of Angiosperms (Hardcover, 2001 ed.)
Sant Saran Bhojwani, Woong-Young Soh
R5,436 Discovery Miles 54 360 Ships in 18 - 22 working days

During the last two decades the modern techniques of histochemistry, electron microscopy, plant physiology, biochemistry, cell and molecular biology, immunology, and genetics have been applied to investigate the intricacies of the processes involved in embryo formation, and considerable new information has been generated. A better understanding of these processes has enhanced our capacity to manipulate fertilization and embryo development. This has changed the face of the embryology of angiosperms from a descriptive science to an experimental and applied science. The revolutionary progress made in this fascinating field of sexual reproduction was the motivation to prepare this volume. It includes 21 chapters written by experts who have made substantial contributions to their respective fields. It covers all aspects of the embryology of angiosperms, ranging from development, isolation, and structure of male and female gametes, their fusion in vivo and in vitro, and structure, physiology, and genetics of zygotic embryogenesis, to endosperm and seed development. Advances in somatic embryogenesis, synthetic seed technology and regeneration of haploid plants from male and female gametophytes are discussed. Other important topics covered in this volume are sexual incompatibility, parthenocarpy, and apomixis. The last chapter deals with the embryological perspective of inheritance of extra-nuclear genes. All the chapters contain up-to-date information and are profusely illustrated. Graduate and postgraduate students, teachers, and scientists of botany and other areas of plant sciences will find this book extremely useful.

Oil Crop Genomics (Hardcover, 1st ed. 2021): Huseyin Tombuloglu, Turgay Unver, Guzin Tombuloglu, Khalid Rehman Hakeem Oil Crop Genomics (Hardcover, 1st ed. 2021)
Huseyin Tombuloglu, Turgay Unver, Guzin Tombuloglu, Khalid Rehman Hakeem
R4,763 Discovery Miles 47 630 Ships in 18 - 22 working days

Plants are an important source of fats and oils, which are essential for the human diet. In recent years, genomics of oil biosynthesis in plants have attracted great interest, especially in high oil-bearing plants, such as sesame, olive, sunflower, and palm. Considering that, genome sequencing projects of these plants have been undertaken with the help of advanced genomics tools such as next generation sequencing. Several genome sequencing projects of oil crops are in progress and many others are en route. In addition to genome information, advanced genomics approaches are discussed such as transcriptomics, genomics-assisted breeding, genome-wide association study (GWAS), genotyping by sequencing (GBS), and CRISPR. These have all improved our understanding of the oil biosynthesis mechanism and breeding strategies for oil production. There is, however, no book that covers the genomes and genomics of oil crops. For this reason, in this volume we collected the most recent knowledge of oil crop genomics for researchers who study oil crop genomes, genomics, biotechnology, pharmacology, and medicine. This book covers all genome-sequenced oil crops as well as the plants producing important oil metabolites. Throughout this book, the latest genomics developments and discoveries are highlighted as well as open problems and future challenges in oil crop genomics. In doing so, we have covered the state-of-the-art of developments and trends of oil crop genomics.

Industrial Crops - Breeding for BioEnergy and Bioproducts (Hardcover, 2015 ed.): Von Mark V. Cruz, David A. Dierig Industrial Crops - Breeding for BioEnergy and Bioproducts (Hardcover, 2015 ed.)
Von Mark V. Cruz, David A. Dierig
R4,925 Discovery Miles 49 250 Ships in 10 - 15 working days

The volume on Industrial Crop Breeding will be part of the series, Handbook of Plant Breeding. This volume will focus on the emerging area of plant breeding for sustainable production of transportation fuels and bio based products using the current advances in the field. The book is scheduled to consist of a total number of 30 chapters divided into four sections. The sections will emphasize crops being considered for different challenge areas including oil crops for biodiesel; sugar, starch and cellulosic crops for biofuel; crops for bio products and issues and future prospects. A chapter introducing the first three sections will also be included. Outstanding scientists for each crop species are proposed as senior authors, who may invite co-authors to contribute part of a chapter to provide additional expertise or perspective. The proposed authors will represent various national and international institutions to get a more diverse view on the topic and somehow get a global view on the common issues that researchers on industrial crops are facing. The book will comprise primarily of specific issues, available germplasm, breeding techniques, and potential geographical areas of production pertaining to individual crops being considered for industrial uses. We hope to encourage the proposed authors of new crops to provide an estimate of the crop readiness for commercial development and discuss the limitations. This book will be will be of interest and envisioned to serve as an updated reference to researchers in both academic and industrial setting, to students and teachers of plant breeding and to policy makers who are looking for alternative solutions to dependency on imported petroleum products.

Raspberry - Breeding, Challenges and Advances (Hardcover, 1st ed. 2018): Julie Graham, Rex Brennan Raspberry - Breeding, Challenges and Advances (Hardcover, 1st ed. 2018)
Julie Graham, Rex Brennan
R4,011 Discovery Miles 40 110 Ships in 18 - 22 working days

Raspberry is a globally-significant soft fruit crop, with increasing interest to consumers due to its versatility and health-related constituents. In this background context, it is therefore timely to consider the present and future status of the raspberry crop, particularly with the advances in the use of molecular tools and plant phenotyping to improve our understanding of improving crop quality and fruit yields. Since the 1980s a wealth of fundamental genomics and metabolomics resources have been developed for soft fruits including linkage maps, physical maps, QTLs and expression tools. However, a number of serious and emerging challenges exist for the raspberry industry, including the plants' ability to resist major pest and disease burdens and the impact of climate change on crop production, specifically water use and water availability for soft fruit crops. This book aims to address some of these challenges by updating the information known about this important crop, its health value, the major pest and diseases which affect raspberry and approaches for their control, and the speed and precision offered by selective breeding programs by the deployment of molecular tools and linkage maps for germplasm assessment. Understanding the genetic control of commercially and nutritionally important traits and the linkage of these characteristics to molecular markers on chromosomes is the future basis of plant breeding. We will also introduce the opportunity to fast track breeding by improving the speed of phenotypic selection by utilizing imaging sensor technologies, thereby reducing the cost of years of field assessment through developing this knowledge into markers linked to key fruit traits. The chapters of this book will span the knowledge gained from the collaborations between growers, plant breeders, plant physiologists, soil scientists, geneticists, agronomists and physicists which is essential to achieve progress in improving productivity and a sustainable industry.

Breeding strategies for sustainable forage and turf grass improvement (Hardcover, 2013 ed.): Susanne Barth, Dan Milbourne Breeding strategies for sustainable forage and turf grass improvement (Hardcover, 2013 ed.)
Susanne Barth, Dan Milbourne
R4,078 Discovery Miles 40 780 Ships in 18 - 22 working days

From the 4th - 8th of September 2011, the Eucarpia Fodder Crops and Amenity Grasses Section, held its 29th Meeting in the surroundings of Dublin Castle in Ireland. The theme of the meeting was 'Breeding strategies for sustainable forage and turf grass improvement'. Grasslands cover a significant proportion of the land mass of the world, and play a pivotal role in global food production. At the same time we are faced with several challenges that affect the way in which we think about this valuable set of resources. The population of the world is expected to exceed 9 billion by 2050, and increase of about one third relative to today's levels. This population increase will be focused in urban areas, and in what are currently viewed as "developing" countries, meaning that the buying power of this increased population will be greater - shifting the balance of demand from staple crops to high value items such as meat and dairy products. Overall that the world will have to approximately double agricultural output across all categories of food to meet the demands of this larger, urbanised population. This is occurring against a backdrop of equally large challenges in terms of global climate change. Agriculture is already a significant contributor to e.g. greenhouse gas emissions, deforestation and soil erosion. The situation is made more complex by an increased emphasis on biofuels as a solution for our imminent oil shortage, resulting in increased competition between land utilised for food and fuel. In short, agriculture must continue to feed the world, whilst not contributing to damaging it further. It must be sustainable. Plant breeding plays a significant but frequently understated role in meeting the challenges presented by this complex and changing scenario. However, plant breeding and improvement is itself undergoing radical change driven by technology. This book explores how forage and turf breeding is changing and adapting to meet these challenges using the technological advances being experienced in plant breeding as a whole.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Structure and Chemistry of Crystalline…
Bodie Douglas, Shi-ming Ho Hardcover R4,264 Discovery Miles 42 640
Mouse Attack 2!!!
Mackey Miller Hardcover R827 Discovery Miles 8 270
Soldiers - Great Stories Of War And…
Max Hastings Paperback R334 Discovery Miles 3 340
Practice Tests Plus KET for Schools…
Rosemary Aravanis Paperback R535 Discovery Miles 5 350
The Ames Farm of Woolwich, Maine - Life…
Roberta Ames Hardcover R577 Discovery Miles 5 770
Focus 2ed Level 3 Student's Book & eBook…
Sue Kay, Vaughan Jones, … Paperback R1,437 Discovery Miles 14 370
Kanniedood - Branderjaer-Sage: Boek 3
Joha van Dyk Paperback R335 R299 Discovery Miles 2 990
Foundations of Topology - An Approach to…
Gerhard Preuss Hardcover R2,826 Discovery Miles 28 260
All the Water the Law Allows - Las Vegas…
Christian S. Harrison Hardcover R1,180 Discovery Miles 11 800
Grandpa Jokes - Like a Dad Joke but…
Jacob Maxwell Hardcover R493 Discovery Miles 4 930

 

Partners